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The idea

Enhance Caml data type definitions in order to

• handle invariants verified by values of a type,

• provide quotient data types, in the sense of mathematical

quotient structures,

• define automatic computation of canonical representant of

values.
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Usual data type definition kinds

There are three classical kinds of data type definitions:

• sum type definitions (disjoint union of sets with tagged sum-

mands),

• product type definitions (anonymous cartesian products) (carte-

sian products with named components)

• abbreviation type definitions (short hands to name type ex-

pressions)
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Visibility of data type definitions

There are two classical visibility of a data type definitions:

• concrete visibility: the implementation of the type is visible,

• abstract visibility: the implementation of the type is hidden,
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Consequence of visibility for programmers

For concrete types:

• value inspection is allowed via pattern matching,

• value construction is not restricited,

For abstract types:

• value inspection is not possible,

• value construction is carefully ruled.
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Consequence of visibility for programs

For concrete types, the representation of values is manifest:

• the compiler can perform type based optimization,

• the debugger (and the toplevel) can show (print) values.

For abstract types, the representation of values is hidden:

• the compiler cannot perform type based optimization,

• the debugger and the toplevel system just print values as

<abstr>.
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Visibility management constructs

Modules are used to define visibility of data type definitions.

• the implementation defines the data type as concrete,

• the interface exports the data type as concrete/or abstract.

The interface exports the data type as concrete if it declares the

data type with its definition (the associated constructors for a

sum type, the labels for a record, or the defining type expression

for an abbreviation).
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Defining invariants

Usual (concrete) data types implement free data structures:

• sums: free (closed) algebra (the constructors define the sig-

nature of the free algebra),

• products: free cartesian products for records,

• abbreviations: free type expressions.

By free we mean the usual mathematical meaning: no restriction

on the construction of values of the set (type), provided the

signature constraints are fulfilled.
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Examples

type expression =

| Int of int

| Add of expression * expression

| Opp of expression

type id = {
firstname : string;

lastname : string;

married : bool;

};;

type real = float;;
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Counter examples

Sum and products:

type positive_int = Positive of int;;

type rat = { numerator : int; denominator : int; };;

Despite the intended meaning:

• Positive (-1) is a valid positive_int value,

• {numerator = 1; denominator = 0;} is a valid rat.
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Counter examples

Abbreviations:

type km = float;;

type mile = float;;

Despite the intended meaning:

• -1.0 is a valid km value,

• ((x : km) : mile) is not an error (a km value is a mile value).
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Non free data types

Many mathematical structures are not free.

(Cf. Generators & relations presentations of mathematical struc-

tures.)

Many data structures are not free having various validity con-

straints.

The usual feature of programming languages to deal with non

free data structure is to provide abstract visibility and abstract

data types (or ADT).
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ADT as Non free data type

Using an ADT, the constructors, labels, or type expression syn-

onym of the type are no more accessible to build spurious unde-

sired values.

Construction of values is restricted to construction functions de-

fined in the implementation module of the abstract data type.

Advantage: non free data types invariants are properly handled.

Drawback: inspection of values is no more a built in feature.

Inspection functions should be provided explicitely by the imple-

mentation module.

There is no pattern matching facility for ADTs.
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Example

type positive_int = Positive of int;;

let make_positive_int i =

if i < 0 then failwith "negative int" else Positive i;;

let int_of_positive_int p = p;;

type rat = { numerator : int; denominator : int; };;
let make_rat n d =

if d = 0 then failwith "null denominator" else

{ numerator = n; denominator = d; };;

let numerator r = r.numerator;;

let denominator r = r.denominator;;



Pierre.Weis@inria.fr 2008-01-28 14

Example

type km = float;;

let make_km k =

if k <= 0.0 then failwith "negative distance" else k;;

let float_of_km k = k;;

type mile = float;;

let make_mile m =

if m <= 0.0 then failwith "negative distance" else m;;

let float_of_mile m = m;;
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Private visibility

To provide pattern matching for non free data types, we in-
troduced a new visibility for data type definitions: the private
visibility.

As a concrete data type, a private data type (PDT) has a man-
ifest implementation. As an abstract data type, a private data
type limits the construction of values to provided construction
functions.

In short, private data type are:

• concrete data types that support invariants or relations be-
tween their values,



• fully compatible with pattern matching.
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Examples

All the quotient sets you need can be implemented as private

types.

For quotient types the corresponding invariant is:

any element in the private type is the canonical representant of

its equivalence class.

Formulas, groups, . . .
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Definition of private data types

As abstract and concrete data types, private data types are im-

plemented using modules:

- inside implementation of their defining module, relational data

types are regular concrete data types,

- in the interface of their defining module, private data types are

simply declared as private.
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Usage of a private data type

In client modules:

• a private data type does not provide labels nor constructors

to build its values,

• a private data type provides labels or constructors for pattern

matching.
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Consequences

The module that implements a private data type:

• must export construction functions to build the values,

• has not to provide destruction functions to access inside the

values.

The pattern matching facility is available for private data types.
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Comparison with abstract data types

Abstract data types also provide invariants, but:

• once defined, an ADT is closed: new functions on the ADT

are mere compositions of those provided by the module.

• once defined, a private data type is still open: arbitrary new

functions can be defined via pattern matching on the repre-

sentation of values.
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Consequences

• the implementation of an ADT is big (it basically includes

the set of functions available for the type),

• the implementation of a PDT is small (it only includes the

set of functions that provides the invariants),

• proofs can be simpler for PDT (we must only prove that the

mandatory construction functions indeed enforce the invari-

ants).
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Consequences

Clients of an ADT have to use the construction and destruction

functions provided with the ADT.

Clients of a PDT must use the construction functions, to pre-

serve invariants but pattern matching is still freely available.

All the functions defined on an PDT respect the PDT’s invari-

ants (granted for free by the type-checker!)
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Relational data types

A relational data type (or RDT) is a private data type with

declared relations.

The relations define the invariants that must be verified by the

values of the type.

The notion of relational data type is not native to the Caml

compiler: it is provided via an external program generator that

generates regular Caml code for a relational data type definition.
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The Moca framework

Moca provides a notation to state predefined algebraic relations
between constructors,

Moca provides a notation to define arbitrary rewritting rules be-
tween constructors.

Moca provides a module generator, mocac, that generates code
to implement a corresponding normal form.

Team: Frédéric Blanqui & Pierre Weis (Researchers), Richard
Bonichon (Post Doc), Laura Lowenthal (Internship), Thérèse
Hardin (Professor Lip6).

See http://moca.inria.fr/.
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High level description of relations

We consider relational data types defined using:

• nullary or constant constructors,

• unary or binary constructors,

• nary constructors (argument has type α list).

Arguments cannot be too complex (in particular functionnal).
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Properties of constructors

A binary constructor op of an RDT t can be declared as:

• associative meaning that ∀x, y, z ∈ t : (x op y) op z =

x op (y op z),

• commutative meaning that ∀x, y ∈ t : x op y = y op x,

• distributive with respect to another binary operator opp in t

meaning that ∀x, y, z ∈ t : (x opp y) op z = (x op y) opp (y op z),
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Properties of constructors

A binary constructor op of a RDT t can be declared as:

• having e as its neutral meaning that ∀x ∈ t : x op e = e op x =

x,

• having opp as opposite meaning that ∃e ∈ t, e is neutral for

op, and ∀x ∈ t : x op (opp x) = (opp x) op x = e,

• having z as its absorbent element meaning that ∀x ∈ t :

x op z = z op x = z,



Pierre.Weis@inria.fr 2008-01-28 29

Properties of constructors

A unary constructor op of a RDT t can be declared as:

• being idempotent meaning that ∀x ∈ t : op (op x) = op x,

• being nilpotent wrt z meaning that ∀x ∈ t : op (op x) = z,

• being involutive meaning that ∀x ∈ t : op (op x) = x,
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Defining arbitrary relations

A constructor op of a RDT t can have one or more rewrite rules

declared as:

• rule op pat → expr meaning that any occurrence of pattern

op pat has to be rewritten as expr

Example:

rule Bool_not (Bool_true) -> Bool_false



Pierre.Weis@inria.fr 2008-01-28 31

The mocac compiler

From these specifications, the mocac compiler generates the

construction functions that build the normal form of values that

verifies the algebraic relations and the invariants of a relational

type.

The mocac compiler is a module generator for RDTs.

The input for mocac is a file with suffix .mlm: it is a regular Caml

file with specific annotations to define the relations.
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Examples

A trivial example with no annotations:

type bexpr = private

| Band of bexpr list

| Bor of bexpr list

| Btrue

| Bfalse;;
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Generated files

Interface:

type bexpr = private

| Band of bexpr list

| Bor of bexpr list

| Btrue

| Bfalse;;

val bfalse : bexpr

val band : bexpr list -> bexpr

val bor : bexpr list -> bexpr

val btrue : bexpr
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Generated files

Implementation:

type bexpr =

| Band of bexpr list

| Bor of bexpr list

| Btrue

| Bfalse

let rec bfalse = Bfalse

and band x = Band x

and bor x = Bor x

and btrue = Btrue
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.mlm source file

A more realistic example for boolean expressions:

type bexpr = private

| Band of bexpr * bexpr

begin

associative

commutative

distributive (Bxor)

neutral (Btrue)

absorbing (Bfalse)

opposite (Binv)

end
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.mlm source file

| Bxor of bexpr * bexpr

begin

associative

commutative

neutral (Bfalse)

opposite (Bopp)

end
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.mlm source file

| Btrue

| Bfalse

| Bvar of string

| Bopp of bexpr

begin

rule Bopp(Btrue) -> Btrue

end

| Binv of bexpr;;
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Generated interface

type bexpr = private

| Band of bexpr * bexpr

(*

associative

commutative

distributive (Bxor)

neutral (Btrue)

absorbing (Bfalse)

opposite (Binv)

*)

...
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Generated implementation

Type definition + simple operators

type bexpr = ...

let rec bvar x = Bvar x

and bopp x =

match x with

| Btrue -> Btrue

| Bfalse -> Bfalse

| Bopp x -> x

| Bxor (x, y) -> bxor (bopp x, bopp y)

| _ -> Bopp x

and bfalse = Bfalse
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Generated implementation

Binary associative + commutative operators are more tricky

and band z =

match z with

| Bfalse, _ -> Bfalse

| _, Bfalse -> Bfalse

| Btrue, y -> y

| x, Btrue -> x

| Binv x, y -> insert_opp_in_band x y

| x, Binv y -> insert_opp_in_band y x

| Bxor (x, y), z -> bxor (band (x, z), band (y, z))

| x, Bxor (y, z) -> bxor (band (x, y), band (x, z))

| Band (x, y), z -> band (x, band (y, z))

| x, y -> insert_in_band x y
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Generated implementation

Insertion in a band comb

and insert_in_band x u =

match u with

| Band (Binv y, t) when y = x -> t

| Band (y, t) when x <= y ->

begin try delete_in_band (Binv x) u with

Not_found -> Band (x, u)

end

| Band (y, t) -> Band (y, insert_in_band x t)

| Binv y when y = x -> Btrue

| _ when x < u -> Band (x, u)

| _ -> Band (u, x)
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Generated implementation

Deletion in a band comb (note that band is commutative)

and insert_opp_in_band x u =

match u with

| Band (y, t) when y = x -> t

| Band (y, t) -> Band (y, insert_opp_in_band x t)

| _ when x = u -> Btrue

| _ -> insert_in_band (Binv x) u

and delete_in_band x u =

match u with

| Band (y, t) when y = x -> t

| Band (y, (Band (_, _) as t)) -> Band (y, delete_in_band x t)

| Band (y, t) when x = t -> y

| _ -> raise Not_found
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Generated implementation

The inverse operator cannot be defined on the absorbing ele-

ment...

and binv x =

match x with

| Bfalse -> failwith "Division by Absorbing element"

| Btrue -> Btrue

| Binv x -> x

| Band (x, y) -> band (binv x, binv y)

| _ -> Binv x

and btrue = Btrue

and bxor z = ...
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.mlm source file

Two binary operators and their associated (ring-like) stuff:

type aexpr = private

| Add of aexpr * aexpr

begin

associative

commutative

neutral (Zero)

opposite (Opp)

end
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.mlm source file

| Mul of aexpr * aexpr

begin

associative

commutative

distributive (Add)

neutral (One)

absorbing (Zero)

opposite (Inv)

end

| One

| Zero

| Var of string

| Opp of aexpr

| Inv of aexpr;;



Pierre.Weis@inria.fr 2008-01-28 46

Generated interface

Just regular: export the RDT type and its construction func-
tions:

type aexpr = private

| Add of aexpr * aexpr ...

val var : string -> aexpr

val opp : aexpr -> aexpr

val mul : aexpr * aexpr -> aexpr

val inv : aexpr -> aexpr

val add : aexpr * aexpr -> aexpr

val zero : aexpr

val one : aexpr
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Generated implementation

type aexpr =

| Add of aexpr * aexpr

...

let rec var x = Var x

and opp x =

match x with

| Zero -> Zero

| Opp x -> x

| Add (x, y) -> add (opp x, opp y)

| _ -> Opp x
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Generated implementation

Binary operators:

and mul z =

match z with

| Zero, _ -> Zero

| _, Zero -> Zero

| One, y -> y

| x, One -> x

| Inv x, y -> insert_opp_in_mul x y

| x, Inv y -> insert_opp_in_mul y x

| Add (x, y), z -> add (mul (x, z), mul (y, z))

| x, Add (y, z) -> add (mul (x, y), mul (x, z))

| Mul (x, y), z -> mul (x, mul (y, z))

| x, y -> insert_in_mul x y
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Generated implementation

Insertion

and insert_in_mul x u =

match u with

| Mul (Inv y, t) when y = x -> t

| Mul (y, t) when x <= y ->

begin try delete_in_mul (Inv x) u with

| Not_found -> Mul (x, u)

end

| Mul (y, t) -> Mul (y, insert_in_mul x t)

| Inv y when y = x -> One

| _ when x < u -> Mul (x, u)

| _ -> Mul (u, x)
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Generated implementation

Deletion

and insert_opp_in_mul x u =

match u with

| Mul (y, t) when y = x -> t

| Mul (y, t) -> Mul (y, insert_opp_in_mul x t)

| _ when x = u -> One

| _ -> insert_in_mul (Inv x) u

and delete_in_mul x u =

match u with

| Mul (y, t) when y = x -> t

| Mul (y, (Mul (_, _) as t)) -> Mul (y, delete_in_mul x t)

| Mul (y, t) when x = t -> y

| _ -> raise Not_found
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Generated implementation

Definition of inverse, and so on

and inv x =

match x with

| Zero -> failwith "Division by Absorbing element"

| One -> One

| Inv x -> x

| Mul (x, y) -> mul (inv x, inv y)

| _ -> Inv x

...

and zero = Zero

and one = One
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Maximal sharing generation

The moca compiler also provides values represented as maximally

shared trees.

You just have to use the -sharing option of the compiler.

Hence the .mlm source file for maximally “arith” values is the

same.
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Generated interface

The interface is slightly modified to incorporate the hash codes

into values:

type info = { mutable hash : int };;

type aexpr = private

| Add of info * aexpr * aexpr

...

;;
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Generated interface

Construction functions are similar; an additional equality function

is also provided (to benefit from the sharing to get fast equality

with ==)

val var : string -> aexpr

...

val eq_aexpr : aexpr -> aexpr -> bool
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Generated implementation

The implementation defines the types and the hash code gener-

ator:

type info = { mutable hash : int }

type aexpr =

| Add of info * aexpr * aexpr

...

let mk_info h = {hash = h}
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Generated implementation

The implementation defines an equality to share values:

let rec equal_aexpr x y = x == y;;
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Generated implementation

Then the hash key access functions for the RDT

let rec get_hash_aexpr x =

match x with

| Add ({hash = h}, _x1, _x2) -> h

| Mul ({hash = h}, _x1, _x2) -> h

| Var ({hash = h}, _x1) -> h

| Opp ({hash = h}, _x1) -> h

| Inv ({hash = h}, _x1) -> h

| One -> 1

| Zero -> 0
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Generated implementation

Then the hash code computation function

let rec hash_aexpr x =

succ

(match x with

| Add (_, x1, x2) ->

get_hash_aexpr x1 + (get_hash_aexpr x2 + Obj.tag (Obj.repr x))

| Mul (_, x1, x2) ->

get_hash_aexpr x1 + (get_hash_aexpr x2 + Obj.tag (Obj.repr x))

| Var (_, x1) -> Hashtbl.hash x1 + Obj.tag (Obj.repr x)

| Opp (_, x1) -> get_hash_aexpr x1 + Obj.tag (Obj.repr x)

| Inv (_, x1) -> get_hash_aexpr x1 + Obj.tag (Obj.repr x)

| One -> 1

| Zero -> 0)
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Generated implementation

Then those functions are encapsulated into a weak hash table:

module Hashed_aexpr =

struct type t = aexpr let equal = equal_aexpr let hash = hash_aexpr end

module Shared_aexpr = Weak.Make (Hashed_aexpr)

let table_aexpr = Shared_aexpr.create 1009
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Generated implementation

The basic construction functions use sharing:

let rec mk_Add x1 x2 =

let info = {hash = 0} in

let v = Add (info, x1, x2) in

let _ = info.hash <- hash_aexpr v in

try Shared_aexpr.find table_aexpr v with

| Not_found -> let _ = Shared_aexpr.add table_aexpr v in v

...
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Generated implementation

Then the normalisation functions also use the maximal sharing
(calling mk Add, mk Opp):

let rec var x = mk_Var x

and opp x =

match x with

| Zero -> Zero

| Opp (_, x) -> x

| Add (_, x, y) -> add (opp x, opp y)

| _ -> mk_Opp x

and mul z = ...

and zero = Zero

and one = One
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Current state of mocac

We use a KB completion tool to complete the user’s set of

relations.

We generate automatic test beds for the generated construction

functions.

We wrote a paper at ESOP’07: it states the framework, pro-

vides definitions of the desired construction functions, proves the

correctness of the construction functions in simple cases.
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Future work

Still need to:

• prove the generated code (i.e. provide a proof for each gen-
erated implementation),

• or prove the code generator (better: once and for all).

Not so easy :(

We need also to integrate/interface mocac to other frameworks:

• for Focal (more work to do, need pattern matching first),

• for Tom/Gom (Pierre-Étienne Moreau, INRIA Lorraine) ?


