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Abstract

This document describes the Fortran 90 and C user interfade®JMPS 4.10.0 We describe in
detail the data structures, parameters, calling sequeandserror diagnostics. Basic example programs
usingMUMP@re also provided.

*Information on how to obtain updated copies of MUMPS can betainbd from the Web pages
http://mumps.enseeiht.fr/ andhttp://graal.ens-lyon.frfMUMPS/
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http://graal.ens-lyon.fr/MUMPS/
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1 Introduction

MUMP$&‘MUItifrontal Massively Parallel Solver”) is a packagerfeolving systems of linear equations of
the formAx = b, whereA is a square sparse matrix that can be either unsymmetriansic positive
definite, or general symmetricdMUMPSmplements a direct method based on a multifrontal approach
which performs a direct factorization

A=LU 1)

whereL is a lower triangular matrix an an upper triangular matrix. If the matrix is symmetric then
the factorization
A =LDL” 2)

whereD is block diagonal matrix with blocks of order 1 or 2 on the diagl is performed. We refer the
reader to the paper$,[6, 9, 20, 21, 25, 24, 11] for full details of the techniques usetMUMP @xploits
both parallelism arising from sparsity in the matAxand from dense factorizations kernels.

The main features of thBlUMP$ackage include the solution of the transposed systemt ofpu
the matrix in assembled format (distributed or centraljzadelemental format, error analysis, iterative
refinement, scaling of the original matrix, out-of-core @bitity, parallel analysis, detection of null pivots,
basic estimate of rank deficiency and null space basis forrstnic matrices, and computation of a Schur
complement matrixMUMP $ffers several built-in ordering algorithms, a tight iriéere to some external
ordering packages such as PORD)][ SCOTCH 8] or METIS [26] (strongly recommended), and the
possibility for the user to input a given ordering. FinalUMPSs available in various arithmetics
(real or complex, single or double precision). A paralledlgnis and an out-of-core functionality are
also available. Most recent experimental functionalitire®Ive the computation of the determinant, the
computation of the entries in the inverseffand exploiting sparsity of the right-hand sides to reduee th
amount of floating-point operations and accesses to therfawitrices.

The software is mainly written in Fortran 90 although a Ciifatee is available (see Secti8p Scilab
and MATLAB/Octave interfaces are also available in the cafseequential executions. The parallel
version ofMUMP $equires MPI B3] for message passing and makes use of the BLAST6], BLACS,
and ScalLAPACK [ 3] libraries. The sequential version only relies on BLAS.

MUMP& downloaded from the web site almost four times a day oreaeand has been run on very
many machines, compilers and operating systems, althougkxperience is really only with UNIX-
based systems. We have tested it extensively on parallgbai@ms from SGI, Cray, and IBM and on
clusters of workstations.

MUMPSlistributes the work tasks among the processors, but arifidenprocessor (the host) is
required to perform most of the analysis phase, to distilthe incoming matrix to the other processors
(slaves) in the case where the matrix is centralized, andlteat the solution. The systeAx = b is
solved in three main steps:

1. Analysis.
During analysis, preprocessing (see Secfid) including an ordering based on the symmetrized
pattern A + AT and a symbolic factorization is performed. Both paralletl sequential
implementation of the analysis phase is available. A mappinthe multifrontal computational
graph is then computed and used to estimate the number cdtaeE and memory necessary
for factorization and solution. LeApre denotes the preprocessed matrix (further defined in
Section2.2).

2. Factorization.
During factorization a direct factorizatiodpre = LU or Ape = LDLT depending on
the symmetry of the preprocessed matrix is computed. Thginali matrix is first distributed
(or redistributed) onto the processors depending on thepimgpof the dependency graph of
factorization, the so calledlimination tree [27]. The numerical factorization is then a sequence
of dense factorization on so callé@ntal matrices. In addition to standard threshold pivoting and
two-by-two pivoting (not so standard in distributed memooges) there is an option to perform
static pivoting. The elimination tree also expresses ieddpncy between tasks and enables
multiple fronts to be processed simultaneously. This aggids calledmultifrontal approach .
After the factorization, the factor matrices are kept distied (in core memory or on disk); they
will be used at the solution phase.



3. Solution.
The solution ofLUXpre = bpre OF LDL Xpre = bpre Wherexp,e andbyre are respectively
the transformed solutior and right-hand sidé& associated to the preprocessed mafixe, iS
obtained through orward elimination step

Ly = bpre Of LDy = bpre , 3)
followed by abackward elimination step
prre =y or LTXpre =Y. (4)

The right-hand sidé is first preprocessed and then broadcasted from the hosetavdinking
processors. Sparse right-hand sides might be used to hmivdlume of data exchange during
this step. A forward elimination (Equatidd) and a backward substitution (Equatidnare then
performed using the (distributed) factors computing dyrfactorization to obtainkpre. The
solutionxpre is finally postprocessed to obtain the solutiorof the original systemAx = b,
wherex is either assembled on the host or kept distributed on th&ingiprocessors. lterative
refinement and backward error analysis are also postpingegstions of the solution phase.

Each of these phases can be called separately and seveealces ofMUMPSan be handled
simultaneously. MUMP&illows the host processor to participate to the factowmatind solve phases,
just like any other processor (see Sectf).

For both the symmetric and the unsymmetric algorithms usethé code, we have chosen a
fully asynchronous approach with dynamic scheduling of ¢enputational tasks. Asynchronous
communication is used to enable overlapping between conwation and computation. Dynamic
scheduling was initially chosen to accommodate numerioadtipg in the factorization. The other
important reason for this choice was that, with dynamic dalieg, the algorithm can adapt itself at
execution time to remap work and data to more appropriategssors. In fact, we combine the main
features of static and dynamic approaches; we use the éstimabtained during the analysis to map
some of the main computational tasks; the other tasks ar@ndaigally scheduled at execution time. The
main data structures (the original matrix and the factaressamilarly partially mapped during the analysis
phase.

2 Main functionalities of MUMPS 4.10.0

We describe here the main functionalities of the soM&iMPSThe user should refer to Sectiohand5
for a complete description of the parameters that must bergégt are referred to in this Section. The
variables mentioned in this section are components of atstemumpspar of type MUMPSTRUC
(see Sectio®) and for the sake of clarity, we refer to them only by their p@ament name. For example,
we use ICNTL to refer taenumpspar%ICNTL .

2.1 Input matrix structure

MUMPSrovides several possibilities for inputting the matrix. heT selection is controlled by the
parametersCNTL(5) andICNTL(18).

The input matrix can be supplied glemental formatind must then be input centrally on the host
(ICNTL(5)=1 andICNTL(18)=0). For full details see Sectiof.6. Otherwise, it can be supplied in
assembled forman coordinate form ICNTL(5)=0), and, in this case, there are several possibilities (see
Sectionsd.5and4.7):

1. the matrix can be input centrally on the host proced&iXTL(18)=0);

2. only the matrix structure is provided on the host for thalgsis phase and the matrix entries are
provided for the numerical factorization, distributedass the processors:

e either according to a mapping supplied by the analy&8ITL(18)=1),
e or according to a user determined mappif@NTL(18)=2);



3. itis also possible to distribute the matrix pattern aralehtries in any distribution in local triplets
(ICNTL(18)=3) for both analysis and factorization (recommended ogfbo distributed entry).

By default the input matrix is considered in assembled farff@GNTL(5)=0) and input centrally on
the host processofGNTL(18)=0).

2.2 Analysis/Preprocessing

A range of symmetric orderings to preserve sparsity is algl during the analysis phase. In addition
to the symmetric orderings, the package offers pre-pravg$acilities: permuting to zero-free diagonal
and prescaling. When all preprocessing options are aetlyéiie preprocessed mati.. that will be
effectively factored is :

Apre = PD, A Q.D.P", (5)

whereP is a permutation matrix applied symmetricaly. is a (column) permutation add, andD.
are diagonal matrices for (respectively row and columnlimgaNote that when the matrix is symmetric,
preprocessing is designed to preserved symmetry.

Preprocessing highly influences the performance (mematyiare) of the factorization and solution
steps. The default values correspond to an automatic ggitiriormed by the package which depends on
the ordering packages installed, the type of the matrix (sginic or unsymmetric), the size of the matrix
and the number of processors available. We thus strongbmeend the user to install all ordering
packages to offer maximum choice to the automatic decisiocgss.

e Symmetric permutationP

The symmetric permutation can be computed either seqlignbain parallel. ThelCNTL(28)
parameter is responsible for setting the strategy.

In the case where the symmetric permutation is computedesgiglly, the ordering method is set
by the ICNTL(7) parameter which offers a range of ordering options inclgdhe approximate
minimum degree ordering (AMD]), an approximate minimum degree ordering with automatic
quasi-dense row detection (QAMD3]), an approximate minimum fill-in ordering (AMF), an
ordering where bottom-up strategies are used to build aggarby Jirgen Schulze from University
of Paderborn (PORD 2[1]), the SCOTCH package’f], and the METIS package from Univ. of
Minnesota P6]. A user-supplied ordering can also be provided and thetgivder must be set by
the user on the host RERMLIN (see Sectiod.9).

In the case where the symmetric permutation is computedrallph the ordering method is set by
theICNTL(29). One of the PT-SCOTCH and ParMetis parallel ordering toafsiesed in this case.

In addition to the symmetric orderingg]UMPSffers other pre-processing facilities: permuting to
zero-free diagonal and prescaling.

e Permutations to a zero-free diagon&).

Controlled byICNTL(6), this permutation is recommended for very unsymmetric icedrto
reduce fill-in and arithmetic cost, se&/] 18]. For symmetric matrices this permutation can also
be used to constrain the symmetric permutation (seel@iNdL(12) option). Furthermore, when
numerical values are provided on entry to the analysis pH&3TL(6) may also build scaling
vectors during the analysis, that will be either used oratided depending on the scaling option
ICNTL(8).

e Row and Column scalingsD, andD.
Controlled byICNTL(8), this preprocessing improves the numerical accuracy ankesnall
estimations performed during analysis more reliable. Ageaaf classical scalings are provided
and can be automatically performed within the package (segd®4.9), either during the analysis
phase or at the beginning of the factorization phase.

Furthermore, preprocessing strategies for symmetridiimte matrices, as described i, can
be applied and also lead to scaling arrays; they are coatrblyICNTL(12).



2.3 Post-processing facilities

It has been shownl] that with only two to three steps of iterative refinement sloéution can often be
significantly improved. Iterative refinement can be optllyngerformed after the solution step using the
parametetCNTL(10).

MUMPS&ilso enables the user to perform classical error analysiedoan the residuals (see the
description ofCNTL(11) in Section5). We calculate an estimate of the sparse backward errog usin
the theory and metrics developed ir’]. We use the notatio® for the computed solution and a modulus
sigh on a vector or a matrix to indicate the vector or matritaoted by replacing all entries by their
moduli. The scaled residual

b — Ax]|,
0 6
(Tl TAT xI), ©)

is computed for all equations except those for which the matoe is nonzero and the denominator is
small. For all the exceptional equations,

|b - Ai(|i (7
(AT, + 1Al 1%l o

is used instead, whem&; is row: of A. The largest scaled residué) (s returned irRINFOG(7)and the
largest scaled residuat)(is returned irRINFOG(8) If all equations are in category (1), zero is returned
in RINFOG(8) The computed solutior is the exact solution of the equation

(A +6A)x = (b +4b),

where
0A;; < max(RINFOG(7) RINFOG(8))|A|Z.].,
anddb; < max(RINFOG(7)b|,, RINFOG(8)|A;|l.||X|l..)- Note thatd A respects the sparsity &
in the sense thaltA;; is zero for structural zeros iA, i.e., whenA;;=0. An upper bound for the error in
the solution is returned IRINFOG(9) Finally condition numbersond; andcond: for the linear system
(not just the matrix) are returned RINFOG(10)andRINFOG(11) respectively, and
llox|]

T < RINFOG(9) = RINFOG(7)x conds + RINFOG(8)x condz.

2.4 Solving the transposed system

Given a sparse matriA, the systemAX = B or ATX = B can be solved during the solve stage,
whereA is square of orden andX andB are of ordem by nrhs. This is controlled by CNTL(9).

2.5 Arithmetic versions

Several versions of the packalygpJMP%re available:REAL DOUBLE PRECISIONCOMPLEXand
DOUBLE COMPLEX
To compile all or any particular version, please refer tortt@ README of the MUMPS sources.
This document applies to all four arithmetics. In the follogywe use the conventions below:

1. the ternreal is used folREALor DOUBLE PRECISION
2. the termcomplexis used fotCOMPLEXr DOUBLE COMPLEX

2.6 The working host processor

The analysis phase is performed on the host processor. Tttiegsor is the one with rank 0 in the
communicator provided tMUMPSBy setting the variablPARto 1 (see Sectiod.3), MUMP&llows the
host to participate in computations during the factormatind solve phases, just like any other processor.
This allowsMUMPSo run on a single processor and prevents the host processw idlle during the
factorization and solve phases (as would be the caseAR=0). We thus generally recommend using a
working host processoPAR=1).



The only case where it may be worth usiR§R=0 is with a large centralized matrix on a purely
distributed architecture with relatively small local meyto PAR=1 will lead to a memory imbalance
because of the storage related to the initial matrix on tts. ho

2.7 Sequential version

It is possible to uséIUMPSequentially by limiting the number of processors to oné the link phase
still requires the MPI, BLACS, and ScaLAPACK libraries art tuser program needs to make explicit
calls toMPI_INIT andMPI_FINALIZE .

A purely sequential version dlUMP$s also available. For this, a special library is distrilaliteat
provides all external references neededMiyMPSor a sequential environmentMUMP&an thus be
used in a simple sequential program, ignoring everythitafed to parallelism or MPI. Details on how
to build a purely sequential version BRUMP@re available in the file README available in tMUMPS
distribution. Note that for the sequential version, the pomentPAR must be set to 1 (see SectidrB)
and that the calling program should not make use of MPI.

2.8 Shared memory version

On networks of SMP nodes (multiprocessor nodes with a sharechory) or on multicore-based
machines, a parallel shared memory BLAS library (also dafteiltithread BLAS) is often available.
Using shared memory or threaded BLAS (between 2 and 4 thpsadgP| process) can be significantly
more efficient than running with only MPI processes. For egl@non a computer with 2 SMP nodes and
16 processors per node, we advise to run using 16 MPI praecesde? threads per MPI process.

2.9 Out-of-core facility

Controlled byICNTL(22), a preliminary out-of-core facility is available in bothggeential and parallel
environments. In this version only the factors are writterdisk during the factorization phase and
will be read each time a solution phase is requested. Ourriexpe is that on a reasonably small
number of processors this can significantly reduce the mgmeguirement while not increasing much
the factorization time. The extra cost of the out-of-coratdiee is thus mainly during the solve phase,
where factors have to be read from disk for both the forwairdiehtion and the backward substitution.

2.10 Determinant

Controlled byICNTL(33), MUMPS has an option to compute the determinant of the mptoxided on
entry. It is available for symmetric and unsymmetric masidor all arithmetics (single, double, real,
complex), and for all matrix input formats.

If A= LU (unsymmetric matrices), thefet(A) = det(L) x det(U) = []"_, Ui;, wheren is the
order of the matrixA. If A = LDL' (symmetric matrices), thedet(A) = H?:l D;;. The sign of
the determinant is maintained by keeping track of all iriépermutations. Scaling arrays are taken into
account too, in case the matrix is scaled. To avoid overflovdsguarantee an accurate computation, the
mantissa and exponent are computed separately and reimadnahen needed.

The determinant is only computed when requested by the isemore information, se€NTL(33).

If the user is only interested in the determinant, he/she @kMIUMPS that the factor matrices can be
discarded (seBECNTL(31)), significantly reducing the storage requirements.

2.11 Computing entries ofA~!

Several applications require the explicit computation @ested entries of the inverse of large sparse
matrices. In most cases, many entries are requested, fapéxall diagonal entries. To compute column
j of the inverse, the equatiofiz = e; can be used, whe¥g is thejth column of the identity matrix. One
can obtain major savings if the structural zeros pére exploited or if only few entries of thgh column



are requestedp, 2]. If we have anL U factorization ofA, a,jjl, the (4, j) entry of A=, is obtained by
solving successively the two triangular systems:

y = Lilej (8)

a;; = (U "y)i ©)
MUMPS provides a functionality, controlled BENTL(30), to compute a set of entries &,
while avoiding most of the computations on explicit zero&guations 8§ and ). The list of entries of
A~ to be computed and the memory for those entries should bédeaas a sparse right-hand side,
see the descriptions €ENTL(30) in Section5, and ofIRHS_PTR, IRHS_SPARSE andRHS_ SPARSE
in Section4.13 In a parallel environment there are quite a lot of oppottasifor improvements which
are the topic of on going research activities but are notn@tided in this release.

2.12 Reduce/condense a problem on an interface (Schur coreptent and
reduced/condensed right-hand side)

A Schur complement matrix (centralized or provided as 2xbloyclic matrix) can be returned to the
user (se¢CNTL(19), ICNTL(26) and Sectiod.10. The user must specify the list of indices of the Schur
matrix. MUMP &en provides both a partial factorization of the complesgrin and returns the assembled
Schur matrix in user memory. The Schur matrix is considesed fll matrix. The partial factorization
that builds the Schur matrix can also be used to solve lingstesis associated with the “interior”
variables [CNTL(26)=0) and also to handle a reduced/condensed right-handiSiNTL(26)=1,2) as
described in the following discussion.

Let us consider a partitioned matrix (here with an unsymimetatrix) where the variables % o,
specified by the user, correspond to the Schur variables awhich a partial factorization has been
performed. In the following, and only for the sake of cle@swe have ordered last all variables belonging

to the Schur.
. Ain A\ ([ Lia O U1 Uip
A= (A2,1 A2,2)_<L2,1 I)( 0 S ) (10)
Thus the Schur complement, as returnedlyMPJs such thaB = A, 5> — A2,1A;}A1,2.

ICNTL(26) can then be used during the solution phase to describe hewpdhiial factorization can
be used to solvéA x = b:

° ‘ Compute a partial solutio‘n
If ICNTL(26)=0 then the solve is performed on the internal problem:

A1’1IE1 = b1.

Entries in the right-hand side corresponding to indicemftbe Schur matrix need not be set on
entry and they are explicitly set to zero on output.

e | Solve the complete system in three st}eps

L1,1 0 U1,1 U1,2 1 o b1
(o) %)) -(n) e
1. ‘ Reduction/condensation phase

One can compute WittCNTL(26)=1, the intermediatg vector, in whichy, is often referred
to as the reduced/condensed right-hand-side.

L1,1 0 Y1 o by
(o)) -(0)

Then one has to solve



U1,1 U1,2 1 o Y1
() () - ()
2. ‘Using Schur matri*:

The Schur matrix is an output of the factorisation phases tlhé responsibility of the user to
computezrs such thaSzs = yo.

]
Givenz» andy;, option ICNTL(26)=2 of the solve phase can be used to compyteNote
that the package usgs computed (and stored in thrumpsstructure) during the first step
(ICNTL(26)=1) and that the complete solutians provided on output.

Note that the Schur complement could be considered as aret@ontribution to the interface block
in a domain decomposition approaddUMP$ould then be used to solve this interface problem using
the element entry functionality.

3 User interface and available routines

In the following, we use the notatiofSDCZ]MUMPSto refer to DMUMPSSMUMPSZMUMP Sr
CMUMPScorresponding to th&REAL, DOUBLE PRECISION COMPLEXand DOUBLE COMPLEX
versions, respectively. Similarh{SDCZ]MUMPSSTRUC refers to either SMUMPSTRUC
DMUMPSTRUC CMUMPSTRUC or ZMUMPSTRUGC and [sdczlmumps _struc.h to
smumpsstruc.h , dmumpsstruc.h , cmumpsstruc.h  or zmumpsstruc.h

In the Fortran 90 interface (see Sectlfor the C interface), there is a single user callable sulmeut
per arithmetic, calledSDCZ]MUMPS that has a single parametelumpspar of Fortran 90 derived
datatype[SDCZ]MUMPSSTRUCdefined in [sdczlmumpstruc.h. The interface is the same for the
sequential version, only the compilation process andfiésaneed be changed. In the case of the parallel
version, MPI must be initialized by the user before the figdt  [SDCZ]MUMPSs made. The calling
sequence for thBOUBLE PRECISIONersion may look as follows:

INCLUDE 'mpif.h’
INCLUDE 'dmumps_struc.h’

INTEGER IERR

TYPE (DMUMPS_STRUC) :: mumps_par

CALL MPL_INIT(IERR) I Not needed in purely sequential versi on
mumps_par%JOB = .. I Set some arguments to the package: thos e
mumps_par%ICNTL(3)=6 I are components of the mumps_par str ucture

CALL DMUMPS( mumps_par )

CALL MPI_FINALIZE(IERR) ! Not needed in purely sequential v ersion

For other arithmetics, dmumpsstruc.h should be replaced bysmumpsstruc.h
cmumpsstruc.h  , or zmumpsstruc.h , and the’'D’ in DMUMPSnd DMUMPSTRUC by
'S’ ,'C or'Z

The variablenumpspar of datatypg SDCZ]MUMPSSTRUGCholds all the data for the problem. It
has many components, only some of which are of interest taghe The other components are internal
to the package. Some of the components must only be definedeohost. Others must be defined
on all processors. The filisdczlmumps _struc.h  defines the derived datatype and must always
be included in the program that caMUMPSThe file [sdczlmumps _root.h , which is included in
[sdczlmumps _struc.h , must also be available at compilation time. Componenthefstructure
[SDCZ]MUMPSSTRUGNhat are of interest to the user are shown in Figure

10



The interface toMUMPSonsists in calling the subroutin(sDCZ]MUMPSwith the appropriate
parameters set imumpspar .

11



INCLUDE ’[sdcz]mumps_root.h’
TYPE [SDCZ]MUMPS_STRUC
SEQUENCE
C INPUT PARAMETERS

| @ ———
C Problem definition
[ O ———
C Solver (SYM=0 Unsymmetric, SYM=1 Sym. Positive Definite, SYM=2 General Symmetric)
C Type of parallelism (PAR=1 host working, PAR=0 host not wor king)
INTEGER SYM, PAR, JOB
C Control parameters
[ O ———

INTEGER ICNTL(40)

real CNTL(15)

INTEGER N ! Order of input matrix
Assembled input matrix : User interface

[eX@)

INTEGER NZ
real/complex, DIMENSION(:), POINTER :: A

INTEGER, DIMENSION(:), POINTER :: IRN, JCN
C Case of distributed matrix entry

INTEGER NZ_loc
INTEGER, DIMENSION(:), POINTER :: IRN_loc, JCN_loc

real/complex, DIMENSION(:), POINTER :: A _oc
C Unassembled input matrix: User interface

INTEGER NELT
INTEGER, DIMENSION(:), POINTER :: ELTPTR, ELTVAR

real/complex, DIMENSION(:), POINTER :: A _ELT
MPI Communicator and identifier

INTEGER COMM, MYID
Ordering and scaling, if given by user (optional)

o0 00

INTEGER, DIMENSION(:), POINTER :: PERM_IN
real/complex DIMENSION(:), POINTER :: COLSCA, ROWSCA
INPUT/OUTPUT data : right-hand side and solution

[eXe!

real/complex DIMENSION(:), POINTER :: RHS, REDRHS
real/lcomplex DIMENSION(:), POINTER :: RHS _SPARSE

INTEGER, DIMENSION(:), POINTER :: IRHS_SPARSE, IRHS_PTR
INTEGER NRHS, LRHS, NZ_RHS, LSOL_loc, LREDRHS

real/lcomplex DIMENSION(:), POINTER :: SOL _loc

INTEGER, DIMENSION(:), POINTER :: ISOL_loc
C OUTPUT data and Statistics

INTEGER, DIMENSION(:), POINTER :: SYM_PERM, UNS_PERM
INTEGER INFO(40)
INTEGER INFOG(40) ! Global information (host only)

real RINFO(20)
real RINFOG(20) ! Global information (host only)

C Schur
INTEGER SIZE_SCHUR, NPROW, NPCOL, MBLOCK, NBLOCK
INTEGER SCHUR_MLOC, SCHUR_NLOC, SCHUR_LLD
INTEGER, DIMENSION(:), POINTER :: LISTVAR_SCHUR

real/complex DIMENSION(:), POINTER :: SCHUR

C Mapping if provided by MUMPS
INTEGER, DIMENSION(:), POINTER :: MAPPING

C Version number
CHARACTER(LEN=46) VERSION_NUMBER

C Name of file to dump a problem in matrix market format
CHARACTER(LEN=255) WRITE_PROBLEM

C Out-of-core

CHARACTER(LEN=63) :: OOC._PREFIX
CHARACTER(LEN=255) :: OOC.TMPDIR

END TYPE [SDCZ]JMUMPS_STRUC

Figure 1. Main  components of thg, structurdSDCZJMUMPSSTRUC defined in
[sdczlmumps _struc.h . real/complex qualifies parameters that are real in the real version and
complex in the complex version, where@sal is used for parameters that are always real, even in the
complex version oMUMPS



4 Input and output parameters

In this section, we describe the components of the variablampgpar of datatype
[SDCZ]MUMPSSTRUC Those components define the argumentsMidMPShat must be set by
the user, or that are returned to the user.

4.1 \Version number

mumpspar?ERSION_NUMBER (string) is set byMUMP %o the version number of MUMPS after a
call to the initialization phaselQOB=-1).

For C users (see Secti@for more general information), a macro MUMBR&ERSION is also defined
in the include filedsdczlmumps _c.h ; it contains a string defining the version number. Typicatly
is defined by:#define MUMPS _VERSION "4.10.0" This may be useful for users who wish to
get the version number associated to the header file theydadh their application (the component
VERSION.NUMBER of the structure may be badly initialized in case afdmpatible alignment options
or incorrect version of the header file).

4.2 Control of the three main phases: Analysis, Factorizatin, Solve

mumpspar%JOB (integer) must be initialized by the user on all processefsie a call taMUMPS
It controls the main action taken BYUMPSt is not altered byMUMPS

JOB = -1 initializes an instance of the package. A call with J&B-1 must be performed before
any other call to the package on the same instance. It setsltieélues for other components of
MUMPSSTRUC(such as ICNTL, see below), which may then be altered befabbsexjuent calls
to MUMPSNote that three components of the structure must alwaysbeysthe user (on all
processors) before a call with JGB-1. These are

e mumpspar%COMM,
e mumpspar¥SYM, and
e mumpspar%PAR.

Note that if the user wants to modify one of those three coraptmnthen he/she must destroy the
instance (call with JOB= —2) then reinitialize the instance (call with JGB-1).

Furthermore, after a call with JOB: -1, the internal component mumparMYID contains
the rank of the calling processor in the communicator predido MUMPSThus, the test
“(mumpspar¥dMYID == 0)" may be used to identify the host processor (see Se2t@)n

Finally, the version number is returned in munpeE%/ERSION.NUMBER (see Sectiod.1).

JOB = -2 destroys an instance of the package. All data structssesceted with the instance, except
those provided by the user in mumpar, are deallocated. It should be called by the user onlywhe
no further calls taMUMP$ith this instance are required. It should be called befdi@ther JOB
= —1 call with the same argument murpar.

JOB=1 performs the analysis. In this phagkJMP8hooses pivots from the diagonal using a selection
criterion to preserve sparsity. It uses the pattermof- A but ignores numerical values. It
subsequently constructs subsidiary information for theenical factorization (a JOB=2 call).

An option exists for the user to input the pivotal sequed€N{TL(7)=1, see below) in which case
only the necessary information for a JOB=2 call will be gered.

The numerical values of the original matrix, mumpesr%A, must be provided by the user during
the analysis phase only iENTL(6) is set to a value between 2 and 7. $8BITL(6) in Section5
for more details.

MUMPSises the pattern of the matriX input by the user. In the case afcentralized matrixthe
following components of the structure defining the matrikgra must be set by the user only on
the host:

e mumpspar%N, mumpspar%NZ, mumpspar%IRN, and mumppar%JCN if the user wishes
to input the structure of the matrix @ssembled formglCNTL(5)=0 andICNTL(18) # 3)
(see Sectiod.5),
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e mumpspar%N, mumpgpar%NELT, mumpspar%ELTPTR, and mumpgar%ELTVAR if the
user wishes to input the matrix elemental formaflCNTL(5)=1) (see SectioH.6).
These components should be passed unchanged when laiteg tadl factorization (JOB=2) and
solve (JOB=3) phases.
In the case o& distributed assembled matrigee Sectiod.7 for more details and options),
e If ICNTL(18)=1 or 2, the previous requirements hold except that IRN adld@ no longer
required and need not be passed unchanged to the factonipdtase.
e |f ICNTL(18) = 3, the user should provide
— mumpspar%N on the host
— mumpspar%NZloc, mumpspar%IRNIloc and mumpgar%JCNIloc on all slave
processors. Those should be passed unchanged to theZatitori(JOB=2) and solve
(JOB=3) phases.
A call to MUMP®iith JOB=1 must be preceded by a call with J&B-1 on the same instance.
JOB=2 performs the factorization. It uses the numericaleslof the matrixA provided by the user
and the information from the analysis phase (JOB=1) to faztdhe matrixA.
If the matrix is centralize@n the hostICNTL(18)=0), the pattern of the matrix should be passed
unchanged since the last call to the analysis phase (seel)OiBe following components of the
structure define the numerical values and must be set by #re(ais the host only) before a call
with JOB=2:
e mumpspar%A if the matrix is in assembled forma€NTL(5)=0), or
e mumpspar%A ELT if the matrix is in elemental formatCNTL(5)=1).
If the initial matrix is distributed ICNTL(5)=0 and ICNTL(18) # 0), then the following
components of the structure must be set by the user on ak glencessors before a call with
JOB=2:
e mumpspar%A.loc on all slave processors, and
e mumpspar%NZloc, mumpspar%IRNIloc and mumpsgpar%JCNIloc if ICNTL(18)=1 or 2.
(For ICNTL(18)=3, NZloc, IRN_loc and JCNIoc have already been passed to the analysis
step and must be passed unchanged.)

(See Sectiond.5, 4.6, and4.7.)

The actual pivot sequence used during the factorization shgytly differ from the sequence
returned by the analysis if the matri is not diagonally dominant.

An option exists for the user to input scaling vectors or Mt/MPScompute such vectors
automatically (in arrays COLSCA/ROWSCKCNTL(8) # 0, see Sectiod.8).

A call to MUMPS®rith JOB=2 must be preceded by a call with JOB=1 on the santarios.

JOB=3 performs the solution. It can also be used (§&3¢TL(25)) to compute the null space basis
of symmetric matrices provided that “null pivot row” detiect ICNTL(24)) was on and that the
number of null pivotdNFOG(28)was different from 0. It uses the right-hand sideBsprovided
by the user and the factors generated by the factorizatioB<£2) to solve a system of equations
AX = B or ATX = B. The pattern and values of the matrix should be passed ugetasince
the last call to the factorization phase (see JOB=2). Thetstre component mumgsar%RHS
must be set by the user (on the host only) before a call with<=BDBSee Sectiod.13)

A call to MUMPSvith JOB=3 must be preceded by a call with JOB=2 (or JOB=4)hensame
instance.

JOB=4 combines the actions of JOB=1 with those of JOB=2. kirbe preceded by a call MUMPS
with JOB= -1 on the same instance.

JOB=5 combines the actions of JOB=2 and JOB=3. It must beedeetby a call tb/UMP®ith JOB=1
on the same instance.

JOB=6 combines the actions of calls with JOB=1, 2, and 3. Ktrbe preceded by a call MUMPS/ith
JOB= -1 on the same instance.

Consecutive calls with JOB=2,3,5 on the same instance aslpe.
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4.3 Control of parallelism

mumpsparCOMM (integer) must be set by the user on all processors beforaittaization phase
(JOB= -1) and must not be changed. It must be set to a valid MPI coriwaian that will be used
for message passing insillJMPSIt is not altered byMUMPSThe processor with rank 0 in this
communicator is used lYIlUMP&s thehost processor. Note that only the processors belonging to
the communicator should cdlUMPS

mumpspar¥PAR (integer) must be initialized by the user on all processarsia accessed IMUMPS
only during the initialization phaseJOB = —1). It is not altered byMUMPSnd its value is
communicated internally to the other phases as requireskilBle values for PAR are:

0 host is not involved in factorization/solve phases
1 host is involved in factorization/solve phases

Other values are treated as 1. Note that the value of PAR dloguidentical on all processors; if
this is not the case, the value on processor 0 is used by tkageac

If PAR is set to 0, the host will only hold the initial problemerform symbolic computations during
the analysis phase, distribute data, and collect reswoits fither processors. If setto 1, the host will
also participate in the factorization and solve phasesédfnitial problem is large and memory is
an issue, PAR = 1 is not recommended if the matrix is centrdlan processor 0 because this can
lead to memory imbalance, with processor 0 having a largenongload than the other processors.
Note that setting PAR to 1, and using only 1 processor, leadssequential code.

4.4 Matrix type

mumpspar%SYM (integer) must be initialized by the user on all processard & accessed by
MUMP®nly during the initialization phase (JOB —1). It is not altered byMUMPSIts value
is communicated internally to the other phases as requitesisible values for SYM are:

0 A is unsymmetric

1 A is suitable for symmetric positive definite since numerigigbting is not performed and
pivots are taken directly from the diagonal. In case Scal@RAs called, PPOTRF is
used, which assumes positive diagonal pivots (an errors4€tiurned in INFOG(1)). In case
ScalLAPACK is not used CNTL(13)>0), this option will also work for more general classes
of matrices, typically symmetric negative matrices. If theer thinks his matrix is positive
definite, he/she may want to check that the number of negpiats (INFOG(12)) is zero
on exit. Another approach to suppress numerical pivotinichvivorks with ScaLAPACK
for both positive definite and negative definite matricesstsis in setting SYM=2 and
CNTL(1)=0.0DO0 (recommended strategy).

2 A is general symmetric
Other values are treated as 0. Note that the value of SYM dhmuidentical on all processors; if
this is not the case, the value on processor 0 is used by tkagacFor the complex version, the

value SYM=1 is currently treated as SYM=2. We do not have aiwarfor Hermitian matrices in
this release oOMUMPS

4.5 Centralized assembled matrix input: ICNTL(5)=0 and ICNTL(18)=0

mumpsparN (integer), mumpgpar¥NZ (integer), mumpgpar’dRN (integer array pointer,
dimension NZ), mumppar%JCN (integer array pointer, dimension NZ), and mungas%A
(real/complex array pointer, dimension NZ) hold the matrix in assemblednfit. These
components should be set by the user only on the host and ohgn WNTL(5)=0 and
ICNTL(18)=0; they are not modified by the package.

e N is the order of the matriA, N > 0. It is not altered bMUMPS
e NZis the number of entries being input, NZ0. Itis not altered bjUMPS

e IRN, JCN are integer arrays of length NZ containing the roa eslumn indices, respectively,
for the matrix entries.
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e Ais areal (complexin the complex version) array of length NZ. The user must &) £
the value of the entry in row IRN(k) and column JCN(k) of thetrixa A is accessed when
JOB=1 only whenlCNTL(6) # 0. Duplicate entries are summed and any with IRN(k) or
JCN(k) out-of-range are ignored.
Note that, in the case of the symmetric solver, a diagonatea;; is held as A(K)=i:,
IRN(k)=JCN(k)=, and a pair of off-diagonal nonzeres; = a;; is held as A(k)=;; and
IRN(k)=, JCN(K)=j or vice-versa. Again, duplicate entries are summed andesntvith
IRN(k) or JCN(k) out-of-range are ignored.

The components N, NZ, IRN, and JCN describe the pattern ofrthatix and must be set by
the user before the analysis phase (JOB=1). Component A Ineuset before the factorization
phase (JOB=2) or before analysis (JOB=1) if a numericalnaegssing option is requestetl €
ICNTL(6) < 7).

4.6 Element matrix input: ICNTL(5)=1 and ICNTL(18)=0

mumpspar%N (integer), mumppar¥MNELT (integer), mumpgar¥ELTPTR (integer array pointer,
dimension NELT+1), mumppar¥%ELTVAR (integer array pointer, dimension ELTPTR(NELT+1)
— 1), and mumppar¥A _ELT (real/complexarray pointer) hold the matrix in elemental format.
These components should be set by the user only on the hoshgnathenICNTL(5)=1:

e N is the order of the matriA, N > 0. It is not altered bMUMPS

e NELT is the number of elements being input, NELTO. It is not altered byMUMPS

e ELTPTRIs an integer array of length NELT+1. ELTPTR(j) paimd the position in ELTVAR
of the first variable in element j, and ELTPTR(NELT+1) mustdee to the position after the
last variable of the last element. Note that ELTPTR(1) stidnd equal to 1. ELPTR is not
altered byMUMPS

e ELTVAR is an integer array of length ELTPTR(NELT+1) — 1 and shibe set to the lists
of variables of the elements. It is not altered MMPSThose for element j are stored in
positions ELTPTR()), ..., ELTPTR(j+1)-1. Out-of-rangeriadles are ignored.

e A_ELT is areal (complexin the complex version) array. [V, denotes ELTPTR(p+1)—
ELTPTR(p), then the values for element j are stored in pmstK; + 1, ..., Kj + Lj, where

- K; =317 Np*,andL; = N;® in the unsymmetric cas&M = 0)

- K = Zl;ll(Np - (Np +1))/2,andL; = (Nj - (N + 1))/2 in the symmetric case
(SYM # 0). Only the lower triangular part is stored.
Values within each element are stored column-wise. Valeesesponding to out-of-range
variables are ignored and values corresponding to duplicatiables within an element are
summed. AELT is not accessed whel©B= 1. Note that, although the elemental matrix may
be symmetric or unsymmetric in value, its structure is asveymmetric.

The components N, NELT, ELTPTR, and ELTVAR describe thegratof the matrix and must
be set by the user before the analysis phase (JOB=1). ComipAnELT must be set before the
factorization phase (JOB=2). Note that, in the currentasdeof the package, the element entry
must be centralized on the host.

4.7 Distributed assembled matrix input: ICNTL(5)=0 and ICNTL(18)+0

When the matrix is in assembled fornCNTL(5)=0), we offer several options to distribute the matrix,
defined by the control paramet2NTL(18) described in SectioB. The following components of the
structure define the distributed assembled matrix inpugy®re valid for nonzero values BENTL(18),
otherwise the user should refer to Sectbh

mumpspar% (integer), mumpgpar¥dNZ (integer), mumppar¥dNZ _loc (integer), mumpgpar%dRN
(integer array pointer, dimension NZ), mumpar%JCN (integer array pointer, dimension NZ),
mumpspar%dRN _loc (integer array pointer, dimension N#c), mumpspar%JCN_loc (integer
array pointer, dimension NIbc), mumpspar¥A_loc (real/complex array pointer, dimension
NZ_loc), and mumppar¥MAPPING (integer array, dimension NZ).
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e N is the order of the matriA, N > 0. It must be set on the host before analysis. It is not
altered byMUMPS

e NZis the number of entries being input in the definitionfofNZ > 0. It must be defined on
the host before analysisiENTL(18) =1, or 2.

e IRN, JCN are integer arrays of length NZ containing the roa @slumn indices, respectively,
for the matrix entries. They must be defined on the host befoatysis iff CNTL(18) = 1, or
2. They can be deallocated by the user just after the analysis

e NZ_loc is the number of entries local to a processor. It must imele on all processors in
the case of the working host model of parallelism (PAR=1} an all processors except the
host in the case of the non-working host model of parallel{f¥R=0), before analysis if
ICNTL(18) = 3, and before factorization IENTL(18) = 1 or 2.

e IRN_loc, JCNloc are integer arrays of length Niiic containing the globalrow and column
indices, respectively, for the matrix entries. They mustiened on all processors if PAR=1,
and on all processors except the host if PAR=0, before aisaflCNTL(18) = 3, and before
factorization ifICNTL(18) =1 or 2.

e NZ_loc is the dimension of the pointer arrayléc (see below).

e A_loc is areal (complexin the complex version) array of dimension Na&c that must be
defined before the factorization phase (JOB=2) on all psarssif PAR = 1, and on all
processors except the host if PAR = 0. The user must skitck) to the value in row
IRN_loc(k) and column JCNoc(K).

e MAPPING is an integer array of size NZ which is returned MMPSn the host after
the analysis phase as an indication of a preferred mappilgNTL(18) = 1. In that case,
MAPPING(i) = IPROC means that entry IRN(i), JCN(i) shouldgyevided on processor with
rank IPROC in theMUMP$ommunicator. Remark that MAPPING is allocatedMiyMPS
and not by the user. It will be freed during a callNbJMP Svith JOB = -2.

We recommend the use of optiof@NTL(18)= 2 or 3 because they are the simplest and most flexible
options. Furthermore, those options (2 or 3) are in gendmabst as efficient as the more sophisticated
(but more complicated for the user) optiBBNTL(18)=1.

4.8 Scaling: ICNTL(8)

mumpspar%COLSCA, mumpspar¥ROWSCA (double precision array pointers, dimension N) are
optional, respectively column and row scaling arrays neglionly by the host. If a scaling is
provided by the usedCNTL(8) = —1), these arrays must be allocated and initialized by tee us
on the host, before a call to the factorization phak@B=2). They might also be automatically
allocated and computed by the package during analysi$C(WTL(6)=5 or 6), in which case
ICNTL(8) = -2 will be set by the package during analysis and should bsegasnchanged to
the solve phase (JOB=3).

4.9 Given ordering: ICNTL(7)=1

mumpsparPERM_IN (integer array pointer, dimension N) must be allocated aitdhlized by the
user on the host ifCNTL(7)=1. It is accessed during the analysis (JOB=1) and PHRH), i=1,
..., N'must hold the position of variable i in the pivot ordbiote that, even when the ordering is
provided by the user, the analysis must still be performddrbenumerical factorization.

4.10 Schur complement with reduced (or condensed) right-had side:
ICNTL(19) and ICNTL(26)

mumpspar%SIZE_SCHUR (integer) must be initialized by the user on the host to thelmer of
variables defining the Schur complement@NTL(19) = 1, 2, or 3. It is only accessed during
the analysis phase and is not altered by MUMPS. Its valuensmanicated internally to the other
phases as require8IZE_.SCHURshould be greater or equal to 0 and strictly smaller than

Lif the calling application manages both local and globaldes, the global indices must be provided.
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mumpspar%.ISTVAR _SCHUR (integer array pointer, dimension mumpar%SIZE _SCHUR) must
be allocated and initialized by the user on the ho$€NTL(19) = 1, 2 or 3. It is not altered by
MUMPSt is accessed during analysis (JOB=1) and LISTVBRHUR(), i=1, ..., SIZESCHUR
must hold the'” variable of the Schur complement matrix.

Centralized Schur complement stored by rowsICNTL(19)=1)

Note that this option is becoming obsolete and is not reconde@ anymore because the memory for
the Schur is doubled and because it requires a copy or messafer of the Schur computed internally
by MUMPS into the mumppar%SCHUR argument. If a centralized Schur complementjsired, we
refer the user to the paragraph “Centralized Schur compiestered by columnsCNTL(19)=2 or 3)”
instead.

mumpspar%SCHUR is areal (complexin the complex version) 1-dimensional pointer array that
should point toSIZE_ SCHUR x SIZE_ SCHURIocations in memory. It must be allocated by the
user on the host (independently of the value of mupa®PAR) before the factorization phase.
On exit, it holds the Schur complement matrix. On output fri@ factorization phase, and on
the host node, the 1-dimensional pointer array SCHUR oftle8tZ E SCHUR x SIZE_ SCHUR
holds the (dense) Schur matrix of ord@iZE. SCHUR Note that the order of the indices in the
Schur matrix is identical to the order provided by the user 8TVAR_SCHURand that the Schur
matrix is storedy rows. If the matrix is symmetric then only the lower triangulartaf the Schur
matrix is provided y rows) and the upper part is not significant. (This can also be wieagthe
upper triangular part stored by columns in which case thetqart is not defined.)

Distributed Schur complement (CNTL(19) =2 or 3)

For symmetric matrices, the value IENTL(19) controls whether only the lower patQNTL(19) = 2)
or the complete matridCNTL(19) = 3) is generated. MUMPS always provides the complete médrix
unsymmetric matrices so that either value '@NTL(19) has the same effect.

If ICNTL(19)=2 or 3, the following parameters should be defined on the host

entry to the analysis pha#e

mumpspar¥&NPROW, mumpspar¥NPCOL, mumpspar¥dMBLOCK , and mumpsar¥&NBLOCK
are integers corresponding to the characteristics of a 2Bkbtyclic grid of processors. They
should be defined on the host before a call to the analysigplfamy of these quantities is smaller
than or equal to zero or has not been defined by the user, orRIONPx NPCOL is larger than
the number of slave processors available (total number afgssors iPAR=1, total number of
processors minus 1 if mumgsar%PAR=0), then a grid shape will be computed by the armlysi
phase oMUMP&nd NPROW, NPCOL, MBLOCK, NBLOCK will be overwritten on exitom
the analysis phase. Please refer 18] [(for example) for more details on the notion of grid of
processors and on 2D block cyclic distributions. We briefigatibe the meaning of the four above
parameters here:

e NPROW is the number of rows of the process grid (or the numbprazessors in a column
of the process grid),

e NPCOL is the number of columns of the process grid (or the rrmobprocessors in a row
of the process grid),

e MBLOCK is the blocking factor used to distribute the rows o tSchur complement,

e NBLOCK is the blocking factor used to distribute the colunafishe Schur complement.
As in ScaLAPACK, we use a row-major process grid of processtivat is, process ranks (as
provided toMUMPSn the MPI communicator) are consecutive in a row of the psecerid.
NPROW, NPCOL, MBLOCK and NBLOCK should be passed unchangat the analysis phase
to the factorization phase. If the matrix is symmetB&(M=1 or 2) andCNTL(19)=3 (see below),
then the values d¥IBLOCK andNBLOCK should be equal.

On exit from the analysis pha#ethe following two components are set BJUMPSon the first
NPROW x NPCOL slave processors (the host is excluded®AR=0 and the processors with largest
MPI ranks in the communicator provided iUMP $nay not be part of the grid of processors).
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mumpsparSCHUR_MLOC is an integer giving the number of rows of the local Schur cement
matrix on the concerned processor. It is equal to MAX(1,NUMRSIZE.SCHUR MBLOCK,
myrow; 0, NPROW), where

e NUMROC is an INTEGER function defined in most ScaLAPACK impkntations (also used
internally by theMUMP$ackage),
e SIZE.SCHUR MBLOCK, NPROWhave been defined earlier, and

e myrowis defined as follows:
Let myidbe the rank of the calling process in the communicator COMMigled toMUMPS
(myidcan be returned by the MPI routihdéPI_COMMRANK)

— if PAR=1myrowis equal tomyid/ NPCOL,

— if PAR=0myrowis equal to(myid— 1) / NPCOL
Note that an upperbound of the minimum value of leading dsienSCHURLLD defined below)
is equal to (BIZE.SCHUR+MBLOCK-1)/MBLOCK+NPROW1)/NPROW MBLOCK.

mumpsparSCHUR_NLOC is an integer giving the number of columns of the local Schur
complement matrix on the concerned processor. It is equaNtWROC(SIZE.SCHUR
NBLOCK, mycol 0, NPCOL), where
e SIZE_ SCHUR NBLOCK, NPCOLhave been defined earlier, and

e mycolis defined as follows:
Let myidbe the rank of the calling process in the communicator COM#igled toMUMPS
(myidcan be returned by the MPI routihéPI_COMNMRANK)

— if PAR=1mycolis equal to MODfnyid NPCOL),
— if PAR=0mycolis equal to MODfnyid— 1, NPCOL).

On entry to the factorization pha#(eJOB = 2), SCHURLLD should be defined by the user and
SCHURshould be allocated by the user on tiBEROW x NPCOL first slave processors (the host is
excluded if PAR=0 and the processors with largest MPI rankfié communicator provided tdUMPS
may not be part of the grid of processors).

mumpspar¥SCHUR_LLD is an integer defining the leading dimension of the local cbmplement
matrix. It should be larger or equal to the local number ofs@f that matrix, SCHURMLOC
(as returned bMUMP®n exit from the analysis phase on the processors that ipatiécin the
computation of the Schur). SCHURLD is not modified byMUMPS

mumpspar%SCHUR is areal (complexin the complex version) one-dimensional pointer array that
should be allocated by the user before a call to the factiwizgphase. Its size should be at
least equal t8CHURLLD x (SCHURNLOC - 1) + SCHURMLOC, whereSCHURMLOC,
SCHURNLOC, andSCHURLLD have been defined abo%eOn exit to the factorization phase
the pointer arraySCHUR contains the Schur complement, stored by columns, in thedbr
corresponding to the 2D cyclic grid BfPROW x NPCOLprocessors, with block sizé4BLOCK
andNBLOCK, and local leading dimensioi @ HURLLD.
The Schur complement is stored by columns. Note that seftiR€OL x NPROW = 1
will centralize the Schur complement matrigtored by columnginstead of by rows as in the
ICNTL(19)=1 option). It will then be available on the host nodé’AR=1, and on the node with
MPI identifier 1 (first working slave processor)RAR=0. More details on this are presented in the
paragraph below.
If ICNTL(19)=2 and the Schur is symmetriSYM=1 or 2), only the lower triangle is provided,
stored by columns.

If ICNTL(19)=3 and the Schur is symmetriSYM=1 or 2), then both the lower and upper
triangles are provided, stored by columns. Note thatONTL(19)=3, then the constraint
mumpspar¥MBLOCK = mumpspar¥&NBLOCK should hold.

(For unsymmetric matrice$CNTL(19)=2 andICNTL(19)=3 have the same effect.)
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Centralized Schur complement stored by columnsICNTL(19) =2 or 3)

This option is recommended compared@NTL(19)=1. It is a particular case of the distributed Schur
complemeniCNTL(19)=2 or 3, see the above paragraph), where the Schur complésany assigned
to one processor. Therefore we refer the reader to the pg\dection for a detailed description of
using this option. Let us summarize it a simple case of userevthe user wants a centralized Schur
complement and wherRAR=1 (working host node).

On top of SIZE.SCHURandLISTVAR _SCHURdescribed earlier, the user should set the following

parameters on the hqsln entry to the analysis phaFe

NPROW=NPCOL=1, in order to define a distribution that uses only one premeghe host assuming
thatPAR=1);

MBLOCK = NBLOCK = 100. Those arguments must be provided and be strictlyipoditit their
actual value will not change the distribution since NPROVP£ENDL=1.

ICNTL(19)=2 or 3.

‘ On entry to the factorization pha#ehe user should provide on the Host

mumpspar%SCHUR_LLD =SIZE_.SCHUR we consider here the simple case where the leading
dimension of the Schur is equal to its order.

mumpspar%SCHUR, areal (complexin the complex version) one-dimensional pointer array oé si
SIZE_SCHUR x SIZE_.SCHURthat should be allocated by the user.

‘ On exit to the factorization pha:#ehe pointer arraCHURavailable on the host contains the Schur
complement. ISYM=0, then the options dCNTL(19)=2 andICNTL(19)=3have an identical behaviour
and the asymmetric Schur complement is returned by colunesifi column-major format). I8YM=1
or 2 andICNTL(19)=2, then only the lower triangular part of the symmetric Sdbweturned, stored by
columns, and the upper triangular part should not be acdegbiote that this is equivalent to say that
the upper triangular part is returned by rows and the lowangular part is not accessed.) SiYM=1
or 2 andICNTL(19)=3, then both the lower and upper triangular parts are returecause the Schur
complement is symmetric, this can be seen both as a row-raagbas a column-major storage.

Using partial factorization during solution phase ICNTL(26)=0, 1 or 2)

As explained in Sectio2.12 when a Schur complement has been computed during the ifatton
phase, then either the solution phase computes a solutidheoimternal problemICNTL(26)=0, see
control parametefCNTL(26)), or the complete problem can use a reduced righ-hand sibaila the
solution of the problem on the Schur variabl&SNTL(26)=1 andICNTL(26)=2).

If ICNTL(26)=1 or 2, then the following parameters must be defined on tls & entry to the
solution step:

mumpspar?d_REDRHS is an optional integer parameter defining the leading dimers the reduced
right-hand side, REDRHS, that must be set by the user WiRHS is provided. It must be larger
or equal toSIZE_.SCHUR the size of the Schur complement.

mumpsparREDRHS is areal (complexin the complex version) one-dimensional pointer array that
should be allocated by the user before entering the solptiase. Its size should be at least equal
to LREDRHS x (NRHS 1)+ SIZE_SCHUR If ICNTL(26)=1, then on exit from the solution phase,
REDRHS(i+(k-1)LREDRHS, i=1, ..., SIZESCHUR k=1, ..., NRHS will hold the reduced
right-hand side. ICNTL(26)=2, then REDRHS(i+(k-1))REDRHS, i=1, ..., SIZE. SCHUR
k=1, ..., NRHSmust be set (on entry to the solution phase) to the solutiah@schur variables.
In that case (ielCNTL(26)=2), it is not altered by UMPS

2As said above, we assume a working host mo&@&lR=1), otherwise this becomes processor 1 — please refer tgetheral
description from paragraph “Distributed Schur Complerhahbve for more information.
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4.11 Out-of-core (ICNTL(22)+# 0)

The decision to use the disk to store the matrix of factor®igrolled bylICNTL(22) (ICNTL(22) # 0
implies out-of-core). Only the value on the host node isifiicamt.

Both mumpsparOOC_TMPDIR and mumpspar%OOC_PREFIX can be provided by the user
(on each processor) to control respectively the directdngne the out-of-core files will be stored and
the prefix of those files. If not provided, the /tmp directoril we tried and file names will be chosen
automatically.

It is also possible to provide the directory and filename préfrough environment variables.
If mumpspar’©OC TMPDIR is not defined, then MUMPS checks for the environment vagiabl
MUMPS_.OOC.TMPDIR. If not defined, then the directory /tmp is attemptedSimilarly, if
mumpspar¥OOC PREFIX is not defined, then MUMPS checks for the environment vagiabl
MUMPS_OOC PREFIX. If not defined, then MUMPS chooses the filename auticaiby.

4.12 Workspace parameters

The memory required to run the numerical phases is estinduedg the analysis. The size of the
workspace required during numerical factorization depeoil algorihtmic parameters such as the in-
core/out-of-core strategieBQNTL(22)) and the memory relaxation paramet€NTL(14).

Two main integer and real/complex workarrays (IS and S getsgely) that hold factors, active frontal
matrices, and contribution blocks are allocated inteynalNote that, apart from these two large work
arrays, other internal work arrays exist (for example,rimiecommunication buffers in the parallel case,
or integer arrays holding the structure of the assembly.tree

At the end of the analysis phase, the following estimatiohshe memory required to run the
numerical phases are provided (for the given or defaultevalfithe memory relaxation parameter
ICNTL(14)):

e INFO(15)returns the minimum size in Megabytes to run the numericasph (factorisation/solve)

. (The maximum and sum over all processors are returnedagiggly inINFOG(16)and
INFOG(17).

e INFO(17) provides an estimation (in Megabytes) of the minimum totehmory required to run
the numerical phas. (The maximum and sum over all processors are returned
respectively iNNFOG(26)andINFOG(27).

Those memory estimations can be used as lower bounds whasghwants to explicitly control the
memory used (see descriptionl@NTL(23)).

As a first general approach, we advise the user to rely on theatons provided during the analysis
phase. If the user wants to increase the allocated workgpaueally, numerical pivoting that leads to
extra storage, or previous call to MUMPS that failed becadiselack of allocated memory), we describe
in the following how the size of the workspace can be corgrbll

e The memory relaxation paramet@NTL(14)is designed to control the increase, with respect to the
estimations performed during analysis, in the size of theksgace allocated during the numerical
phase.

e The user can also provide the size of the total meniGI¥TL(23) that the package is allowed to
use internally. ICNTL(23) is expressed in Megabytes per processolCNTL(23) is provided,
ICNTL(14) is still used to relax the integer workspace and some intdifers. That memory
is subtracted fromdCNTL(23); what remains determines the size of the main (and most memor
consuming) real/complex array holding the factors andkstécontribution blocks.

4.13 Right-hand side and solution vectors/matrices

The formats of the right-hand side and of the solution argrotiad by ICNTL(20) and ICNTL(21),
respectively.
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Centralized dense right-hand side KCNTL(20)=0) and/or centralized dense solution
(ICNTL(21) =0)

If ICNTL(20)=0 orICNTL(21)=0, the following components of the MUMPS structure showdibfined
on the host.

mumpspar¥RHS (real/complex array pointer, dimensiohRHSxNRHS) is areal (complexin the
complex version) array that should be allocated by the uséh@host before a call tdUMP 8ith
JOB=3, 5, or 6.
On entry, ifICNTL(20)=0, RHS(i+(k-1)x LRHS) must hold the i-th component &th right-hand
side vector { < k& <NRHY) of the equations being solved. The default valueN&®HSis 1 and
the default value fot RHS is N, the order of the matrix (see below).
On exit, if ICNTL(21)=0, thenRHS(i+(k-1)xLRHS) will hold the i-th component of theth
solution vector,l < & <NRHS Remark that whemCNTL(20)=0 (dense right-hand side) and
ICNTL(21)=1 (distributed solution)RHS may still be modified on exit to the package, but will not
contain any significant data for the user.

mumpspar¥&NRHS (integer) is an optional parameter that is significant onttbst before a call to
the solution phase dIUMP$JOB = 3, 5, or 6) . IfNRHSIs set, it should hold the number of
right-hand side vectors. If not set, the value 1 is assumethia ensures backward compatibility
of the MUMP $hterface with versions of the package prior to 4.3.3. Nbo# tf NRHS > 1, then
functionalities related to iterative refinement and erralgsis (seéCNTL(10) andICNTL(11) are
currently disabled.

mumpspar?_RHS (integer) is an optional parameter that is significant onibst before a call to the
solve phase oMUMP®IOB=3, 5, or 6). IINRHSis provided,LRHS should then hold the leading
dimension of the arraRHS and should be greater than or equalNto

Sparse right-hand side (CNTL(20) =1 or ICNTL(30)=1)

If ICNTL(20)=1 or ICNTL(30)=1, the following input parameters should be defined on thst baly
before a call taAMUMP$iith JOB=3, 5, or 6:

mumpspar¥MNZ_RHS (integer) should hold the total number of non-zeros in al tight-hand side
vectors.

mumpspar%8NRHS (integer), if set, should hold the number of right-hand sidetors. If not set, the
value 1 is assumed.

mumpsparRHS_SPARSE (real/complex array pointer, dimensiorNZ_RHS) should hold the
numerical values of the non-zero inputs of each right-hddd sector whenCNTL(20)=1. It
must be allocated but needs not be initialized wH@NTL(30)=1. See alsdRHS_PTRbelow.

mumpspardRHS _SPARSE((integer array pointer, dimensidfiZ_RHS should hold the indices of the
variables of the non-zero inputs of each right-hand sidéovec

mumpspar’dRHS_PTR is an integer array pointer of dimensioNRHS+1. IRHS_PTR
is such that the i-th right-hand side vector is defined by imn-nero row indices
IRHS_SPARSKIRHS PTR(i)...IRHSPTR(i+1)-1) and the corresponding  numerical
values RHS_ SPARSEIRHS_PTR(i)...IRHSPTR(i+1)-1). Note that IRH$TR(1)=1 and
IRHS_.PTR(NRHS+1)=NZ_RHS+1.

Note that, if the right-hand side is sparse and if the safuisocentralized(CNTL(21)=0) and if the
computation of entries i\ ~! is not requested CNTL(30)=0), then mumpspar¥RHS should still be
allocated on the host, as explained in the previous sedBarexit from a call taVUMP&vith JOB=3, 5,
or 6, it will hold the centralized solution. More explicitlwith ICNTL(30)=1 mumpspar¥RHS needs
not be allocated and since selected entries of the invertbeahatrix are requested, mumparYNRHS
must be set ttl and columry of the sparse right-hand side, that might be empty, corregpt column
jof AL
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Distributed solution (ICNTL(21) =1)

On some networks with low bandwidth, and especially whemettzge many right-hand side vectors,
centralizing the solution on the host processor might bestlycpart of the solution phase. If this is

critical to the user, this functionality allows the solutito be left distributed over the processors. The
solution should then be exploited in its distributed formthg user application.

mumpspar%SOL _locis areal/complexarray pointer, of dimensiobSOL _locx NRHS (whereNRHS
corresponds to the value provided in mungas%NRHS on the host), that should be allocated by
the user before the solve phas®B=3) on all processors in the case of the working host model
of parallelism PAR=1), and on all processors except the host in the case of tievoding host
model of parallelismPAR=0). Its leading dimensiohSOL_loc should be larger than or equal to
INFO(23), whereINFO(23) has the value returned BYUMP®n exit from the factorization phase.
On exit from the solve phase, SQac(i+(k-1)x LSOL_loc) will contain the value corresponding to
variablelSOL_loc(i) in the k*" solution vector.

mumpspar?_SOL _loc (integer). LSOLloc must be set to the leading dimension of SOt (see
above) and should be larger than or equal to INFO(23), whéF©l(23) has the value returned by
MUMP®n exit from the factorization phase.

mumpspardSOL _loc (integer array pointer, dimension INFO(23)) IS@dc should be allocated by
the user before the solve phas®B=3) on all processors in the case of the working host model
of parallelism (PAR=1), and on all processors except the imahe case of the non-working host
model of parallelism (PAR=0). ISQloc should be of size at least INFO(23), where INFO(23) has
the value returned bMUMP®n exit from the factorization phase. On exit from the solhage,
ISOL_loc(i) contains the index of the variables for which the $iolu (in SOL_loc) is available on
the local processor. Note that if successive calls to theesohase JOB=3) are performed for a
given matrix, ISOLIloc will have the same contents for each of these calls.

Note that if the solution is kept distributed, then functéties related to error analysis and iterative
refinement (seBCNTL(10) andICNTL(11)) are currently not available.

4.14 Writing a matrix to a file

mumpspar?VRITE _PROBLEM (string) can be set by the user before the analysis pliB=(1) in
order to write the matrix passed MUMP $to the file “WRITE.LPROBLEM”. This only applies to
assembled matrices and the format used to write the mattieiématrix market” format If the
matrix is distributed, then each processor must initidiRITE_.PROBLEM. Each processor will
then write its share of the matrix in a file whose name is “WRIFROBLEM” appended by the
rank of the processor in the communicator passeédd/PNote that WRITEPROBLEM should
include both the path and the file name.

5 Control parameters

On exit from the initialization callJOB= —1), the control parameters are set to default values. If the
user wishes to use values other than the defaults, the poméimg entries in mumppar%ICNTL and
mumpspar%CNTL should be reset after this initial call and befdre ¢all in which they are used.

5.1 Integer control parameters

mumpspar%dCNTL is an integer array of dimension 40.

ICNTL(2) is the output stream for error messages. If it isaie@ or zero, these messages will be
suppressed. Default value is 6.

ICNTL(2) is the output stream for diagnostic printing, &tts, and warning messages. If it is negative
or zero, these messages will be suppressed. Default value is

3Seehttp://math.nist.gov/MatrixMarket/
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ICNTL(3) is the output stream for global information, calted on the host. If it is negative or zero,
these messages will be suppressed. Default value is 6.

ICNTL(4) is the level of printing for error, warning, and diaostic messages. Maximum value is 4 and
default value is 2 (errors and warnings printed). Possialaees are

e < 0: No messages output.

e 1: Only error messages printed.

e 2: Errors, warnings, and main statistics printed.

e 3: Errors and warnings and terse diagnostics (only first eries of arrays) printed.
e > 4: Errors and warnings and information on input and outpuapeaters printed.

ICNTL(5) has default value 0 and is only accessed by the hus$toaly during the analysis phase. If
ICNTL(5) = 0, the input matrix must be given in assembled fatin the structure components N,
NZ, IRN, JCN, and A (or NZloc, IRN_loc, JCNloc, A_loc, see Sectiod.7). If ICNTL(5) = 1, the
input matrix must be given in elemental format in the stroetcomponents N, NELT, ELTPTR,
ELTVAR, and AELT. Values of ICNTL(5) different from 0 and 1 are treated as 0
Please note that parallel analysis is only available forices in assembled format and, thus, an
error will be raised if ICNTL(5)=1 and ICNTL(28)=2.

ICNTL(6) has default value 7 (automatic choice done by thekpge) and is used to control an option
for permuting and/or scaling the matrix. It is only accedsgthe host and only during the analysis
phase. For unsymmetric matrices, if ICNTL(6)=1, 2, 3, 4, & 6olumn permutation (based on
weighted bipartite matching algorithms describedlin [L8)]) is applied to the original matrix to get
a zero-free diagonal. For symmetric matrices, if ICNTL(6)2, 3, 4, 5, 6, the column permutation
is not applied but it can be used to determine a set of recometnx 1 and2 x 2 pivots (see 9]
for more details).

Possible values of ICNTL(6) are:

e 0: No column permutation is computed.

e 1: The permuted matrix has as many entries on its diagonalljes The values on the
diagonal are of arbitrary size.

e 2 : The permutation is such that the smallest value on theodegf the permuted matrix is
maximized.

e 3: Variant of option 2 with different performance.

e 4 : The sum of the diagonal entries of the permuted matrixdihputation was applied) is
maximized.

e 5: The product of the diagonal entries of the permuted méfrpermutation was applied) is
maximized. Vectors are computed (and stored in COLSCA and/BOA, only if ICNTL(8)
is set to -2 or 77) to scale the matrix. In case the matrix isctiffely permuted (unsymmetric
matrix) then the nonzero diagonal entries in the permutedixsre one in absolute value and
all the off-diagonal entries less than or equal to one in kitsvalue.

e 6: Similar to 5 but with a different algorithm.

e 7 : Based on the structural symmetry of the input matrix andthan availability of the
numerical values, the value of ICNTL(6) is automaticallysén by the software.

Other values are treated as 0.

Except for ICNTL(6)=0, 1 or 7, the numerical values of thegaral matrix, mumpspar%A, must
be provided by the user during the analysis phase. If thexnasymmetric positive definiteYM
= 1), orin elemental formalCNTL(5)=1), or the ordering is provided by the useENTL(7)=1),
or the Schur optionICNTL(19) = 1, 2, or 3) is required, or the matrix is initially distribate
(ICNTL(18) # 0), then ICNTL(6) is treated as O.

‘ On unsymmetric matrice{s(SYM = 0), the user is advised to set ICNTL(6) to a nonzero value
when the matrix is very unsymmetric in structure. On outpanf the analysis phase, when the

column permutation is not the identity, the pointer mumps%UNSPERM (internal data valid
until a call to MUMPSvith JOB=-2) provides access to the permutation on the host processo

24



(The column permutation is such that endry,....;) is on the diagonal of the permuted matrix.)
Otherwise, the pointer is unassociated.

‘ On general symmetric matrice6SYM = 2), we advise either to l&¥lUMPSelect the strategy
(ICNTL(6) = 7) or to set ICNTL(6)= 5 if the user knows that the matrix is for example an
augmented system (which is a system with a large zero diagtwwk). On output from the analysis
the pointer mumpgpar?dJNS_PERMis unassociated.

On output from the analysis phadblFOG(23)holds the value of ICNTL(6) that was effectively
used.

Please note that this permutation/scaling of the matrirnésmpatible with parallel analysis and,
thus and error will be raised IENTL(28)=2 and ICNTL(6)=1,2,3,4,5, or 6.

ICNTL(7) has default value 7 and is only accessed by the ha$toaly during the analysis phase. If
sequential analysis is to be performd@NTL(28)=1), it determines the pivot order to be used
for the factorization. Note that, even when the orderingra/jgled by the user, the analysis must
be performed before numerical factorization. In exceiarases, The option corresponding to
ICNTL(7) may be forced byMUMPSvhen the ordering suggested by the user is not compatible
with the value oiCNTL(12). Possible values for ICNTL(7) are:

0 : Approximate Minimum Degree (AMD)]] is used,

1 : the pivot order should be set by the usePEERM.IN, on the host processor. In that case,

PERM.IN must be allocated on the host by the user BERM.IN(i), (i=1, ... N) must hold

the position of variable i in the pivot order.

: Approximate Minimum Fill (AMF) is used,

: SCOTCH [29] is used (if previously installed by the user).

: PORD [31] is used,

: the METIS [26] package is used (if previously installed by the user),

: Approximate Minimum Degree with automatic quasi-dense detection (QAMD) is

used.

e 7 : Automatic choice by the software during analysis phashis Thoice will depend on

the ordering packages made available, on the matrix (typeseae), and on the number of
processors.

e o o o o
o U WN

Other values are treated as 7. Currently, options 3, 4 and brdy available if the corresponding
packages are installed (see comments in the Makefiles tdUB1P%now about them). If the
packages are not installed then options 3, 4 and 5 are traatéd

e [f the user asks for a Schur complement matrix and the matr@ssembled then only options
0, 1, 5 and 7 are currently available. Other options aredreas 7.

° F0r| elemental matrice|s(ICNTL(5)=1), only options 0, 1, 5 and 7 are available, with option

7 leading to an automatic choice between AMD and METIS (o®tid or 5); other values are
treated as 7. Furthermore, if the user asks for a Schur comgpiematrix, only options 0, 1
and 7 are currently available. Other options are treatedvelsidh will (currently) be treated
as 0 (AMD).

Generally, with the automatic choice corresponding to IC{J=7, the option chosen by

the package depends on the ordering packages installedtypleeof matrix (symmetric or

unsymmetric), the size of the matrix and the number of prames

For matrices with relatively dense rows, we highly recomdheption 6 which may significantly

reduce the time for analysis.

On output, the pointer mumpzar¥%SYM_PERM provides access, on the host processor, to the

symmetric permutation that is effectively used by the MUMpskage, andNFOG(7) to the

ordering option that was effectively used. (munga%SYMPERM(), (i=1, ... N) holds the

position of variable i in the pivot order.)

Please note that ICNTL(7) is meaningless if the parallelyaigis chosen, i.elCNTL(28)=2.

4Seehttp://gforge.inria.friprojects/scotch/ to obtain a copy.
SDistributed within MUMPS by permission of J. Schulze (Unisigy of Paderborn).
6Seehttp://glaros.dtc.umn.edu/gkhome/metis/metis/overvi ewto obtain a copy.
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ICNTL(8) has default value 77.
It is used to describe the scaling strategy and is only aeddsg the host.
If ICNTL(8) = -1, scaling vectors must be provided in COLSCA and ROWSCAkyuser, who
is then responsible for allocating and freeing them, If ICN8) = O, no scaling is performed, and
arrays COLSCA/ROWSCA are not used. Otherwise, the scalirmys COLSCA/ROWSCA are
allocated and computed by the package.
If ICNTL(8) = 77, then an automatic choice of the scaling optmay be performed, either during
the analysis or the factorization. The effective value fsedCNTL(8) is returned in INFOG(33).
If the scaling arrays are computed during the analysis, theg are ready to be used by the
factorization stage. Note that scalings can be efficierdipputed during analysis when requested
(seelCNTL(6) andICNTL(12)).

‘ Possible values of ICNTL(Q)are listed below:

e -2: Scaling computed during analysis (s&&,[Lg] for the unsymmetric case andq] for the
symmetric case).

e -1: Scaling arrays provided on entry to the numerical fazétion phase.

0 : No scaling applied/computed.

1 : Diagonal scaling computed during the numerical factdi@n phase,

e 2: Row and column scaling based drl], computed during the numerical factorization phase,

3 : Column scaling computed during the numerical factolaraphase,
4 : Row and column scaling based on infinite row/column noromnputed during the

numerical factorization phase,

e 5 : Scaling based onlf] followed by column scaling; computed during the numerical
factorization phase,

e 6: Scaling based or ] followed by row and column scaling; computed during the eucal
factorization phase.

e 7: Simultaneous row and colum iterative scaling basedohgnd [L0]; computed during the
numerical factorization phase.

e 8: Similar to 7 but more rigorous and expensive to computeymded during the numerical
factorization phase.

e 77 (analysis only) : Automatic choice of ICNTL(8) value dahgring analysis.

If the input matrix is symmetricgYM # 0), then only options -2, -1, 0, 1, 7, 8 and 77 are allowed
and other options are treated as O; if ICNTL£8)-1, the user should ensure that the array ROWSCA
is equal to (or points to the same location as) the array CGL$Che input matrix is in elemental
format (CNTL(5) = 1), then only options —1 and 0 are allowed and other optare treated as O.

If the initial matrix is distributed ICNTL(18) # 0 andICNTL(5) = 0), then only options 7, 8 and
77 are allowed, otherwise no scaling is applied. If ICNTL£8)-2 then the user has to provide the
numerical values of the original matrix (mumpar%A) on entry to the analysis.

ICNTL(9) has default value 1 and is only accessed by the hagtgl the solve phase. If ICNTL(9) =1,
Ax = b is solved, otherwiseA”x = b is solved.

ICNTL(10) has default value 0 and is only accessed by the tioshg the solve phase. NRHS
=1, then ICNTL(10) corresponds to the maximum number ofstpiterative refinement. If
ICNTL(10) < 0, iterative refinement is not performed.

In the current version, IFCNTL(21)=1 (solution kept distributed), or NRHS > 1, then iterative
refinement is not performed and ICNTL(10) is treated as O.

ICNTL(11) has default value 0 and is only accessed by the &odtonly during the solve phase. A
positive value will return statistics related to the linsgstem solved4Ax = bor ATx = b
depending on the value dCNTL(9)): the infinite norm of the input matrix, the computed
solution, and the scaled residual in RINFOG(4), RINFOG(@®J &INFOG(6), respectively, a
backward error estimate in RINFOG(7) and RINFOG(8), amestt for the error in the solution in
RINFOG(9), and condition numbers for the linear system INRDG(10) and RINFOG(11). See
also Sectior?2.3. Note that if performance is critical, ICNTL(11) should bepk equal to 0. Finally,
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note that, NRHS > 1, or if ICNTL(21)=1 (solution vector kept distributed) then error analysis i
not performed andCNTL(11) is treated as 0.

ICNTL(12) is meaningful only on general symmetric matri¢€¥M = 2) and its default value is 0
(automatic choice). For unsymmetric matric&rM=0) or symmetric definite positive matrices
(SYM=1) all values of ICNTL(12) are treated as 1 (nothing done)s bnly accessed by the host
and only during the analysis phase. It defines the orderiagesty (see9] for more details) and
is used, in conjunction withCNTL(6), to add constraints to the ordering algoritht@NTL(7)
option). Possible values of ICNTL(12) are :

e 0: automatic choice

e 1: usual ordering (nothing done)

e 2: ordering on the compressed graph associated with théxmatr
e 3: constrained ordering, only available WAMF(ICNTL(7)=2).

Other values are treated as 0. ICNTL(IRINTL(6), ICNTL(7) values are strongly related. As
for ICNTL(6), if the matrix is in elemental format@NTL(5)=1), or the ordering is provided by
the user CNTL(7)=1), or the Schur optionCNTL(19) # 0) is required, or the matrix is initially
distributed [CNTL(18) # 0) then ICNTL(12) is treated as one.

If MUMPSletects some incompatibility between control parametees it uses the following
rules to automatically reset the control parameters. IFit€INTL(12) has a lower priority than
ICNTL(7) so that if ICNTL(12)= 3 and the ordering required is néiMFthen ICNTL(12) is
internally treated as 2. Secondly ICNTL(12) has a higheorfigi than ICNTL(6) and ICNTL(8).
Thus if ICNTL(12)= 2 and ICNTL(6) was not active (ICNTL(6)=0) then ICNTL(6) izated as 5
if numerical values are provided, or as 1 otherwise. Funtioee, if ICNTL(12)= 3 then ICNTL(6)
is treated as 5 and ICNTL(8) is treated as -2.

On output from the analysis phase, INFOG(24) holds the vVafuENTL(12) that was effectively
used. Note that INFOG(7) and INFOG(23) hold the values of TC) and ICNTL(6)
(respectively) that were effectively used.

ICNTL(13) has default value 0 and is only accessed by thedwostg the analysis phase. If ICNTL(13)
< 0, ScaLAPACK will be used for the root frontal matrix (lastHsic complement to be factored)
if its size is larger than a machine-dependent minimum sif&therwise (ICNTL(13)> 0),
ScaLAPACK will not be used and the root node will be treategusatially. Processing the root
sequentially can be useful when the user is interested iménga of the matrix (seeNFO(12)and
INFOG(12), or when the user wants to detect null pivots (K8 TL(24)).

This parameter also controls splitting of the root frontatkrix. If the number of working processors
is strictly larger than ICNTL(13) with ICNTL(13}0 (ScaLAPACK off), then splitting of the root
node is performed, in order to automatically recover pathefparallelism lost because the root
node was processed sequentially. Finally, setting ICNB)(& -1 will force splitting of the root
node in all cases (even sequentially), while values syrarthaller than -1 will be treated as 0.

Note that, although ICNTL(13) controls the efficiency of tfeetorization and solve phases,
preprocessing work is performed during analysis and thisomust be set on entry to the analysis
phase.

ICNTL(14) is accessed by the host both during the analysigtaa factorization phases. It corresponds
to the percentage increase in the estimated working spaben\ignificant extra fill-in is caused
by numerical pivoting, increasing ICNTL(14) may help. Egten special cases, the default value
is 20 (which corresponds to a 20 % increase).

ICNTL(15-17) Not used in current version.

ICNTL(18) has default value 0 and is only accessed by thedwsng the analysis phase, if the matrix
format is assembled (ICNTL(5) = 0). ICNTL(18) defines theastgy for the distributed input
matrix. Possible values are:

e 0: the input matrix is centralized on the host. This is theadif see Sectiod.5.

e 1: the user provides the structure of the matrix on the hosinatysis, MUMPSeturns a
mapping and the user should then provide the matrix diggtbaccording to the mapping on
entry to the numerical factorization phase.
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e 2: the user provides the structure of the matrix on the hosahatysis, and the distributed
matrix on all slave processors at factorization. Any disttion is allowed.

e 3: user directly provides the distributed matrix input bfithanalysis and factorization.

Other values are treated as 0. For options 1, 2, 3, see SdcTifur more details on the input/output
parameters tMUMP S-or flexibility, options 2 or 3 are recommended.

ICNTL(19) has default value 0 and is only accessed by the Haosing the analysis phase. If
ICNTL(19)=1, then the Schur complement matrix will be rekedl to the user on the host after
the factorization phase. If ICNTL(19)=2 or 3, then the Schilf be returned to the user on the
slave processors in the form of a 2D block cyclic distributeatrix (ScaLAPACK style). Values
not equal to 1, 2 or 3 are treated as 0. IF ICNTL(19) equals @t 3, the user must set on entry to
the analysis phase, on the host node:

e the integer variablS1ZE_.SCHURTto the size of the Schur matrix,
e the integer array pointdrlSTVAR _SCHURIo the list of indices of the Schur matrix.

For a distributed Schur complement (ICNTL(19)=2 or 3), theger variabledlPROW, NPCOL,
MBLOCK, NBLOCK may also be defined on the host before the analysis phaseulidefa
values will otherwise be provided). Furthermore, workgpabould be allocated by the user
before the factorization phase in order MiUMP$o store the Schur complement (SB€EHUR
SCHURMLOC, SCHURNLOC, andSCHURLLD in Sectiorn4.10.

Note that the partial factorization of the interior variedblcan then be exploited to perform a solve
phase (transposed matrix or not, $€&TL(9)). Note that the right-hand sid®HS) provided on
input must still be of sizé&\ (or N x NRHSIin case of multiple right-hand sides) even if only the
N-SIZE_.SCHURIndices will be considered and if on)-SIZE_.SCHURindices of the solution
will be relevant to the user.

Finally, since the Schur complement is a partial factoriraof the global matrix (with partial
ordering of the variables provided by the user), the follmyoptions oMUMP&re incompatible
with the Schur option: maximum transversal, scaling, tteearefinement, error analysis and
parallel analysis. If the ordering is givetC(NTL(7)=1) then the following property should hold:
PERM.IN(LISTVAR_SCHUR()) = N-mumpsSIZESCHUR+i, for i=1SIZE.SCHUR

ICNTL(20) has default value 0 and is only accessed by the dosing the solve phase. If
ICNTL(20)=0, the right-hand side must be given in dense forthe structure componeRHS. If
ICNTL(20)=1, then the right-hand side must be given in sp&wsm using the structure components
IRHS_SPARSE RHS SPARSE IRHS_.PTRandNZ_RHS Values of ICNTL(20) that are different
from 0 and 1 are treated as 0. (See Sectidrd).

ICNTL(21) has default value 0 and is only accessed by thedw#itg the solve phase. If ICNTL(21)=0,
the solution vector will be assembled and stored in the gtraccomponenRHS, that must have
been allocated earlier by the user. If ICNTL(21)=1, the 8otuvector is kept distributed at the
end of the solve phase, and will be available on each slaveepsor in the structure components
ISOL_loc and SOL_loc. ISOL_loc and SOL_loc must then have been allocated by the user and
must be of size at leatflFO(23), whereINFO(23)has been returned by MUMPS at the end of the
factorization phase. Values of ICNTL(21) different fromifidal are currently treated as 0.

Note that if the solution is kept distributed, error anadyand iterative refinement (controlled by
ICNTL(10) andICNTL(11)) are not applied.

ICNTL(22) has default value 0 and controls the in-core/ @dtore (OOC) facility. It must be set on
the host before the factorization phase. Possible valees ar

e 0: In core factorization and solution phases (default steshgersion).
e 1: Out of core factorization and solve phases. The complateixof factors is written to disk
(see Sectiod.11).

ICNTL(23) has default value 0. It can be provided by the usét@beginning of the factorization phase
and is only significant on the host. It corresponds to the mari size of the working memory in
MegaBytes that MUMPS can allocate per working processbeoflers all internal integer and real
(complex in the complex version) workspace.)
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If ICNTL(23) is greater than 0 then MUMPS automatically cartgs the size of the internal
workarrays such that the storage for all MUMPS internal da¢gjual to ICNTL(23). The relaxation
ICNTL(14) is first applied to the internal integer workarréy and to communication and 1/0
buffers; the remaining available space is given to the meiidl fnost critical) real/complex internal
workarray S holding the factors and the stack of contribbubitocks. A lower bound of ICNTL(23)
(if ICNTL(14) has not been modified since the analysis) is give INNIJOG(16)if the factorization
is in-core (CNTL(22)=0), and byINFOG(26)if the factorization is out-of-cord CNTL(22)=1).

If ICNTL(23) is left to its default value 0 then each procesadll allocate workspace based on
the estimates computed during the analyBid=0O(17)if ICNTL(14) has not been modified since
analysis, or larger ifCNTL(14) was increased). Note that these estimates are accurate in th
sequential version diIUMP Sbut that they can be inaccurate in the parallel case, edpefdr the
out-of-core version. Therefore, in parallel, we recommendse ICNTL(23) and provide a value
significantly larger thatNFOG(16)in the in-core case, dNFOG(26)in the out-of-core case.

ICNTL(24) has default value 0 and controls the detectionrafllpivot rows”.  Null pivot rows are
modified to enable the solution phase to provide one soluimiong the possible solutions of
the numerically deficient matrix. Note that the list of rowdices corresponding to null pivots
is returned on the host iRIVNUL_LIST(1:INFOG(28). The solution phaseJOB=3) can then
be used to either provide a “regular” solution (in the serfs it is a possible solution of the
complete system when the right-hand-side belongs to theafthe original matrix) or to compute
the associated vectors of the null-space basisIGBEL(25), case of symmetric matrices only).
Possible values of ICNTL(24) are:

e 0 Nothing done. A null pivot will result in errdNFO(1)=—10.

e 1 Null pivot row detectionCNTL(3) is used to compute the threshold to decide that a pivot
row is “null”. The paramete€NTL(5) then defines the fixation that will be used to enable the
solution phase to provide a possible solution to the origigatem.

Other values are treated as 0. Note that when ScalLAPACK iBeappn the root node (see
ICNTL(13)), then exact null pivots on the root will stop the factoriaat (INFO(1)=-10) while
tiny pivots on the root node will still be factored. Settif@NTL(13) to a non-zero value will help
with the correct detection of null pivots but degrade perfance.

ICNTL(25) has default value 0 and is only accessed by thedhastg the solution phase. It allows the
computation of a null space basis, which is meaningful onfya Zero-pivot detection option was
requestedICNTL(24) # 0) during the factorization and if the matrix was found to lefident
(INFOG(28)> 0); This functionality is only available for symmetric mags and is not currently
available in the case of unsymmetric matrices. Possibleegabf ICNTL(25) are:

e 0 A normal solution step is performed. If the matrix was fowmbular during factorization
then one possible solution is returned.

e 1 with 1 <7 < INFOG(28) The i-th vector of the null space basis is computed.

e -1. The complete null space basis is computed.

e Other values result in an error.
Note that when vectors from the null space are requesteld deattralized and distributed solutions
options can be used. In both cases space, to store the nod,spctors must be allocated by the
user and provided to MUMPS. If the solution is centraliz6&@NTL(21)=0), then the null space
vectors are returned to the user in the array RHS, allocatéiubuser on the host. If the solution is
distributed (CNTL(21)=1), then the null space vectors are returned in the é@fl.loc. In both
cases, note that the number of columns of RHS or $@@lmust be equal to the number of vectors
requested, so th&tRHSis equal to:

e 1if 1 <ICNTL(25) < INFOG(28)

e INFOG(28)if ICNTL(25)=-1.
Finally, note that iterative refinement, error analysig] #re option to solve the transpose system
(ICNTL(9)) are ignored when the solution step is used to return vedtora the null space
(ICNTL(25) # 0).
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ICNTL(26) has default value 0 and is accessed by the hoshgluhie solution phase. ICNTL(26)
is only meaningful if combined with the Schur optiofCNTL(19) # 0, see above). It can be
used to condense/reduce (ICNTL(26)=1) the right-hand sidthe Schur variables, or to expand
(ICNTL(26)=2) the Schur local solution on the complete siolu (see Sectio.12).

If ICNTL(26) # 0, then the user should provide workspace in the pointey # EDRHS as well

as a leading dimensidtREDRHS(see Sectiod.10).

If IENTL(26)=1 then only a forward elimination is performed. The solutd@mresponding to the
‘internal” (non-Schur) variables is returned togetherhviie reduced/condensed right-hand-side.
The reduced right-hand side is made available on the hé3EDRHS

If ICNTL(26)=2 then REDRHS s considered to be the solution corresponding to the Schur
variables. The backward substitution is then performedi #ie given right-hand side to compute
the solution associated with the "internal” variables. @&lttat the solution corresponding to the
Schur variables is also made available in the main solutgmor/matrix.

Values different from 1 and 2 are treated as 0. Note that if ctmuEcomplement was computed,
ICNTL(26) = 1 or 2 results in an error. Finally, if ICNTL(26) £ or 2, then error analysis and
iterative refinements are disabled.

ICNTL(27) Experimental parameter subject to change in a future redeBBNTL(27) is only accessed
by the host during the solution phase. It controls the bioglsize for multiple right-hand sides. It
influences both the memory usage (H&EOG(30)andINFOG(31) and the solution time. Larger
values of ICNTL(27) lead to larger memory requirements ahetter performance (except if the
larger memory requirements induce swapping effects). nUCNTL(27) is critical, especially
when factors are on disk@NTL(22)=1 at the factorization stage) because factors must besentes
once for each block of right-hand sides. A negative valuecatds that an automatic setting
is performed by the solver: when ICNTL(27) is negative, thecksize is currently set to (i)
—2xICNTL(27) if the factors are on disKENTL(22)=1); and to (ii)—ICNT L(27) otherwise
(in-core factors). The default value is -8 and zero is trdateone.

ICNTL(28) This parameter is only accessed by the host peodesng the analysis phase and decides
whether a parallel or a sequential analysis will be perfatniéree values are possible:

e 0: automatic choice.
e 1: sequential analysis. In this case the ordering methaet isydCNTL(7) and thd CNTL(29)
(see details below) parameter is meaningless.

e 2: parallel analysis. A parallel ordering and parallel spfitbfactorization will be performed
if either the PT-SCOTCH or ParMetis parallel ordering tdolsboth) are available, depending
on the value ofCNTL(29). In this casdCNTL(7) is meaningless and, consequently, all the
features accessible through this control parameter aravadtble.

Any other values will be treated as 0.

At this moment, the parallel analysis is not available foassembled matrices (i.¢dGCNTL(5)=1),
in the case where a Schur complement is requested ICRTL(19)=1) or in the case where a
maximum transversal is requested on the input matrix (GN;TL(6)=1,2,3,4,5 or 6).

ICNTL(29) is accessed by host process only during the aisgtysmse and only if a parallel analysis has
to be performed, i.eICNTL(28)=2 (see details above). It defines the parallel orderingtmblke
used to compute the fill-in reducing permutation. Threeesilare possible:

e 0: automatic choice.

e 1. PT-SCOTCH: the PT-SCOTCH parallel ordering tool will bged to reorder the input
matrix, if available.

e 2: ParMetis: the ParMetis parallel ordering tool will be dige reorder the input matrix, if
available.

Any other value will be treated as 0. Also, note that ICNTL(Z9meaningless if the sequential
analysis is chosen, i.dCNTL(28)=1.

ICNTL(30) has default value 0 and is significant only durihg solution phase. KCNTL(30)# 0, a
user-specified set of entries in the inverse of the origiretrix (A ~") will be computed.
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WhenICNTL(30)# 0 then, on entry to the solution phase, the sparse right-sa@{NZ_RHS,
NRHS, RHS SPARSE IRHS_SPARSE IRHS_PTR, see Sectiod.13 should be set to hold the
target entries ofA ~! that need be computedRHS_ SPARSEmust be allocated but needs not be
initialized andNRHSmust be set ttl. On outputRHS SPARSE IRHS_SPARSEIRHS_PTRthen
hold the requested entries Af-' andRHS needs not be allocated by the user.

When a set of entries of ~* is requested, the associated set of columns will be compnitadcks

of sizelCNTL(27). In an out-of-core contextiCNTL(22)=1), largerlCNTL(27) values will most
likely decrease the amount of factors read from the disk addae the solution time3p, 2]. In an
in-core context, the effects might be mixed.

When this functionality is requested, error analysis aardhiive refinement will not be performed,
even if the corresponding options are $&NTL(10) andICNTL(20). Because the entries & —*
are returned iIrRHS SPARSEon the host, this functionality is incompatible with thetdisuted
solution option [CNTL(21). Furthermore, computing entries Af ' is not possible in the case of
partial factorizations with a Schur complemel@TL(19)).

ICNTL(31) has default value 0 and is only accessed by the thashg the analysis phase. It is used
to indicate that factors may be discarded during the fazation because the solve phase will not
require them. ICNTL(31) may have the following values:

e 0 (default): all factors needed to perform the solution phasll be kept during the
factorization phase.

e 1: indicates that the user is not interested in solving thedr system (Equatiorssor 4) and
will not call MUMPS solution phaseJOB=3). This option is meaningful when only statistics
from the factorization, such as (for example) definitengakje of the determinant, number
of entries in factors after numerical pivoting, number ofaiive or null pivots are required.
In that case, the memory allocated for the factorizatiohneliy on the out-of-core estimates.

Out-of-range values are treated as 0.
ICNTL(32) is not used in the current version.

ICNTL(33) has default value 0 and is only accessed by the tioshg the factorization phase. If
ICNTL(33) is different from 0, the package will attempt tongpute the determinant of the input
matrix. Note that null pivots (SekCNTL(24)), static pivots (se€NTL(4)) and elements of the
Schur complement (sd€NTL(18)) are excluded from the computation of the determinant. To
avoid underflows and overflows, the mantissa and the exparight determinant are computed
separately. The sign of the determinant should be correst/fametric matrices. When ICNTL(33)
is different from 0, the determinant is returnedRINFOG(12) RINFOG(13) andINFOG(34)such
that the determinant is obtained by multiplyingINFOG(12) RINFOG(13) by 2 to the power
INFOG(34) In real arithmetidRINFOG(13)is equal to 0.

ICNTL(34-40) are not used in the current version.

5.2 Real/complex control parameters
mumpspar%CNTL is areal (alsoreal in the complex version) array of dimension 5.

CNTL(1) is the relative threshold for numerical pivotingt i$ only accessed by the host during
the factorization phase. It forms a trade-off between pu@sg sparsity and ensuring numerical
stability during the factorization. In general, a largetueaof CNTL(1) increases fill-in but leads
to a more accurate factorization. If CNTL(1) is nonzero, eucal pivoting will be performed. If
CNTL(1) is zero, no such pivoting will be performed and thérswtine will fail if a zero pivot
is encountered. If the matrix is diagonally dominant, thettisg CNTL(1) to zero will decrease
the factorization time while still providing a stable deqmusition. On unsymmetric or general
symmetric matrices, CNTL(1) has default value 0.01. Formeatric positive definite matrices
numerical pivoting is suppressed and the default valueis\alues less than 0.0 are treated as 0.0.
In the unsymmetric case (respectively symmetric caseliegagireater than 1.0 (respectively 0.5)
are treated as 1.0 (respectively 0.5).
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CNTL(2) is the stopping criterion for iterative refinememidais only accessed by the host during the
solve phase. LeBerr = max; m [12]. Iterative refinement will stop when either the
required accuracy is reacheB{,., < CNTL(2) ) or the convergence rate is too sloB.» does
not decrease by at least a factor of 5). Default valugdsvheree holds the machine precision and
depends on the arithmetic version.

CNTL(3) is only used combined with null pivot detection (ICN(24) = 1) and is not used otherwise.
CNTL(3) has default valug.0 and is only accessed by the host during the numerical faetiion
phase. Let4,,. be the preprocessed matrix to be factored (see Equa)ioh pivot is considered
to be null if the infinite norm of its row/column is smaller tha thresholdhres. Let e be the
machine precision anfl|| be the infinite norm.

o IFCNTL(3) > 0 then thres = CNTL(3) X ||Apre]|
e IFCNTL(3) = 0.0 then thres=¢ x 107° x ||Apre]|
e IFCNTL(3) < 0 then thres = |CNTL(3)|

CNTL(4) determines the threshold for static pivoting. Ibidly accessed by the host, and must be set
either before the factorization phase, or before the aitaplsase. It has default value -1.0. If
CNTL(4) < 0.0 static pivoting is not activated. If CNTL(4} 0.0 static pivoting is activated and
the magnitude of small pivots smaller than CNTL(4) will beé ®eCNTL(4). If CNTL(4) = 0.0
static pivoting is activated and the threshold value usefgisrmined automatically.

CNTL(5) defines the fixation for null pivots and is effectivalyp when null pivot detection is active
(ICNTL(24) = 1). CNTL(5) has default value.0 and is only accessed by the host during the
numerical factorization phase. LAt be the preprocessed matrix to be factored (see Equgtion
If CNTL(5) > 0, in which case we recommend setting it to a large floatingtp@lue in order to
limit the impact of this pivot on the rest of the matrix, theefged null pivot is set to +/- CNTL(5)
x||Aprel|.- The sign of the pivot is preserved in the modified diagon#&lyeand the factorization
continues. In the symmetric cas&M = 2), if CNTL(5) < 0 then the pivot column of thk factors
is set to zero and the pivot entry in matiixis set to one. In the unsymmetric case, a large fixation
is automatically chosen when CNTL(5)0 and the remaining part of the pivot row of thkfactor
is setto 0.

CNTL(6-15) are not used in the current version.

5.3 Compatibility between options

As shown above, the package has a lot of options and this givexponential amount of combinations
of options. Almost all options are indeed compatible withreather but obviously a few of them are not,
either because the implementation of some options is manglécated in some context, or because some
algorithms cannot be applied or do not make sense undeirced@ditions. For each option and ICNTL
parameter, the list of incompatibilities is normally givierthe description of the option. The objective of
this section is to provide to the user a more global view ofrtlaén incompatibilities.

Table 1 highlights the incompatibilities between functionaltieand matrix input formats
(functionalities which do not appear in this table are cotilgiawith all matrix input formats).

In Table2, we present the numerical limitations of the solver whenL3&ACK is used on the final
dense Schur complement of MUMPS.

Regarding the solve phasd(B=3), iterative refinement and error analysis are incomfmtiith
some options, as reported in TaBleAlthough iterative refinement and error analysis could é&régymed
externally to the package, they are provided by the packageofivenience for all matrix formats but not
for all situations. For example, they do not really make semsen computing something different from
the solution ofAz = b (e.g. entries of the inverse, null space basis, only forngatibtitution performed).

Finally, note that orderings available for the sequentiatl ahe parallel analysis phase (see
ICNTL(28)) are controlled by two different parametedTL(7) and ICNTL(29)), which have a
different range of allowed values, so their is no incompkiylas such. But orderings based on minimum-
degree (for example) are only available with the sequeatialysis.
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Functionality (Contraol) Matrix input format (CNTL(18) andICNTL(5))
Centralised Distributed assembled
Assembled| Elemental (distr. elemental not avail.)
Unsymmetric [CNTL(6)) All options Not available Not available
permutations (ICNTL(6)=0) (ICNTL(6)=0)
Scalings [CNTL(8)) All options Only option 1 Only options 7, 8, or 1
(user-provided) (user-provided)
Constrained/com-  ICNTL(12)) || All options Not available Not available
ressed orderings (ICNTL(12)=0) (ICNTL(12)=0)
Type of analysis ICNTL(28)) || Sequential (parallel not available Sequential or parallel
Schur complement ICNTL(19)) All options All options but not compatible
with Parallel analysis

Table 1: Compatibilities between MUMPS functionalitieslanatrix-input formats.

SCALAPACK
OFF
Null pivot list ok
(ICNTL(24))

ON

null pivots on root node

not available and failure

if exact null pivot on root

ok but LU /PDGETRperformed on root
node (no ScalapackDL' kernel)
lowerbound (negative pivots

not counted on root node)

LDL" factorization | ok
(SYM=2) ok
Number of negative| ok
pivots (NFOG(12)

Table 2: MUMPS relies on ScaLAPACK to factorize the last @eBshur complement. If exact inertia
(number of negative pivots) or null pivot list is criticalc®_ APACK can be switched off, see ICNTL(13)
although this might imply a small performance degradation.

iterative refinement error analysis
Functionality Control ICNTL(10) ICNTL(11)
Multiple right-hand sides | NRHS> 1 Incomp. Incomp.
Distributed solution ICNTL(21) Incomp. Incomp.
Reduced right-hand sides/ ICNTL(26)=1 | Incomp. Incomp.
partial solution ICNTL(26)=2 | Incomp. Incomp.
Compute null space (*) | ICNTL(25) Incomp. Incomp.
Entries of A~1 ICNTL(30) Incomp. Incomp.

Table 3: List of incompatibilities with postprocessingdiops at the end of the solve phase. (*) The null
space estimate is only available for symmetric matrices.
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6 Information parameters

The parameters described in this section are returnedBiIP&nd hold information that may be of
interest to the user. Some of the information is local to gacicessor and some only on the host. If an
error is detected (see Sectidp the information may be incomplete.

6.1 Information local to each processor

The arrays mumpparRINFO and mumpspardNFO are local to each process.

mumpspar¥RINFO is a double precision array of dimension 20. It contains thiéoving local
information on the execution a1IUMPS

RINFO(1) - after analysis: The estimated number of floapogit operations on the processor for the
elimination process.

RINFO(2) - after factorization: The number of floating-poimperations on the processor for the
assembly process.

RINFO(3) - after factorization: The number of floating-poimperations on the processor for the
elimination process.

RINFO(4) - RINFO(20) are not used in the current version.

mumpspar?dNFO is an integer array of dimension 40. It contains the follayiacal information on
the execution oMUMPS

INFO(1) is 0 if the call toMUMPSvas successful, negative if an error occurred (see Se@)ioar
positive if a warning is returned.

INFO(2) holds additional information about the error or w@ning. If INFO(1)= -1, INFO(2) is the
processor number (in communicator mungas%COMM) on which the error was detected.

INFO(3) - after analysis: Estimated size of the real/comppace needed on the processor to store
the factors in memory if the factorization is performed or& (ICNTL(22)=0). If INFO(3) is
negative, then the absolute value correspondsitiions of real/complex entries used to store the
factor matrices. If the user plans to perform an out-of-daetorization (ICNTL(22)=1), then
a rough estimation of the size of the disk space in bytes offitee written by the concerned
processor can be obtained by multiplying INFO(3) (or itsadibie value multiplied by 1 million
when negative) by 4, 8, 8, or 16 for single precision, doubézision, single complex, and double
complex arithmetics, respectively. The effective valu# g returned in INFO(9) (see below), but
only after the factorization.

INFO(4) - after analysis: Estimated integer space needeteoprocessor for factors.
INFO(5) - after analysis: Estimated maximum front size omphocessor.

INFO(6) - after analysis: Number of nodes in the complete.tr&éhe same value is returned on all
processors.

INFO(7) - after analysis: Minimum estimated size of the maternal integer workarray IS to run the

numerical factorizatiohin-core |.

INFO(8) - after analysis: Minimum estimated size of the niaternal real/complex workarray S to run

the numerical factorizatio. If negative, then the absolute value correspondsittions
of real/complex entries needed in this workarray.

INFO(9) - after factorization: Size of the real/complex spaised on the processor to store the factor
matrices. If negative, then the absolute value corresptnasllions of real/complex entries used
to store the factor matrices. In the case of an out-of-coeewion (ICNTL(22)=1), the disk space
in bytes of the files written by the concerned processor casbtaned by multiplying INFO(9) (or
its absolute value multiplied by 1 million) by 4, 8, 8, or 16 &ingle precision, double precision,
single complex, and double complex arithmetics, respelgtiv
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INFO(10) - after factorization: Size of the integer spacedusn the processor to store the factor
matrices.

INFO(11) - after factorization: Order of the largest frdnteatrix processed on the processor.

INFO(12) - after factorization: Number of off-diagonal pteé selected on the processoSi¥YM=0 or
number of negative pivots on the processoB8¥M=1 or 2. If ICNTL(13)=0 (the default), this
excludes pivots from the parallel root node treated by Sd2A@K. (This means that the user
should set ICNTL(13)=1 or use a single processor in ordeetdlge exact number of off-diagonal
or negative pivots rather than a lower bound.) Note thatéonglex symmetric matrice Sy M=1
or 2), INFO(12) will be 0. See alsiNFOG(12) which provides the total number of off-diagonal
or negative pivots over all processors.

INFO(13) - after factorization: The number of postponedhétiation because of numerical issues.
INFO(14) - after factorization: Number of memory compresse

INFO(15) - after analysis: estimated size in Megabyteslafiatking space to run the numerical phases
(factorisation/solve (ICNTL(22)=0 for the factorization). The maximum and suneov
all processors are returned rerspective \NFOG(16)andINFOG(17)

INFO(16) - after factorization: total size (in millions ofytes) of all MUMPSnternal data allocated
during the numerical factorization.

INFO(17) - after analysis: estimated size in Megabyteslofiaiking space to run the numerical phases
(ICNTL(22)£0) with the default strategy. The maximum and sum over alt@ssors
are returned respectively INFOG(26)andINFOG(27)

INFO(18) - after factorization: local number of null pivatsulting from detected when ICNTL(24].
INFO(19) - after analysis: Estimated size of the main irdémteger workarray IS to run the numerical

factorizatio.

INFO(20) - after analysis: Estimated size of the main irdémeal/complex workarray S to run the
numerical factorizatio . If negative, then the absolute value correspondusittions
of real/complex entries needed in this workarray.

INFO(21) - after factorization: Effective space used inth&n real/complex workarray S. If negative,
then the absolute value correspondsnitlions of real/complex entries needed in this workarray.

INFO(22) - after factorization: Size in millions of bytes @hemory effectively used during
factorization.

INFO(23) - after factorization: total number of pivots elitated on the processor. In the case of a
distributed solution (seBCNTL(21)), this should be used by the user to allocate solution vector
ISOL_loc and SOLloc of appropriate dimension$SOL_loc of size INFO(23),SOL_loc of size
LSOL_loc x NRHSwhere LSOLIoc > INFO(23)) on that processor, between the factorization
and solve steps.

INFO(24) - after analysis: estimated number of entries atdies on the processor. If negative, then the
absolute value correspondsrullions of entries in the factors. Note that in the unsymmetric case,
INFO(24)ANFO(3). In the symmetric case, however, INFO(24)NFO(3).

INFO(25) - After factorization : number of tiny pivots (numbof pivots modified by static pivoting)
detected on the processor.

INFO(26) - after solution: effective size in Megabytes of abrking space to run the solution
phase. (The maximum and sum over all processors are retuespdctively inNFOG(30)and
INFOG(31).

INFO(27) - after factorization: effective number of engri@ factors on the processor. If negative, then
the absolute value correspondsnidlions of entries in the factors. Note that in the unsymmetric
case, INFO(27)INFO(9). In the symmetric case, however, INFO(2Z) INFO(9). The total
number of entries over all processors is availabIlNROG(29)

INFO(28) - INFO(40) are not used in the current version.
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6.2 Information available on all processors
The arrays mumppar%RINFOG and mumppar%INFOG :

mumpspar¥RINFOG is a double precision array of dimension 20. It contains tiwing global
information on the execution &1UMPS

RINFOG(1) - after analysis: The estimated number of floapogt operations (on all processors) for
the elimination process.

RINFOG(2) - after factorization: The total number of flogtipoint operations (on all processors) for
the assembly process.

RINFOG(3) - after factorization: The total number of flogtipoint operations (on all processors) for
the elimination process.

RINFOG(4) to RINFOG(11) - after solve with error analysisnl@returned ifICNTL(11) # 0. See
description o CNTL(11).

RINFOG(12) - after factorization: if the computation of theterminant was requested ($E&ITL(33)),
RINFOG(12) contains the real part of the determinant. ThHerd@nant may contain an imaginary
part in case of complex arithmetic (SBRENFOG(13). It is obtained by multiplyingRINFOG(12)
RINFOG(13) by 2 to the powetNFOG(34)

RINFOG(13) - after factorization: if the computation of theterminant was requested ($E&ITL(33)),
RINFOG(13) contains the imaginary part of the determindhie determinant is then obtained by
multiplying (RINFOG(12) RINFOG(13) by 2 to the powetNFOG(34)

RINFOG(14) - RINFOG(20) are not used in the current version.

mumpspar?dNFOG is an integer array of dimension 40. It contains the follayvijiobal information on
the execution oMUMPS

INFOG(1) is 0 if the call toMUMPSvas successful, negative if an error occurred (see Set}ioor
positive if a warning is returned.

INFOG(2) holds additional information about the error a thiarning.

The difference between INFOG(1:2) and INFO(1:2) is that@@{1:2) is identical on all processors. It
has the value of INFO(1:2) of the processor which returneti tie most negativeNFO(1) value. For
example, if processas returns with INFO(1)=13 andINFO(2)=10000, then all other processors will
return with INFOG(1)=13andINFOG(2)=10000, and witiNFO(1)=—1 andINFO(2)=p.

INFOG(3) - after analysis: Total (sum over all processost)neated real/complex workspace to store
the factor matrices. If negative, then the absolute valueessponds tamillions of real/complex
entries used to store the factor matrices. If the user plapeitform an out-of-core factorization
(ICNTL(22)=1), then a rough estimate of the total disk space in bytesglfoprocessors) can
be obtained by multiplying INFOG(3) (or its absolute valueltiplied by 1 million) by 4, 8,

8, or 16 for single precision, double precision, single caxpand double complex arithmetics,
respectively. The effective value is returned IINFOG(9) (see below), but only after the
factorization.

INFOG(4) - after analysis: Total (sum over all processost)neated integer workspace to store the
factor matrices

INFOG(5) - after analysis: Estimated maximum front sizenia tomplete tree.

INFOG(6) - after analysis: Number of nodes in the complete.tr

INFOG(7) - after analysis: the ordering method actuallydus&he returned value will depend on
the type of analysis performed, e.g. sequential or parédletINFOG(32). Please refer to

ICNTL(7) and ICNTL(29) for more details on the ordering methods available in setiplesnd
parallel analysis respectively.

INFOG(8) - after analysis: structural symmetry in perc&t(: symmetric, O : fully unsymmetric) of
the (permuted) matrix. (-1 indicates that the structurahsetry was not computed which will be
the case if the input matrix is in elemental form.)
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INFOG(9) - after factorization: Total (sum over all procesy real/complex workspace to store
the factor matrices. If negative, then the absolute valueesponds to the size imillions of
real/complex entries used to store the factors. In case @fitof-core factorizationlCNTL(22)=1,
the total disk space in bytes of the files written by all preces can be obtained by multiplying
INFOG(9) (or its absolute value multiplied by 1 million) by 4, 8, 8, 08 for single precision,
double precision, single complex, and double complex laugtiics, respectively.

INFOG(10) - after factorization: Total (sum over all prosess) integer workspace to store the factor
matrices.

INFOG(11) - after factorization: Order of largest frontahtrix.

INFOG(12) - after factorization: Total number of off-diagd pivots if SYM=0 or total number of
negative pivots (real arithmetic) 8YM=1 or 2. IfICNTL(13)=0 (the default) this excludes pivots
from the parallel root node treated by ScaLAPACK. (This netiiat the user should 4E&NTL(13)
to a positive value, say 1, or use a single processor in oodgettthe exact number of off-diagonal
or negative pivots rather than a lower bound.) Furthermateen ICNTL(24) is set to 1 and
SYM=1 or 2,INFOG(12)excludes the nullpivots, even if their sign is negative. In other words, a
pivot cannot be both null and negative.

Note that ifSYM=1 or 2,INFOG(12)will be 0 for complex symmetric matrices.

INFOG(13) - after factorization: Total number of delayeggis. A large number (more that 10% of
the order of the matrix) indicates numerical problems. iBgstrelated to numerical preprocessing
(ICNTL(6),ICNTL(8), ICNTL(12)) might then be modified by the user.

INFOG(14) - after factorization: Total number of memory quesses.

INFOG(15) - after solution: Number of steps of iterative mefnent.

INFOG(16) and INFOG(17) - after analysis: Estimated sinentillion of bytes) of allMUMP $ternal
data for running factorizati.

e ——(16) : value on the most memory consuming processor.
e ——(17) : sum over all processors.

INFOG(18) and INFOG(19) - after factorization: Size in natis of bytes of alMUMP $ternal data
allocated during factorization.

e ——(18) : value on the most memory consuming processor.
e ——(19) : sum over all processors.

INFOG(20) - after analysis: Estimated number of entrieshie factors. If negative the absolute
value corresponds taillions of entries in the factors. Note that in the unsymmetric case,
INFOG(20)ANFOG(3). In the symmetric case, however, INFOG(20)NFOG(3).

INFOG(21) and INFOG(22) - after factorization: Size in naiiis of bytes of memory effectively used
during factorization.

e ——(21) : value on the most memory consuming processor.
e ——(22) : sum over all processors.
INFOG(23) - After analysis: value of ICNTL(6) effectivelysad.
INFOG(24) - After analysis: value of ICNTL(12) effectivelysed.
INFOG(25) - After factorization : number of tiny pivots (nto@r of pivots modified by static pivoting)
INFOG(26) and INFOG(27) - after analysis: Estimated sinenfillions of bytes) of alIMUMP $ternal

data for running factorizatio (ICNTL(22)+£ 0) for a given value of CNTL(14) and
for the default strategy.

e ——(26) : max over all processors
e ——(27) : sum over all processors

INFOG(28) - After factorization: number of null pivots enatdered. See CNTL(3) for the definition of
a null pivot.

’i.e., whose magnitude is smaller than the tolerance defipe@NTL(3).
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INFOG(29) - After factorization: effective number of ertsiin the factors (sum over all processors).
If negative, then the absolute value correspondsiitbons of entries in the factors. Note that in
the unsymmetric case, INFOG(29NFOG(9) In the symmetric case, however, INFOG(29)
INFOG(9).

INFOG(30) and INFOG(31) - after solution: Size in millionshytes of memory effectively used during
solution phase:

e ——(30) : max over all processors
e ——(31) : sum over all processors

INFOG(32) - after analysis: the type of analysis actuallpel¢gsed CNTL(28)). INFOG(32) has value
1 if sequential analysis was performed, in which cR8EOG(7) returns the sequential ordering
option used, as defined BENTL(7). INFOG(32) has value 2 if parallel analysis was performed,
in which casdNFOG(7)returns the parallel ordering used, as defined@NTL(29).

INFOG(33): effective value used fd€ENTL(8). It is set both after the analysis and the factorization
phases. ICNTL(8)=77 on entry to the analysis and INFOG(33) has value 77 onfexit the
analysis, then no scaling was computed during the analgsishee automatic decision will only be
done during factorization (except if the user modilié8ITL(8) to set a specific option on entry to
the factorization).

INFOG(34): if the computation of the determinant was retpeésedCNTL(33)), INFOG(34) contains
the exponent of the determinant. See dRIBIFOG(12)and RINFOG(13) the determinant is
obtained by multiplyingRINFOG(12) RINFOG(13) by 2 to the powetNFOG(34)

INFOG(35) - INFOG(40) are not used in the current version.

7 Error diagnostics

MUMPSises the following mechanism to process errors that mayrataing the parallel execution of
the code. If, during a call tMUMPSan error occurs on a processor, this processor informbheabther
processors before they return from the call. In parts of dtdeavhere messages are sent asynchronously
(for example the factorization and solve phases), the gemeon which the error occurs sends a message
to the other processors with a specific error tag. On the biduedl, if the error occurs in a subroutine that
does not use asynchronous communication, the procesgmgates the error to the other processors.

On successful completion, a callMiUMP$iill exit with the parameter mumppar%INFOG(1) set to
zero. A negative value for mumgsar%INFOG(1) indicates that an error has been detected @ofdhe
processors. For example, if processaoeturns withiNFO(1) = -8 andINFO(2)=1000, then processer
ran out of integer workspace during the factorization adsile of the workspace should be increased by
1000 at least. The other processors are informed aboutrtioisand return witHNFO(1) = -1 (i.e., an
error occurred on another processor) and INFQO{Z)=., the error occurred on process9r If several
processors raised an error, those processors do not oteiMFO(1), i.e., only processors that did not
produce an error will saiNFO(1)to -1 andINFO(2)to the rank of the processor having the most negative
error code.

The behaviour is slightly different for the global inforrmaat parameter$NFOG(1) and INFOG(2)
in the previous example, all processors would return WWHROG (1) = —8 andINFOG(2)=1000.

The possible error codes returnedNFO(1) (andINFOG(1) have the following meaning:

—1 An error occurred on processiMFO(2).
—2 NZis out of rangeINFO(2)=NZ.

-3 MUMPSvas called with an invalid value faJOB. This may happen for example if the analysis
(JOB=1) was not performed before the factorizatiodOB=2), or the factorization was not
performed before the solvd@B=3), or the initialization phase)JOB=-1) was performed a second
time on an instance not freed@B=-2). See description FOBin Section3. This error also occurs
if JOBdoes not contain the same value on all processes on erttfydPS

—4 Error in user-provided permutation arrRERMLIN at positionINFO(2). This error may only occur
on the host.
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-5 Problem of REAL or COMPLEX workspace allocation of sidd=O(2) during analysis.

—6 Matrix is singular in structurdNFO(2) holds the structural rank.

—7 Problem of INTEGER workspace allocation of sid-O(2) during analysis.

—8 Main internal integer workarray IS too small for factoripet. This may happen, for example, if

numerical pivoting leads to significantly more fill-in tharasvpredicted by the analysis. The user
should increase the value EENTL(14) before calling the factorization agaid@B=2).

—9 Main internal real/complex workarray S too smallINFO(2) is positive, then the number of entries
that are missing in S at the moment when the error is raisedhitable inINFO(2). If INFO(2)is
negative, then its absolute value should be multiplied byilliam. If an error —9 occurs, the user
should increase the value BENTL(14) before calling the factorizationJOB=2) again, except if
ICNTL(23) is provided, in which caskCNTL(23) should be increased.

—10 Numerically singular matrix.

—11 Internal real/complex workarray S too small for solutionlede contact us. INFO(2)is positive,
then the number of entries that are missing in S at the momkeenithe error is raised is available
in INFO(2).

—12 Internal real/complex workarray S too small for iteratieéimement. Please contact us.

—13 An error occurred in a Fortran ALLOCATE statement. The sizat tthe package requested is
available inINFO(2). If INFO(2) is negative, then the size that the package requested imethta
by multiplying the absolute value &RFO(2) by 1 million.

—14 Internal integer workarray IS too small for solution. Se@eNFO(1)= -8.

—15 Integer workarray 1S too small for iterative refinement anarror analysis. See error INFO&)
-8

—16 N is out of rangeINFO(2)=N.

—17 The internal send buffer that was allocated dynamicallyMiyMP®n the processor is too small.
The user should increase the valud@NTL(14) before callingMUMP&gain.

—20 The internal reception buffer that was allocated dynarhidal MUMP& too small.INFO(2) holds
the minimum size of the reception buffer required (in bytd$)e user should increase the value of
ICNTL(14) before callinguUMP&gain.

—21 Value of PAR=0 is not allowed because only one processor is availablaniRg MUMP$ host-
node mode (the host is not a slave processor itself) reqaiifeast two processors. The user should
either sePARto 1 or increase the number of processors.

—22 A pointer array is provided by the user that is either

e not associated, or
e has insufficient size, or
e is associated and should not be associated (for example o0RH8n-host processors).

INFO(2) points to the incorrect pointer array in the table below:

INFO(2) array
1 IRN or ELTPTR
2 JCNor ELTVAR
3 PERM.IN
4 A orA_ELT
5 ROWSCA
6 COLSCA
7 RHS
8 LISTVAR_SCHUR
9 SCHUR
10 RHS.SPARSE
11 IRHS_SPARSE
12 IRHS.PTR
13 ISOL_loc
14 SOLloc
15 REDRHS
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—23 MPI was not initialized by the user prior to a callMlUMP8vith JOB= —1.
—24 NELT is out of rangeINFO(2)=NELT.

—25 A problem has occurred in the initialization of the BLACS.iFmay be because you are using a
vendor’s BLACS. Try using a BLACS version from netlib instea

—26 LRHSIs out of rangeINFO(2)=LRHS.

—27 NZ_RHSandIRHS_PTRINRHS+1) do not matchINFO(2) = IRHS_ PTRINRHS+1).
—28 IRHS_.PTR(1) is not equal to 1INFO(2)= IRHS_PTR(1).

—29 LSOL_loc is smaller thanNFO(23). INFO(2)=LSOL loc.

—30 SCHURLLD is out of rangelNFO(2) = SCHURLLD.

—31 A 2D block cyclic symmetric $YM=1 or 2) Schur complement is required with the option
ICNTL(19)=3, but the user has provided a process grid that does naffysdlie constraint
MBLOCK=NBLOCK. INFO(2-MBLOCK-NBLOCK.

—32 Incompatible values oNRHS and ICNTL(25). Either ICNTL(25) was set to -1 andNRHS is
different fromINFOG(28) or ICNTL(25) was setta, 1 < i < INFOG(28)andNRHS:is different
from 1. Value ofNRHSis stored inNFO(2).

—33 ICNTL(26) was asked for during solve phase but the Schur complemenhetaassked for at the
analysis phasd CNTL(19)). INFO(2)=ICNTL(26).

—34 LREDRHS:Is out of range. INFO(2)EREDRHS

—35 This error is raised when the expansion phase is cal@TL(26) = 2) but reduction phase
(ICNTL(26)=1) was not called beforeINFO(2) contains the value dCNTL(26).

—36 Incompatible values diCNTL(25) andINFOG(28) The value o CNTL(25) is stored inNFO(2).

—37 Value of ICNTL(25) incompatible with some other parameter. wWBYM or ICNTL(xx). If
INFO(2)=0 thenICNTL(25) is incompatible withSYM: in current version, the null space basis
functionality is not available for unsymmetric matriceSY(M=0). Otherwise,ICNTL(25) is
incompatible with ICNTL(xx), and the index xx is storedIMFO(2).

—38 Parallel analysis was set (i.6GNTL(28)=2) but PT-SCOTCH or ParMetis were not provided.

—39 Incompatible values fofCNTL(28) andICNTL(5) and/orICNTL(19) and/orICNTL(6). Parallel
analysis is not possible in the cases where the matrix issenasied and/or a Schur complement is
requested and/or a maximum transversal is requested onattix.m

—40 The matrix was indicated to be positive defini&Y(M=1) by the user but a negative or null pivot
was encountered during the processing of the root by ScalCkPSYM=2 should be used.

—44 The solve phaseJOB=3) cannot be performed because the factors or part of therfaare not
available.INFO(2) contains the value dCNTL(31).

—45 NRHS < 0. INFO(2) contains the value dfRHS.

—46 NZ_RHS < 0. This is currently not allowed in case of reduced rightéraitde (CNTL(26)=1) and
in case entries oA ! are requestedCNTL(30)=1). INFO(2) contains the value dflZ_RHS

—47 Entries of A~* were requested during the solve pha3®@B=3, ICNTL(30)=1) but the constraint
NRHS=N is not respected. The value NRHSis provided inINFO(2).

—48 A~ Incompatible values diCNTL(30) and ICNTL(xx). xx is stored itNFO(2).

—49 SIZE_ SCHURhas an incorrect valusS(ZE.SCHUR < 0 or SIZE. SCHUR>N, or SIZE. SCHUR
was modified on the host since the analysis phase. The val@Z& SCHUR s provided in
INFO(2).

—90 Error in out-of-core management. See the error messagaeeton output unitkCNTL(1) for more
information.

A positive value ofINFO(1) is associated with a warning message which will be output @it u
ICNTL(2) whenICNTL(4) > 2.

40



+1 Index (inIRN or JCN) out of range. Action taken by subroutine is to ignore anyhsemtries and
continue.INFO(2) is set to the number of faulty entries. Details of the firstaes printed on unit
ICNTL(2).

+2 During error analysis the max-norm of the computed solutias found to be zero.

+4 User dataJCNhas been modified (internally) by the solver.

+8 Warning return from the iterative refinement routine. MdrartiICNTL(10) iterations are required.
+ Combinations of the above warnings will correspond to sungntihe constituent warnings.

8 Calling MUMPS from C

MUMPS$s a Fortran 90 library, designed to be used from Fortran @erahan C. However a basic C
interface is provided that allows users to ddiIUMP@lirectly from C programs. Similarly to the Fortran
90 interface, the C interface uses a structure whose componeatch those in thelUMPStructure for
Fortran (Figurel). Thus the description of the parameters in Sectibasd5 applies. Figur@ shows the
C structurgSDCZ]JMUMPSSTRUCC. This structure is defined in the include fisglczlmumps _c.h
and there is one main routine per available arithmetic vighfollowing prototype:

void [sdcz]mumps_c([SDCZ]JMUMPS_STRUC_C * idptr);

An example of callingdUMP&om C for a complex assembled problem is given in Secti@i@ The
following subsections discuss some technical issues thatashould be aware of before using the C
interface toMUMPS

In the following, we suppose that has been declared of typ@DCZ]MUMPSSTRUCC.

8.1 Array indices

Arrays in C start atindex 0 whereas they normally start atHoiriran. Therefore, care must be taken when
providing arrays to the C structure. For example, the roviceslof the matrixd, stored inRN(1:NZ)

in the Fortran version should be storedirin[0:nz-1] in the C version. (Note that the contents of
irn itself is unchanged with values between 1 and N.) One saluti@eal with this is to define macros:

#tdefine ICNTL( i ) icntll (i) - 1 ]
#define A( i) af (i) -1 ]
#define IRN( i ) irn[ (i) -1 ]

and then use the uppercase notation with parenthesisdéhstfelowercase/brackets). In that case, the
notationid.IRN(I) ,wherel isin{1, 2, ... NZ can be used instead if.irn[l-1] ; this notation
then matches exactly with the description in Sectibasd5, where arrays are supposed to start at 1.

This can be slightly more confusing for element matrix infage Sectiod.6), where some arrays
are used to index other arrays. For instance, the first valwgtptr , eltptr[0] , pointing into
the list of variables of the first element mtvar , should be equal to 1. Effectively, using the
notation above, the list of variables for elemgnt= 1 starts at locatiorELTVAR(ELTPTR())) =
ELTVAR(eltptr[j-1]) = eltvar[eltptr[j-1]-1]

8.2 Issues related to the C and Fortran communicators

In general, C and Fortran communicators have a differerdtgla¢ and are not directly compatible.
For the C interfaceMUMPS3equires a Fortran communicator to be provideddicomm _fortran

If, however, this field is initialized to the special value87®54, the Fortran communicator
MPI_COMMVORLI3 used by default. If you need to cMUMP$®ased on a smaller number of processors
defined by a C subcommunicator, then you should convert yazor@municator to a Fortran one. This
has not been included MUMP 8ecause itis dependent on @1 implementation and thus not portable.
ForMPI2, and most MPI implementations, you may just do

id.comm_fortran = (F_INT) MPI_Comm_c2f(comm_c);
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typedef struct

{
int sym, par, job;
int comm _fortran; / * Fortran communicator * [
int icntl[40];
real cntl[15];
int n;
/* Assembled entry  x/
int nz; int xirn; int xjcn;  real/complex *a;
/ = Distributed entry */

int nz _loc; int +irn _loc; int +jcn _loc; real/complex *a_loc;

/ * Element entry */

int nelt; int * eltptr; int * eltvar; real/complex *a_elt;

/ = Ordering, if given by user */

int  *perm._in;

/ * Scaling (input only in this version) */

real/complex *colsca;  real/complex *rowsca;

/* RHS, solution, output data and statistics */

real/complex *rhs, =*redrhs, xrhs _sparse, =*sol _loc;

int *irhs _sparse, =*irhs _ptr, *isol _loc;

int nrhs, Irhs, Iredrhs, nz _rhs, Isol _loc;

int info[40],infog[40];

real rinfo[20], rinfog[20];

int  *sym_perm, *uns_perm;

int  * mapping;

[/ Schur =x/ int size _schur; int xlistvar  _schur; real/complex *schur;
int nprow, npcol, mblock, nblock, schur Ald, schur  _mloc,schur _nloc;
[+ Version number  x/

char version _number[80];

char ooc _tmpdir[256], ooc _prefix[64]; char write _problem[256];
/ = Internal parameters */

int instance _number;

} [SDCZ]MUMPSSTRUCC;

Figure 2: Definition of the C structuf©DCZ]MUMPSSTRUCC. real/complexis used for data that can
be either real or complexeal for data that stays redll¢at  or double ) in the complex version.
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(Note that F_INT is defined in[sdczlmumps _c.h and normally is an int) For MPI
implementations where the Fortran and the C communicators the same integer representation

id.comm_fortran = (F_INT) comm_gc;

should work.
For some MPI implementations, check if id.comm _fortran =
MPIR_FromPointer(comm _¢) can be used.

8.3 Fortran I/O

Diagnostic, warning and error messages (controlleddiyTL(1:4) /icntl[0..3] ) are based on
Fortran file units. Use the value 6 for the Fortran unit 6 whichresponds tstdout . For a more
general usage with specific file names from C, passing a C fildleais not currently possible. One
solution would be to use a Fortran subroutine along the liiélse model below:

SUBROUTINE OPENFILE( UNIT, NAME )
INTEGER UNIT

CHARACTER +) NAME

OPEN(UNIT, file=NAME)

RETURN

END

and have (in the C user code) a statement like

openfile  _( &mumps_par.ICNTL(1), name, name _length _byval)
(or slightly different depending on the C-Fortran callimeentions); something similar could be done
to close the file.

8.4 Runtime libraries

The Fortran 90 runtime library corresponding to the conmpiked to compildVlUMP$s required at the
link stage. One way to provide it is to perform the link phasthhe Fortran compiler (instead of the C
compiler orld ).

8.5 Integer, real and complex datatypes in C and Fortran

We assume that thiet , float anddouble types are compatible with the FortrtNTEGER REAL
andDOUBLE PRECISIONlatatypes. If this were not the case, the fllgsczlmumps _prec.h or
Makefiles would need to be modified accordingly.

Since not all C compilers define tikemplex datatype (this only appeared in the C99 standard), we
define the following, compatible with the Fortr&©MPLEXndDOUBLE COMPLE)pes:

typedef struct {float r,i; } mumpscomplex; for simple precisiondmumps), and
typedef struct {double r,i; } mumpsdouble _complex; for double precision
(zmumps).

Types for complex data from the user program should be cdbipatith those above.

8.6 Sequential version

The C interface ttMUMP$ compatible with the sequential version; see Se@idn

9 Scilab and MATLAB/Octave interfaces

Thanks to Octave MEX compatibility, an Octave interface bargenerated based on the MATLAB one.
All the documentation provided in this section for the MATBAnterface, also applies to the Octave case.
The main callable functions are
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id

id

id

We have designed these interfaces such that their usagsimita as possible to the existing C and

Fortran interfaces to MUMPS. Only an interface to the setjakwversion of MUMPS is provided, thus
only the parameters related to the sequential version of MSMre available. (Note that in the out-of-
core case, functionalities allowing to control the diregtand name of temporary files, are, however, not
currently available.) The main differences and charasties are:

initmumps;
dmumps(id [,mat] );
zmumps(id [,mat] );

e The existence of a functionitmumps (usageid=initmumps ) that builds an initial structure
id inwhichid.JOB issetto-1andd.SYM is setto O (unsymmetric solver by default).

e Only the double precision and double complex versions of MR8Vare interfaced, since they
correspond to the arithmetics used in MATLAB/Scilab.

e the sparse matrid is passed to the interface functiash®umpsandzmumpsas a Scilab/MATLAB
object (parameters ICNTL(5), N, NZ, NELT, ... are thus iexgint).

e the right-hand side vector or matrix, possibly sparse, &sed to the interface functioasnumps
and/orzmumpsin the argumentd.RHS , as a Scilab/MATLAB object (paramaters ICNTL(20),
NRHS, NZRHS, ... are thus irrelevant).

e The Schur complement matrix, if required, is allocated imitthe interface and returned as a
Scilab/MATLAB dense matrix. Furthermore, the parametdZESSCHUR and ICNTL(19) need
not be set by the user; they are set automatically dependirigecavailability and size of the list of
Schur variablesd.VAR _SCHUR

e We have chosen to use a new varialleSOL to store the solution, instead of overwriting
id.RHS .

Please refer to the repofif] for a more detailed description of these interfaces. Rlaso refer to the
README file in directories MATLAB or Scilab of the main MUMPSdtribution for more information
on installation. For example, one important thing to notéhet at installation, the user must provide
the Fortran 90 runtime libraries corresponding to the céeddIUMP$ackage. This can be done in
the makefile for the MATLAB interface (filenake.inc ) and in the builder for the Scilab interface (file
builder.sce ).

Finally, note that examples of usage of the MATLAB and theleécinterfaces are provided in
directoriesMATLABand Scilab/examples  , respectively. In the following, we describe the input
and output parameters of the functijgizlmumps , that are relevant in the context of this interface to the
sequential version of MUMPS.

Input Parameters

e mat : sparse matrix which has to be provided as the second arguheimumps if id.JOB is
strictly larger than O.

e id.SYM : controls the matrix type (symmetric positive definite, sgatric indefinite or
unsymmetric) and it has do be initialized by the user befbeeinitialization phase oMUMPS
(see id.JOB). Its value is set to 0 after the call of initmumps

e id.JOB : defines the action that will be realized MUMPSinitialize, analyze and/or factorize
and/or solve and releaddUMP $hternal C/Fortran data. It has to be set by the user beforealh
to MUMP $except after a call to initmumps, which sets its value to -1)

e id.ICNTL and id.CNTL : define control parameters that can be set after the iziétdin call
(id.JOB = -1). See Section “Control parameters” for moreaitet If the user does not modify
an entry in id.ICNTL therMUMPSises the default parameter. For example, if the user wants to
use the AMD ordering, he/she should set id.ICNTL(7) = 0. Nzt the following parameters
are inhibited because they are automatically set withinrtegface: id.ICNTL(19) which controls
the Schur complement option and id.ICNTL(20) which corgrible format of the right-hand side.
Note that parameters id.ICNTL(1:4) may not work properlpeieding on your compiler and your
environment. In case of problem, we recommand to swith ipgraff by setting id.ICNL(1:4)=-1.
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e id.PERM_IN : corresponds to the given ordering option (see Sectionitiapd output parameters”
for more details). Note that this permutation is only acedssthe parameter id.ICNTL(7) is set to
1.

e id.COLSCA and id.ROWSCA : are optional scaling arrays (see Section “Input and output
parameters” for more details)

e id.RHS : defines the right-hand side. The parameter id.ICNTL(2[@}ed to its format (sparse or
dense) is automatically set within the interface. Note iti&HS is not modified (as iIMUMPS
the solution is returned in id.SOL.

e id.VAR_SCHUR : corresponds to the list of variables that appear in the Sabmplement matrix
(see Section “Input and output parameters” for more d@tails

e id.REDRHS (input parameter only if id. VARSCHUR was provided during the factorization and
if ICNTL(26)=2 on entry to the solve phase): partial solation the variables corresponding
to the Schur complement. It is provided by the user and ndymesults from both the Schur
complement and the reduced right-hand side that were edibyMUMP $1 a previous call. When
ICNTL(26)=2,MUMP&ses this information to build the solution id.SOL on the ptete problem.
See Section “Schur complement” for more details.

Output Parameters

e id.SCHUR :ifid.VAR_SCHUR is provided of size SIZECHUR, then id. SCHUR corresponds to
a dense array of size (SIZECHUR,SIZESCHUR) that holds the Schur complement matrix (see
Section “Input and output parameters” for more details)ke Uiber does not have to initialize it.

e id.REDRHS (output parameter only if ICNTL(26)=1 and id.VARCHUR was defined): Reduced
right-hand side (or condensed right-hand side on the Ve@sassociated to the Schur complement).
It is computed byMUMPSIuring the solve stage if ICNTL(26)=1. It can then be usedsioet
MUMP Stogether with the Schur complement, to build a solution lea interface. See Section
“Schur complement” for more details.

e id.INFOG and id.RINFOG : information parameters (see Section “Information patansé ).

e id.SYM_PERM : corresponds to a symmetric permutation of the variableg @iscussion
regarding ICNTL(7) in Section “Control parameters” ). Tpisrmutation is computed during the
analysis and is followed by the numerical factorizationeptavhen numerical pivoting occurs.

e id.UNS_PERM : column permutation (if any) on exit from the analysis phaséMUMP$see
discussion regarding ICNTL(6) in Section “Control paraenst).

e id.SOL : dense vector or matrix containing the solution aff®dMPSolution phase.

Internal Parameters

e id.INST: (MUMP $eserved componentllUMP $hternal parameter.
e id.TYPE: MUMPSeserved component) defines the arithmetic (complex orldquriecision).

10 Examples of use of MUMPS

10.1 Anassembled problem

An example program illustrating a possible use MUMPSon assembledOUBLE PRECISION
problems is given Figur8. Two files must be included in the progranmpif.h  for MPI and
mumpsstruc.h  for MUMPSThe filemumpsroot.h  must also be available because it is included in
mumpsstruc.h . The initialization and termination of MPI are performedtli@ user program via the
calls toMPI_INIT andMPI_FINALIZE .

The MUMP®ackage is initialized by callinylUMPSvith JOB= —1, the problem is read in by the
host (in the components N, NZ, IRN, JCN, A, and RHS), and thetism is computed in RHS with a
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PROGRAM MUMPS_EXAMPLE
INCLUDE 'mpif.h’
INCLUDE ’dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER IERR, |
CALL MPI_INIT(IERR)
Define a communicator for the package
id%COMM = MPI_COMM_WORLD
Ask for unsymmetric code

id%SYM = 0

Host working
id%PAR = 1

Initialize an instance of the package
id%JOB = -1

CALL DMUMPS(id)
Define problem on the host (processor 0)

IF ( id%MYID .eq. 0 ) THEN
READ(5, *) id%N
READ(5, *) id%NZ
ALLOCATE( id%IRN ( id%NZ ) )
ALLOCATE( id%JCN ( id%NZ ) )
ALLOCATE( id%A( id%NZ ) )
ALLOCATE( id%RHS ( id%N ) )
READ(5, *) ( id%IRN(l) ,I=1, id%NZ )
READ(5, *) ( id%JCN(I) ,I=1, id%NZ )
READ(5, *) ( id%A(l),I=1, id%NZ )
READ(5, ) ( id%RHS(l) ,I=1, id%N )

END IF
Call package for solution
id%JOB = 6

CALL DMUMPS(id)
Solution has been assembled on the host
IF ( id%MYID .eq. 0 ) THEN
WRITE( 6, * ) ' Solution is ’,(id%RHS(1),1=1,id%N)
END IF
Deallocate user data
IF ( id%MYID .eq. O )THEN
DEALLOCATE( id%IRN )
DEALLOCATE( id%JCN )
DEALLOCATE( id%A )
DEALLOCATE( id%RHS )

END IF
Destroy the instance (deallocate internal data structure S)
id%JOB = -2

CALL DMUMPS(id)

CALL MPI_FINALIZE(IERR)
STOP

END

Figure 3: Example program usidgUMP®n an assembledOUBLE PRECISIONyroblem
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call on all processors tMUMPSvith JOB=6. Finally, a call toMUMPSvith JOB= -2 is performed to
deallocate the data structures used by the instance of tkaga
Thus for the assembledx 5 matrix and right-hand side

2 3 4 20
3 -3 6 24
-1 1 2 , 9

2 6

4 1 13

we could have as input
5 N

[EEY
N
Z
N

3.0
-3.0
2.0
1.0
3.0
2.0
4.0
2.0
6.0
-1.0
4.0
1.0 A

WERP WONWOAOEFELNOOBANPRE
WWNAORARNRPRPRPRPOOWWN

20.0

24.0

9.0

6.0

13.0 ‘RHS

and we obtain the solution RHS(i)) =i,i=1,...,5.

10.2 An elemental problem

An example of a driver to usMlUMP $or elementDOUBLE PRECISIONyroblems is given in Figuré.
The calling sequence is similar to that for the assembletleno in Sectionl0.1but now the host reads
the problem in components N, NELT, ELTPTR, ELTVAR, LT, and RHS. Note that for elemental
problems ICNTL(5) must be set to 1 and that elemental matiabeays have a symmetric structure. For
the two-element matrix and right-hand side

12
1 -1 2 3 3 2 -1 3 7
2(211)7 4<1 2—1)7 23
3 1 1 1 5 3 2 1 6
22
we could have as input
5
2
6
18
147
123345
-1.0 20 1.0 2.0 1.0 1.0 3.0 1.0 1.0 2.0 1.0 3.0 -1.0 2.0 2.0 3.0 - 1.0 1.0
12.0 7.0 23.0 6.0 22.0
and we obtain the solution RHS(i)) =i,i=1,...,5.
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PROGRAM MUMPS_EXAMPLE
INCLUDE ’'mpif.h’
INCLUDE ’dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER IERR, LELTVAR, NA ELT
CALL MPI_INIT(IERR)
Define a communicator for the package
id%COMM = MPI_COMM_WORLD
Ask for unsymmetric code

id%SYM = 0

Host working
id%PAR = 1

Initialize an instance of the package
id%JOB = -1

CALL DMUMPS(id)
Define the problem on the host (processor 0)
IF ( id%MYID .eq. 0 ) THEN
READ(5, *) id%N
READ(5, *) id%NELT
READ(5, *) LELTVAR
READ(5, *) NA_ELT
ALLOCATE( id%ELTPTR ( id%NELT+1 ) )
ALLOCATE( id%ELTVAR ( LELTVAR ) )
ALLOCATE( id%A_ELT( NA_ELT ) )
ALLOCATE( id%RHS ( id%N ) )
READ(5, *) ( id%ELTPTR(l) ,I=1, id%NELT+1 )
READ(5, *) ( id%ELTVAR() ,I=1, LELTVAR )
READ(5, *) ( id%A_ELT(l),I=1, NA_ELT )
READ(5, *) ( id%RHS(l) ,I=1, id%N )
END IF
Specify element entry
id%ICNTL(5) = 1
Call package for solution
id%JOB = 6
CALL DMUMPS(id)
Solution has been assembled on the host
IF ( id%MYID .eq. 0 ) THEN
WRITE( 6, * ) ' Solution is ’,(id%RHS(I),1=1,id%N)
Deallocate user data
DEALLOCATE( Id%ELTPTR )
DEALLOCATE( Id%ELTVAR )
DEALLOCATE( id%A_ELT )
DEALLOCATE( id%RHS )

END IF
Destroy the instance (deallocate internal data structure S)
id%JOB = -2

CALL DMUMPS(id)

CALL MPI_FINALIZE(IERR)
STOP

END

Figure 4: Example program usidguUMP®n an elementdDOUBLE PRECISIONyroblem.
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10.3 An example of calling MUMPS from C
An example of a driver to usglUMP&om C is given in Figure.
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/ = Example program using the C interface to the
* double precision version of MUMPS, dmumps_c.
* We solve the system A x = RHS with
* A = diag(1 2) and RHS = [1 4]'T
* Solution is [1 2]'T */

#include <stdio.h>

#include "mpi.h"

#include "dmumps_c.h"

#define JOB_INIT -1

#define JOB_END -2

#define USE_COMM_WORLD -987654

int main(int argc, char * argv) {
DMUMPS_STRUC_C id;
int n = 2;
int nz = 2;
int irn[] = {1,2};
int jen[] = {1,2};
double a[2];

double rhs[2];

int myid, ierr;

ierr = MPI_Init(&argc, &argv);

ierr = MPI_Comm_rank(MPI_COMM_WORLD, &myid);
[+ Define A and rhs  */

rhs[0]=1.0;rhs[1]=4.0;

a[0]=1.0;a[1]=2.0;

/ * Initialize a MUMPS instance. Use MPI_COMM_WORLD. */
id.job=JOB_INIT; id.par=1; id.sym=0;id.comm_fortran=U SE_COMM_WORLD;
dmumps_c(&id);
/ = Define the problem on the host */
if (myid == 0) {

id.n = n; id.nz =nz; id.irn=irn; id.jcn=jcn;
id.a = a; id.rhs = rhs;

#define ICNTL(I) icntl[(1)-1] / * macro s.t. indices match documentation */
/* No outputs */

id.ICNTL(1)=-1; id.ICNTL(2)=-1; id.ICNTL(3)=-1; id.ICN TL(4)=0;
[+ Call the MUMPS package. =/

id.job=6;

dmumps_c(&id);
id.job=JOB_END; dmumps_c(&id); / * Terminate instance */
if (myid == 0) {
printf("Solution is : (%8.2f %8.2f)\n", rhs[0],rhs[1]);
}

return O;

Figure 5: Example program usidguUMP®&om C on an assembled problem.
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11 Notes on MUMPS distribution

This version of MUMPS is provided to you free of charge. It is p ublic
domain, based on public domain software developed during th e Esprit IV
European project PARASOL (1996-1999). Since this first pub lic domain
version in 1999, research and developments have been suppor ted by the
following institutions: CERFACS, CNRS, ENS Lyon, INPT(ENS EEIHT)-IRIT,
INRIA, and University of Bordeaux.

The MUMPS team at the moment of releasing this version includ es
Patrick Amestoy, Maurice Bremond, Alfredo Buttari, Abdou G uermouche,
Guillaume Joslin, Jean-Yves L’Excellent, Francois-Henry Rouet, Bora

Ucar and Clement Weisbecker.

We are also grateful to Emmanuel Agullo, Caroline Bousquet, Indranil
Chowdhury, Philippe Combes, Christophe Daniel, lain Duff, Vincent Espirat,
Aurelia Fevre, Jacko Koster, Stephane Pralet, Chiara Pugli si, Gregoire
Richard, Tzvetomila Slavova, Miroslav Tuma and Christophe Voemel who

have been contributing to this project.

Up-to-date copies of the MUMPS package can be obtained
from the Web pages:
http://mumps.enseeiht.fr/ or http://graal.ens-lyon.fr /IMUMPS

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.

User documentation of any code that uses this software can
include this complete notice. You can acknowledge (using
references [1] and [2]) the contribution of this package

in any scientific publication dependent upon the use of the
package. You shall use reasonable endeavours to notify

the authors of the package of this publication.

[1] P. R. Amestoy, |. S. Duff, J. Koster and J.-Y. L’Excellent ,
A fully asynchronous multifrontal solver using distribute d dynamic
scheduling, SIAM Journal of Matrix Analysis and Applicatio ns,

Vol 23, No 1, pp 15-41 (2001).

[2] P. R. Amestoy and A. Guermouche and J.-Y. L’Excellent and
S. Pralet, Hybrid scheduling for the parallel solution of li near
systems. Parallel Computing Vol 32 (2), pp 136-156 (2006).
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