) GRIFFON

Frames | No Frames



http://griffon.codehaus.org

Griffon Guide - Reference Documentation

Authors: Andres Almiray

Version: 0.9.5-rc2

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.

Table of Contents

R 10 [ o 5
A €T 11T 10 TS = (=0 OSSR 6
2.1 Downloading and INSEAITING .......c.coeiviiuiieieeieiesiese ettt et e et e s be st e s beese e e e s e sesbessesbesaesbeessensensensessesrens 6
2.2 Creating @n APPIICALION .......cveieie ettt sttt et e st et e s beebesbesbeeseeseess e sessessesbeeaeereeaeeneennennesrearen 6
2.3 A Groovy CONSOIE EXAMPIE .....ccuveiiuiiiieee ettt ettt s e et s st s st e s st e e saeeesbessbessabessabessabesasesssbesesbessbessnbessnbesn 6
2.4 Getting SEt-UP TN AN IDE ...ttt e ettt s e s st e s e st e e sbe e s sbessbessabessabessabessseessbesesbessabessnbessabesans 8
2.5 Convention OVEr CONFIQUIBIION ........ueeeueeeeueeiireeitieeteessesessesesaesstessstessssesssesessessssessssessnsesssessssesssessssessnsesssnsssens 19
G R0 alaT o= Al Y o) o L or= 1o o 19
A A L= (o = a1 o) L o= (o] o 20
R L O (== (100 I (=, - 0L £ 20
1G] 110 1= 1 o] SRS 21
R =T STl @o Ko LU 7= 1o o 21
Bl L LOGUING +.uveveveeereetiieteetesteseeteetesestesteseesesteseabesseseesessessasesseneese st ensabessensesesbensebesbensesesbessebesbensebeebensebestenteneereneans 21
I = 0V 0) 010101 01 28
G YA = = To 100 [P 29
3.4 DEPENAENCY RESOIULION .....veeieeie ittt e et e ettt estes e s beeeaessabessabeesateesbesesbessbessatessabessaeesbessabesssbessnsessneessrenas 30
3.4.1 Configurations and DEPENAENCIES ......c..eeeueriereeieieiiieieeeeteeeetessstessteseseessbessssessbessabesssteessesssresasbesssessreessrenes 30
3.4.2 DEPENAENCY REDOSITOIIES ....cveiivieieeeetiieiteeesteeetesstessstsessessbessbessstesssesssbessasessssessabessssesssesesbesssesssessseessnenes 31
3.4.3 DELUGUING RESOIULION .....uveeiivieietieeieeceteeeeteeestee et esate e sateeeteesbesssbessssesssesesbesesessssesssbesssteeasesesesaressrsessneessrens 32
3.4.4 INherited DEDENUENCIES .....ococveeiveeeeeeeteeeeteeeeteeeeeesteeseeesee s bessstessssesaseeesbeseasessrseessbesssseesseseasesasesssessrsessneees 32
3.4.5 DEPENAENCY REDOIS .....oeeeeeetie et e et eeteeeeteeeetee et e et esteeeaeeebeseteeesseeesseesbeeeasesenseesatessssesassseasesasesensessnsessneees 32
3.4.6 Plugin JAR DEPENUENCIES .....oocivieiereeetieeiteeeeteeeteesteestteesteesbessbeessseeaseeesbseesseesnbeesabesssseessssesbesabessnseessreesarees 33
3.4.7 PlUQiN DEPENAEINCIES .....eoveveieerieeteeieeieeieesiestestestestestesseeseeseeseessessessessessessesseeseensensessessessessessessesseensensensessessens 33
3.5 ProjeCt DOCUMENEALION .....c.eeoveieviitiitiiteeteete et esteste st e st ste st e e teeae e e e e s tesbessesbesbesbeeseessessensesbesbeaseeseeseeseensensensessesrenns 34
O I 4 SX 00 1 0]00=) 010 I 11 39
4.1 Creating GANE SCHPLS ...uviviiieeeieeiteitesteste et et ste e eseestestestestesseasesseessessessessessesbesseeseessensessessessessesseeseessensensesessesrens 39
A (ot 101 M AN A0 A ol ] 0] K= 40
4.3 HOOKING INEO EVENLS .....vviiieeeceie et ctee et e sttt stee e etee st s st e s st essbeeesbessabessasessabessabessaseeabesesbesesbessasessabessnseesseeeresenres 42
O = (e A TS T a0 2T o]0 T o 43
RSN O 0ln 0% 010 M6 T0 K 01 = 0 7= 11 ) o [ 44
N N SN AN 0 A I\ A 7=!0] 0= 46
4.7 ComMAaNd LINE OPLIONS ......eeeceieitieiitie et e ettt e ctteeetee et e et e steeeaeeeesesesaesesessabessabessnseeaseeeaseseasessnseessbessnsessseeensesenres 46
A VA= 001 SX @ 11U | 46
Oy A A D 1o 1Y NS I 1= (oo RSP S 47
4.7.3 Disable DEfAUIT IMPOIS ......cc.ccuiiiiiiiceieteeieeese ettt ettt st be s be s ae e e e s e s e besbesbesaeebesaeensensensensesrearas 47
4.7.4 Disable Conditional Logging INJECHION ........c.ccueiiiiuiiieiteceeiciece ettt sre e eveeae e se e e e s e nnesresnas 48
4.7.5 Disable Threading INJECTION ......ccueiiceie it eeee ettt s e s s ree s bes et s st e s st e s saeessbesssbesssbessabessabessabessnesesbesentes 48
4.7.6 Default Answer in NON INEEraCHVE IMOOE .......eeeveiiiie ittt ettt e s s s st e s ste s sabe s satessreeesbeseres 48
A4.7.7 Plugin INStAll FAIlUrE SEFAIEUIES .....cccveeieveeiieeeieeeeieeeeteseeteeeee s erte s stae s bessbessbessasesssesssbessabesssbessabessseesasesssresenses 48
4.7.8 Default Artifact REPOSItOrY fOr SEArChING ......veecveiierii ettt e et esbe e st e s ereeesreseres 48
4.7.9 Default Artifact REPOSItOrY fOr CaChiNG .....cccoveeeveeietieietie et et st e et ee e sree s saeeeaessabe s sreeesneeenresenees 49
4.7.10 Disable Automatic L ocal RepoSitory SYNCAIONIZALION .........c.ecoveeeueeiireeiireeeeeeeee e steeesree et sbe e steesreeesreeeees 49
R RN o SN AN e a1 a1 | 49
oI AN o) o 1T or= (L0 R @ AVL= YA L= L AT 51
Lo A BT <ol 0] Y01 1 U (o (1 RS SSPR 51
LA I =X Y AV O o 7=, TR 51
5.2.1 MV CGIOUPBIMBNAOEL .....eoeueeiieeiieaateeatteaateeasteesaessseeesseeassesaseesteeasseesssessseeaasesanseesasessnsessssesasessssesansesssessnses 52
5.2.2 MV CGroups and CONFIQUIBEION .......eeeuvriiveriitieeieieisteeseeessessssesstessssesssesssbessssessssessssessssesssessssessssessssesssssssenes 53
5.2.3 CoNfiguration OPLIONS .......eeicuieiieeiieeeteeesteeeeteeeaessstessseeessessbessbessseesasesssbesessessssessabesssteessesesessssesssessreessrenes 53
ORI AN o] o] [Tor= () a1 NN L= 017/ [ 55
Lo T00 N T (== 55
LG T0 S = (1 | o OSSPSR 55



LTS RC == 0 1Y OO PTOR TP OTTTRR 55

ORI S 101011V [T 55
LTS o] o OSSPSR 55
X AN o] o] TTor= (T Al Y=, 0] £ 55
541 LIfECYCIE EVENLS ...oeiieee ettt ettt st e et e et s et e e sat e e ebee e sbessabeesabessabessateesbesesbessbessnsessreessrees 56
N A N L = o A VL=, 11 56
5.4.3 MISCEIIANEOUS BEVENES ...ttt ettt s et e et e et e e st eeese e e sbeeeaseesaseesnbesssseeaseeeabesasessnseesneessneeen 57
5.4.4 CUSIOM EVENES .....cvviiiiittie ettt e sttt e ettt e s ettt e s et e e e sbbe e e sabteeseabeeessabeeseaaseeessbeeeaaabeeesasaeeesnsbeesanseeessnbaeeeanneeesnreeesn 57
X N Y=l 010 =010 | 1= R 57
5.4.6 CuStOM EVENE PUBLISNELS ......ooiiveie ettt ettt ettt e et e e s ettt e s e eat e e s eabae e s sbeeesanbeeessabeessansesesanbeeeas 59
5.5 APPHICAIION FEAIUIES ......oeoiiieieeeie ettt s et e st e e s te et e saee s beesbeeseesseesbe e beenseeseesseesbeenseaseesseesbeentesneenseeseenes 59
5.5.1 RUNEIME CONFIQUILION .....oeuviiiitiiticteeecee ettt ettt e bt e st besbeeae e e e s e s e sbesbesbesbeebeeseessesensesesresreas 60
ORI VL= = 0 = = R 60
LRSI 114100110, 1 61
5.5.4 RUNNING IMOAE ..ottt ettt ettt et et e et e s s ate s ebt e s be e et e s sabessatesebeeesbeseseeeabeesabessseeebesesbesenbessnsessreessrens 61
5.5.5 SNUIAOWN HANAIELS .....vee ettt ettt sttt s e st s st s st ssat e s ebe e e sbesssbeesabessabesssteeabessbesanbessaseesreessreees 61
oSN W N o]0 [Tor= (L0 0 1 7= = = 61
ORI o] o] [Tor= (1o 0 1 I o7 [ 61
LRl B < - 0 11210 T 61
5.5.9 STArtUD ATQUIMENES ....civveeicieee e ittt ettt e e ettt e s etbeeeebbe e e seateeeesbeeessabseesaaseeesasbesesssseeeaasaeesssseeeanseeessabeeesansesesanbeeesn 62
5.5.10 LOCAHNG RESDUITES .....vecuvecuieiteeiteeteeueesteesteesteetesaeesbeesteeasesseesbeesseensesseesseesseeaseessesseesteeseenseaseesbeessesnnesseesreens 62
5.5.10 UNCAUGNE EXCEIITIONS ......veiveeiteeiteeieeeee e steesteeee st steesteetesseesteesaeessesseesbeesseenseessesseesteeseessesnaestaenseennesseesteans 63
5.6 SWINQ SPECITIC viviviitiitiitieieiee ettt ettt ettt e e et e s be st e e b e e aeeaeess e besseasesbeebeebeeseessensensesbeateaseebeebeebeensensensenesresns 64
5.6.1 WINAOWM@NAGET ......cviiueieiteiteiti st eteeteette e s testestestestesseeseeseessassestessessesseaseaseessensessessessestesseeseaseessensesensestesrens 64
LI N £ 107 o 0 66
5.7.1 EVAlUAING CONVENLIONS ......ccvieiivieiieeieteeestesesteeeeessstesssessssesssbessstessssesasesssbessssessssessatesssteessessssessssessssessensssenes 66
5.7.2 Adding DynamiC MethodS @t RUNLIME ........ccueivieieiieieeeceieeceteesteseteeeteeesteseesessstessatesssteessesessessssessnsessneesssens 67
LRGN 1 =ox A 1N == S 68
LTS AN (011177 0= S 68
LR T N = (oY = 1] 0 L= R 69
ORI = 00 110 0= 07 1 1 o 74
5.9.1 Tweaksfor aParticular PIAfOIM ........oooiiiiiiiiie ettt e st e e s bt e e s eabe e e s sab e e s seareeesanbeeeas 74
LR AL VL= o O 1) R 74
Lo\ KeTa (< 1= 0 I 21 oo 1 0T USROS 75
ST LY [0 0 (< 75
L3020 =111 0o S 76
ST NS Y 11 G 76
(SO X0 [0 L T0] = I (0] 0= L= 77
Y AT £ 79
A Y ALY ESX= 00 IS VY71 0o [ 79
S = o = I N[00 (= 81
A N AN oo [ Tor= ) [ 81
L O] 11 = 1 0= S 81
ARG Lo o L= TR 81
N ST o TR 82
SN N [0] 6 7= < 1| SO USUSTOPRRN 82
A ST (o 1o | PO 82
R 00001110 11 Xz 010 I YA 101 =- S 84
T 0o 0110 1 = £ 84
I I 7= 0 SX= 010 A o1 (0 [ T 84
oI < V1 1= 86
LSRR 0 1=" o [0 SRS 88
LSS o I (== 1 o SR 88
9.1.1 SYNCHIONOUS CaIIS ....veiiveeeiiciie ittt sttt ettt s b e et e et e sbe e s te et e eaeesbeesbeeteeaeesbeesbeeseessesseesbeenseennesneesreans 88
9.1.2 ASYNCHIONOUS CallS ....ocveuieieiieiti ettt ettt e s te st e e b e e besbeeae e s e s e s e sbesbestesbeebeeseessensensesesresreas 88

L RS @ 01110 (=X 07 1 £ 89
9.2 ToOIKit-agNOSHIC THIEAMING ....veeivvieiueiecieeiiie et ee ettt e et e st e et e st e e st e s sateeebesesbessbessatessabessseesbesesbessabessnsessneessrenas 89
L I RS Y0101 00] 0100 X O | 89

L A oA 00100 010U X O £ 90
LG @ 1= 1o (=X O £ 90
L 3 X0 (o Lo = LY = 0T o 91
CRCWANa(a(0) = L0 ] AW T= ' =0 B I a1="= 0 1010 91
O =" 1 SRS 93
L0.2 UNIETESHING .veveivietietieieiiesiesie et et sttt et et et e st e st e st e sbesbesbeeseesseaseasesbessesseebeebeebeessensensessesbesbesbesaeereessensensensensesrenris 95

10.2 INtEGIratioN TESHING .....ecveiveieeireiteiteite et et et et e st e st et e etestesteese e e e s esesbestesseeseebesseessensensessesbesbessesseesesssensensensesesresras 95



FO.BIMOCKING ...ttt sttt ettt e et et et e s beebe s beeseeseeae e s e bestesbeebeebeebeeasensensensesbeebeebeeheeaeeReeneenteneneerenran 96

10.3.1 MOCKGHTFONAPDIICALION .....ooveiveiectieticte ettt et st e e st e sbesaesreebeeaeensennennesesrees 96

11. Packaging and DEPIOYIMIENT .......cccueeiiuieiiieiiiectieesteeeetesstessatessseseesesesbessssessasessaessssessssessabessabessnsesssesssaessssessnsesssensns 97
00 7 T o OSSR 97
N 97
YT = o = 98
I LN o] o SRS 98
YN0 (o (o) =!I 1 100 = U 99
11.6 CUSIOM MANITESE ENEIIES ....vveeveeictee et et et ee e et e et e e et e et e e st e e eteeesteesabesssseesseeesesebessnseesnseesssesasseesesanrensns 99
R e 1 To 0SSOSR 101
12.1 Creating and INStalling PIUGEINS ......ooveciiiieiecsieee ettt ste e s esteesteesaesseesbeesbeesesneesreesteenseeneesranns 101
12.2 ArtifaCt REPOSITOMES .....oeiveiveriiteiteite et etest e s teste s te et eetesteese e e e s e tesbesbesbeeseeseeseessesesessesbesbesaeeseessensensessensessearens 103
12.3 Understanding @ PlUQINS SEIUCKUIE .........ccvoiviiuiiieiieitictecteeeeeete st e st ae e e e saessesaesbesbesaeeseeseessensessensesresrens 104
12.4 Providing BaSIC ATTEFACES ......cc.eiicviiiiiecei ettt ettt ettt et s st e e st e e sat e s sbessbeesabessabessseesabesesbessbessannssnees 104
12.5 HOOKING iNtO BUIIA BEVENES ......oooiviiiiieceeie ettt ettt s s st st s st esstessaaessatessaessbessabessabesssseeasesssbessssessnenssneens 105
D20 (0[] 01 105
12. 7 UNderstanding PIUGIN OFAES .......ccveiivieiiieceee ettt e st e ettt e e ete s st ssaaessate s saessbesssbessnbesssseesseessbesssessnnessnees 106
2 O I D= o100 (= 10x - 107
T T 0 oY= 0 o I I e ST 108
13.1 Using Artifact Conventions to YOUr AQVANTAGE .......cccocveeiveeireeeirieeireeeireestteestreeeseeebeesteeereeeseeesbesenseesnneesanees 108
13.2 Dealing With NON-GrOOVY AFTITACES ......ccoveiiierieieeesie ettt et st se s seeneeeeseeneesrennens 109
13.3 EXTEINAIIZING VIBWS ....ooivieieeeiectie st e ste ettt et e steeteeseesteesteeteeseesteesbeesteeaeesseesbeeseenseeseesbeesteenseeneesseesteenseennesranas 111
13.3.1 NEtBEANS IMALISSE ....veeivieieeie ittt e et eetee et e s bt e et eeate e sbasssbessateesabeesatesabesesbesssbessasessabessabessnessasesebessbessasnssnteas 111
13.3.2 ADEIIE FOIMS DESINEY .....cveiviiteieitieteetee e e ettt e e e et et e s testesbeebesseese e s e s e ssesbesteaseeseeseensesenseneenrenris 112
TG Y/ SR 113
13.4 Creating BiNAINGS IN JAVA .....cccveiiiviiiiie et steeeetee st e st e s e e be s et esstessaaessseessbessbessabessabessssesasesesbesssessnenssnees 114




1. Introduction

Developing desktop/RIA applications on the VM is a hard task. Y ou have to make choices upfront during
application design that might complicate the implementation, compromising the user experience; not to mention the
amount of configuration needed.

RCP solutions like Eclipse RCP and NetBeans RCP are great for devel oping desktop applications, not so much for
RIAs and applets. Griffon is aframework inspired by Grails, whose aim is to overcome the problems you may
encounter while developing all these types of applications. It brings along popular concepts like

© Convention over Configuration

© Don't Repeat Yourself (DRY)

© Pervasve MVC

© Task automation

© Testing supported "out of the box"
Griffon relies on the power of the Groovy language to glue all things together. The framework is quite extensible via
plugins also.
This documentation will take you through getting started with Griffon and building desktop/RIA applications with
the Griffon framework.

Creditsand Acknowledgements

This guideis heavily influenced by the Grails Guide. It simply would not have been possible without the great efforts
made by: Graeme Rocher, Peter Ledbrook, Marc Palmer, Jeff Brown and their sponsor: SpringSource. The Griffon
team would like to thank them all (and the Grails community too!) for making such a great framework and bringing
the fun back to programming applications.


http://grails.org
http://groovy.codehaus.org
http://grails.org/doc/latest

2. Getting Started

2.1 Downloading and Installing

Thefirst step to getting up and running with Griffon isto install the distribution. To do so follow these steps:

© Download a binary distribution of Griffon and extract the resulting zip file to alocation of your choice
© Set the GRIFFON_HOME environment variable to the location where you extracted the zip
© On Unix/Linux based systemsthisistypically a matter of adding something like the following
export GRI FFON_HOME=/ pat h/t o/ gri f f on to your profile
© On Windows thisistypically amatter of setting an environment variable under My
Conmput er / Advanced/ Envi ronnent Vari abl es
© Now you need to add the bi n directory to your PATH variable:
© On Unix/Linux base system this can be done by doing aexpor t
PATH=" $PATH: $GRI FFON_HOVE/ bi n"
© Onwindows thisis done by modifying the Pat h environment variable under My
Conput er / Advanced/ Envi ronnent Vari abl es
If Griffon isworking correctly you should now be ableto type gr i f f on in the terminal window and see output
similar to the below:

Wl come to Giffon 0.9.5-rc2 - http://griffon.codehaus. org/
Li censed under Apache Standard License 2.0

Giffon home is set to: /usr/local/griffon-0.9.5-rc2

No script name specified. Use 'griffon help' for nore info

2.2 Creating an Application

To create a Griffon application you first need to familiarize yourself with the usage of the gr i f f on command
which is used in the following manner:

griffon [comand nane]

In this case the command you need to execute is create-app:

griffon create-app denoConsol e

Thiswill create anew directory inside the current one that contains the project. Y ou should now havigate to this
directory in terminal:

cd denpConsol e

2.3 A Groovy Console Example

The "create-app" target created a Griffon MV C Triad for you in the models, views, and controllers directory named
after the application. Hence you already have a model class DemoConsoleModel in the models directory.

The application model for this application is simple: it contains properties that hold the script to be evaluated and the
results of the evaluation. Make sure you paste the following code into

gri ffon-app/ nodel s/ denoconsol e/ DenoConsol eModel . gr oovy.


http://griffon.codehaus.org/Download

package denoconsol e
i nport groovy. beans. Bi ndabl e
cl ass DenpConsol eModel {
String scriptSource
@i ndabl e def scriptResult
@Bi ndabl e bool ean enabl ed = true

The controller isalso trivial: throw the contents of the script from the model at a groovy shell, then store the result
back into the model. Make sure you paste the following code into
griffon-app/controllers/denoconsol e/ DenoConsol eControl | er. groovy.

package denobconsol e
cl ass DenpConsol eControl | er {

private G oovyShell shell = new G oovyShell ()
/] these will be injected by Giffon
def nodel
def view
def executeScript = { evt = null ->
nodel . enabl ed = fal se
def result
try {
result = shell.eval uat e(nodel . scri pt Sour ce)
} finally {

nodel . enabl ed = true
It =

nmodel . scri pt Resu result

The Griffon framework will inject references to the other portions of the MV C triad if fields named model, view, and
controller are present in the model or controller. This allows us to access the view widgets and the model data if
needed

The executeScript method will be used in the view for the button action. Hence the evt parameter, and the default
value so it can be called without an action event.

Finally, the Griffon framework can be configured to inject portions of the buildersit uses. By default, the Threading
classes are injected into the controller, allowing the use of the edt , doQut si de and doLat er methods from
SwingBuilder.

Y ou may natice that there's no explicit threading management. All Swing devel opers know they must obey the
Swing Rule: long running computations must run outside of the EDT; all Ul components should be queried/modified
inside the EDT. It turns out Griffon is aware of this rule, making sure an action is called outside of the EDt by
default, all bindings made to Ul components via the model will be updated inside the EDT also. We'll setup the
bindings in the next example.

The view classes contain the visual components for your application. Please paste the following code into
griffon-app/vi ews/ denpbconsol e/ DenoConsol eVi ew. gr oovy.



package denoconsol e
application(title:'DenbConsol e', pack:true,
| ocati onByPl at form true,
i conl mage: imagelcon('/griffon-icon-48x48.png').imge
i conl nages: [inmagelcon('/griffon-icon-48x48.png').imge,
i magel con('/griffon-icon-32x32.png').i nage
i mgel con('/griffon-icon-16x16.png').inmge]) {
panel (bor der: enpt yBorder(6)) {
bor der Layout ()
scrol | Pane(constrai nts: CENTER) {
text Area(text:bind(target: nodel, 'scriptSource'),
enabl ed: bind { nodel.enabl ed },
colums: 40, rows: 10)

}
hbox(constrai nts: SOUTH) {
button("Execute", actionPerformed: controller.executeScript,
enabl ed: bind { nodel.enabl ed })
hstrut 5
| abel 'Result:'
hstrut 5
| abel text: bind { nodel.scriptResult }

The view script isafairly straightforward SwingBuilder script. Griffon will execute these groovy scripts in context
of it's UberBuilder (a composite of the SwingBuilder and whatever elseis thrown in).
Now to get the application running. Y ou can do this by calling the run-app command:

griffon run-app

This command should compile all sources and package the application, you'll see asimilar result as depicted by the
following screenshot after afew seconds

DemoConsole

def who = 'Griffon’
"Hello $who"

(" Execute ) Result: Hello Griffon
p

Standalone mode is hot the only way to run your application, try the following command to run it in webstart mode:
run-webstart. Conversely run-applet will run your application in applet mode. The best of al isthat you did not have
to touch asingle line of configuration in order to switch modes!

2.4 Getting Set-up in an IDE

IntelliJ IDEA
IntelliJ IDEA and the JetGroovy plug-in offer good support for Groovy/Grails/Griffon devel opers. Refer to the
section on Groovy and Grails support on the JetBrains website for a feature overview.

Integrating an existing Griffon project
To integrate Griffon with IntelliJ run the following command to generate appropriate project files:


http://www.jetbrains.com/idea
http://www.jetbrains.net/confluence/display/GRVY/Groovy+Home
http://www.jetbrains.com/idea/features/groovy_grails.html

griffon integrate-with --intellij

Creating a new Griffon project
Follow these steps to create and run a new Griffon project with IDEA
#1 Bring up the "New Project" wizard. Y ou should see Griffon as one of the available options

"o e Mew Project

() Create project from scratch

Create new IDEA project structure

() Create Java project from existing sources

Create IDEA project structure over existing sources

L () Import project from external model
Inte"'] IDEA Create IDEA project structure over existing external model (Eclipse)

() Import Grails application from existing sources

Nij Create IDEA project over existing Grails application
project

9 Import Griffon application from existing sources

Create IDEA project over existing Griffon application

< Previous _' ( Next = :1 '_ Finish _' C Cancel :I C Help :I
#2 Choose name and location for the new project
"o e Mew Project
Name:
demo

Project files location:

[Users [aalmiray/griffon/demo |:|

Project file format: | .idea (directory based) |3 |

‘Intellj IDEA

NEW

project

(_-r:Prwious_:l ( Next = :l '_ Finish .' (_ Cancel _:I (_ Help _:I

#3 Configure a Griffon SDK if you haven't done so already



Please specify Criffon SDK
Use library [ il griffon-0.9.2 I-ﬂ ( Create... )

Global level library griffon-0.9.2 with 40 files

will be created

Intelli] IDEA

ADD

module

(_':Previous_:l f Next > \_ ( Finish :) (_ Cancel _:1 (_ Help _:1

#4 Click on the Finish button and develop with pleasure your Grlffon pl’OjeCt

TEIEE @lm,% 6 #| # B0 [~
E TTon Vie 5 DemoView
E Id—kl 1 package demo
£ 2
= 3 application{title: 'demo’
v Model classes '
L &E‘ 4 //size: [320,480],
@ v &7 demo 5 pack: true,
— {5 DemoModel 5 //location: [58,50],
= v [ Controllers 7 locationByPlatform: true,
‘E". v B demo 8 iconImage: imageIcon('/griffon-icon-48x48.png
= g iconImages: [imageIcon('/griffon-icon-48x48.p
o @ DemoController 1] imageIcon('/griffon-icon-32x32.pi
3l v (G Views 1. © imageIcon( ' /griffon-icon-16x16.p
n ¥ = demo 12 /f add content here
© DemoView.groovy ﬂ k) label('Content Goes Here') // delefeme
¥ [ Configuration 15
B O dist
[ keys
3 metainf
b [ webstart
(&) Application.groovy
- (G) Build Config.groowy
g () Builder.groovy
g (&) Config.groovy
& (5) Project Sources
r~I b [{F Integration Tests
? [4¥] Unit Tests
| ©) Console | | 52 6: TODO
O |3 | 15:1 UTF-8 IR X
NetBeans

A good Open Source aternative is Oracle's NetBeans, which provides a Groovy/Griffon plugin that automatically
recognizes Griffon projects and provides the ability to run Griffon applications in the IDE, code completion and

10



11

integration with Oracle's Glassfish server.

Integrating an existing Griffon project
NetBeans does not require any special integration support, it understands the layout of a Griffon project aslong as
the Griffon plugin isinstalled. Just select "Open" from the menu and locate the folder that contains your project. It's
that simple. Follow these steps to install the Griffon NetBeans plugin.
Prerequisites: Java, Groovy and Grails pluginsinstalled and up to date.
#1 Download the plugin
Follow thislink to download the latest zip distribution of the plugin.
#2 Unpack the zip file into adirectory of your choosing
#3 Open the plugin manager dialog. Go to the "Downloaded"” tab, then click on the "Add Plugins..." button. Locate
and select the NBM files that were uncompressed in the previous step.
#4 Select both plugins (using the checkboxes) and click on "Install”.
M Plugins

¥

[ Updates (10) = Available Plugins (69)  Downloaded (2) @ Installed (25) = Settings

i : b | )
([ Add Plugins... ) Search:

Install MName X

& groowvy.griffon h groovy.griffon [ Remove )

™ groovy.griffonproject

ifiy Community Contributed Plugin

Version: 1.2.2
- Date: 4/24/11
Source: org-netbeans-modules-groovy-griffon.nbm

H
[ Install ) 2 plugins selected

i N
L Close ) ( Help

#5 Restart your IDE and enjoy!

Creating a new Griffon project

Prerequisites: Y ou must have the Griffon plugin installed. Follow the steps explained in the previous section to get
the job done.

#1 Bring up the "New Project" wizard. Click on "Groovy" then on "Griffon Application".


http://plugins.netbeans.org/PluginPortal/faces/PluginDetailPage.jsp?pluginid=18664

W

Steps Choose Project
1. Choose Project Categories: Projects:
2. [ Java | 4@ Grails Application
[ Java Web 4 WCriffon Application
[ Java EE
[ Java ME
[ Maven i
&l pHP v
Description:
Creates a new and empty Griffon application by running “griffon
create-app” in the IDE and opening the application that is generated @
a5 a result

C Help ) [ < Back | (Next}) " Finish (Can{elj

#2 Choose name and location for the new project

- - Mew Griffon _;__!_._!___ ation
Steps Mame and Location
1. Choose Project " i
2. Name and Location Project Hame: gemo
Project Location: | /Users/aalmiray/griffon ( Browse... )

Project Folder: fUsers faalmiray/griffon/demo

( Configure Criffon... )

E Set as Main Project

@Please setup your Griffon Home in IDE Options

C Help ) ( {Ba{k) “ Next> ) ( Finish (Can{elj

#3 Configure a Griffon SDK if you haven't done so already

12



13

J:LE}£;llllllllllllllllllllllllémHﬁHEh---------------
% B a 8 &

General Editor Fonts & Colors Keymap Miscellaneous

{ 4 Files = Griffon | Croovy | GUI Builder  lIssue Tracking = Java Debugger P-].

Criffon Home:

Jusr/local /griffon-0.9.2 (_ Browse... )

Cet Griffon at http:/ /groovy.codehaus.org/Griffon

C Export ) C Import ) C Cancel ) ( OK )

#4 Click on the Finish button
506 | | demo - NetBeans IDE 7.0

.[ i]l T T |>

L

Q- Searcl

Pro).. (DED DemoView.groowy ﬂ
v @) demo é
: ) = v "
» [HgConfiguration : o B-& ﬂ ECI EI ¥ © =
¥ [[HzControllers ; package demo
¥ Eadﬂm‘-ﬁ 3 appllcatlon{tltle' demo ",
DemoController.groowy : --}-tzl-t [320,480],
. pack: rue,
> EQEUEQKE [ fflocation: [50,50
v EﬁM-DdEIS 7 locationByPlatform: true,
v demo 8 }conlmage' 1mE_|.gelcon{ fgriffon-icon-48x48.p
Eﬁ 9 iconImages: [imageIcon({ /griffon-icon-48x48
DemoModel.groovy 10 imagelcon{'/griffon-icon-32x32
v [[HyViews 11 imagelcon{ Jgriffon-icon-16x%16
12 '/ add content here
B Eﬁdemn 13 label( Content L-Cu:*" Here'} // deletemes
DemoView.groovy 14 }
» [HzSource Packages 5|
> [HgStaging
» [[zIntegration Tests
> [EUnit Tests

Eclipse
We recommend that users of Eclipse looking to develop Griffon application take alook at SpringSource Tool Suite,
which offers built in support for Groovy.

Integrating an existing Griffon project
To integrate Griffon with Eclipse run the following command to generate appropriate project files:

griffon integrate-with --eclipse

Then follow these steps to fully integrate and run the application
#1 Install the Eclipse Support plugin


http://www.eclipse.org/
http://www.springsource.com/products/sts
http://griffon.codehaus.org/EclipseSupport+Plugin

griffon install-plugin eclipse-support

#2 Configure a pair Classpath User Variablesin the preferences dialog. GRIFFON_HOME should point to the install
directory of Griffon, while USER_HOME should point to your account's home directory.

_ﬂ O Preferences
{ classpath| '} | Classpath Variables Pv v w
VANt
Runtime A classpath variable can be added to a project's class path. It can be used to
¥java define the location of a JAR file that isn't part of the workspace. Non modifiable
YEuild Path classpath variables are set internally (for example, JRE_LIB, JRE_SRC, and

JRE_SRCROOT depend on the JRE setting).
Defined classpath variables:

@ ASPECTJRT_LIB - /Users/aalmiray/springsource/sts-2.6.1.F

= ECLIPSE_HOME (non modifiable) - /Users/aalmiray/springsi
= GRIFFOM_HOME - jusr/local/griffon-0.9.2

@ JRE_LIE - /System fLibrary/lava/JavavirtualMachines/1.6.0.]
= JRE_SRC - {empty) ——
(2= JRE_SRCROOT - {(empty) e
[E]UNIT_HCIME (non modifiable, deprecated) - /Users faalmira

= JUNIT_SRC_HOME (non modifiable) - ##<cp entry ignore>#

= MZ_REPO {non modifiable} - fUsersfaalmiray/.m2 freposito

= USER_HOME - fUsers/aalmiray

Classpath Variables

Edit...

@ I: Cancel ) ( OK J

#3 Bring up the "New Project" wizard. Select "Existing Projects into Workspace™
BPon Import

Select

\ .
Create new projects from an archive file or directory. @

Select an import source:

 type filter text
¥ = General

@ Archive File m
B Existing Projects into Workspace
[ File System

=L Preferences
b= OVS .
'
b = EIB 1
o i ir

@ < Back [ Mext = ) |: Cancel j Finish

P
#4 Select the directory of the application that contains .project/.classpath files

14




15

Import Projects

Select a directory to search for existing Eclipse projects.

{#) Select root directory: IstersfaaImirawgriﬁnn,fdemu I Browse...

() select archive file: (" Browse... )
Projects:

v demo (/Users/aalmiray/griffon/demao)

[] Copy projects into workspace

Deselect All

Working sets

[ Add project to working sets

Working sets: = [ Select... )

® {_ = Back :}.: Mext = :, {: Cancel :} ( Finish J

#4 Click on the Finish button

T O Y Java - demo

| £3- SO G0 [ BTE S
ik o |Bd ed @

- Ktﬁ Package Explorer &3 =g
::__ <}==~b| 2 = package demo
o=
v (& demo ”‘ o =application(title: '"demo’,
b =i, JRE System Library [JVM Contents //size: [320,480],
- =, Referenced Libraries pack: true,
b 2 griffon-app/conf Fflocation: [58,58],
¥ [ griffon-app/controllers locationByPlatform: true,
v {3 demo iconImage: imagelcon{'/griffon-icon-48x4&.png").
N @ DemoController.groovy iconlmages: [M('fgr‘lFan—lcnn—-flﬂx-iﬂ.png
i i imagelcon('/griffon-icon-32x32.png
> ( griffon-app/i1&n imagelcon(' /griffon-icon-16x16.png
» (2 griffon-app/lifecycle " /4 odd content here
¥ # griffon-app/models label('Content Goes Here') // deleteme
¥ £ demo ¥
b [€] DemoModel . groowvy
b 2 griffon-app/resources
¥ 2 griffon-app fviews
¥ {4 demo
b [£] DemoView.groovy
[ src/main 'a
b test/integration v
& = ) Y«

J o* @| Writable Smar...sert J



Running Griffon commandswithin Eclipse

WEe'l rely on Eclipse's Ant support to get the job done, but first we need to generate an Ant build file

griffon integrate-with --ant

Refresh the contents of your project. Open the build file in the Ant View. Select any target and execute by double
clicking onit.

M MM Java - demo/build.xml - SpringSource Tool Suite - /Users/aalmiray/Documents /workspace-

= Ty - = 3]
i O G H- 0@ | ETHFG | BSOS 5> &
- Bl KD (e s
[£ Package Explorer 3 = O || €] DemoView.groovy EI build.xml &3
= E % | = & o]
o= (2! Problems | @ Javadoc | [, Declaration | 3% Ant 53 i 97 |
¥ [ griffon-app/views v &dema
v H demo b @ clean
» [£] DemoView.groovy b @ debug-app
2 src/main > @ dist
b 2 test/integration » @ package
(Sest/unit
Epﬁriffnn—app b b @ run-applet
= Ib_ b @ run-webstart
(= scripts [ 2 @test [default]
[=-src
P = staging
[ test
(= USER_HOME
b =wrapper
application.properties
& build.xml "
|=| griffonw i
|=| griffonw. bat v
€ ) <I»
:4} description="--> Run a Griffon application in standalone mode” P?g
TextMate

Since Griffon' focusis on simplicity it is often possible to utilize more simple editors and TextMate on the Mac has
an excellent Groovy/Griffon bundle available.

Follow these steps to install the Groovy bundle

#1 Create alocal bundle directory

nmkdi r ~/ Li brary/ Application Support/ Text Mat e/ Bundl es/

#2a If you have git installed then just clone the repository

cd ~/Library/ Application Support/Text Mat e/ Bundl es/
git clone https://github.conitextnate/groovy.tmnmbundl e.git

#2b Alternatively download a copy of the latest version from github as a zip and unpack it. Rename the unpacked
directory togr oovy. t mbundl e.

Follow these stepsto install the Griffon bundle
#1 Create alocal bundle directory

16


http://macromates.com/

17

nmkdi r ~/ Li brary/ Application Support/ Text Mat e/ Bundl es/

#2a If you have git installed then just clone the repository

cd ~/Library/ Application Support/ Text Mat e/ Bundl es/
git clone https://github.com griffon/griffon.tnbundle.git

#2b Alternatively download a copy of the latest version from github as a zip and unpack it. Rename the unpacked
directory togri f f on. t mbundl e.

Now configure the PATH environment variable within TextMate. Make sure that $GRI FFON_HOVE/ bi n in
expanded form is set

(o N M) Advanced —

G4 @ @ b

General Text Editing Fonts & Colors Software Update Advanced

i Saving | Shell Variables = Folder References

Variable Value
™ TM_ORGCA _ MyCompanyName__
™ PATH fusrflocal/griffon/bin: fusr/bin:/bin:/us

Integrating an existing Griffon project
To integrate Griffon with TextMate run the following command to generate appropriate project files:

griffon integrate-with --textmate

Alternatively TextMate can easily open any project with its command line integration by issuing the following
command from the root of your project:

mat e .

Y ou should see asimilar display like the next one



™ ™ DemoView. — demo

¥ | demo

Running Griffon commands within TextM ate

| ¥ DemoView.groovy |

1 |package demo

2

3 |application(title: "demo',

4 preferredSize: [328, 24@],

5 pack: true,

6 AAlocation: [50,58],

i locationByPlatform:true,

] iconImage: imagelcon('/griffon-icon-48x48.png').image,

9 iconImages: [imageIcon('/griffon-icon-48x48.png").image,
1@ imageIcon('/griffon-icon-32x32.png").image,
118 imageIcon('/griffon-icon-16x16.png").image]) {
12 7 add content here
13 label( 'Content Goes Here') /¢ delete me
14 }

15
Line: 2 Column: 1 ;_Grn-ow r <) ¥ Soft Tabs: 4 Y -

|2 application.proper
v r:] griffon-app
» r:] conf
» r:] controllers
> ilan
| r:] lifecycle
» r:] models
» r:] resources
v r:] views
v r:] demo
|2 griffonw
|2 griffonw.bat
» b
| r:] scripts
» r:] Src
» r:] test
| r:] wrapper

TS

The Griffon bundle provides new commands under the "Bundles' menu. Search for the "Griffon submenu"”.

Run App

Model 2 Test App

View > Run Applet
Controller [ 3 Run Webstart

" Run Griffon Task...

Clean
Help

List Plugins
Install Plugin...

Create MVC

~0HG
~r#G
~{#G
~ G
~{r#G

~r#G
~r G

~ G
~{r#G

~r#G

Selecting "Run App" will execute the run-app command on the currently open project

18



19

B GriffonMate

GriffonMate

griffon run-app

Welcome to Griffon 0.9.4 - http://griffon.codehaus.org/
Licensed under Apache Standard License 2.0

Griffon home is set to: fusr/local/griffon

Base Directory: /Users/aalmiray/demo

Resolving dependencies. ..

Dependencies resolved in 1009ms.

Running script fusr/local/griffon/scripts/Runipp.groovy

Environment set to development

2011-12-03 21:56:05,902 [main] INFO griffon.swing.Swingspplication -

Initializing all startup groups: [demo]

2011-12-03 21:56:14,166 [AWT-EventQueue-0] INFO

griffon.swing.SwingApplication - Shutdown is in process

[delete] Deleting directory /Users/aalmiray/demo/staging/macosxfd
[delete] Deleting directory /Users/aalmiray/demo/staging/macosx

2.5 Convention over Configuration

Griffon uses "convention over configuration” to configure itself. This typically means that the name and location of
filesis used instead of explicit configuration, hence you need to familiarize yourself with the directory structure
provided by Griffon.

Here is a breakdown and links to the relevant sections:

© griffon-app -toplevel directory for Groovy sources.
© conf - Configuration sources.
nodel s - Models.
Vi ews - Views.
control | ers - Contrallers.
servi ces - Services.
resour ces - Images, propertiesfiles, etc.
© | 18n - Support for internationalization (i18n).
© scri pts - Gant scripts.
© sr ¢ - Supporting sources.
© mai n - Other Groovy/Java sources.

© test - Unit and integration tests.

0O O O O O

2.6 Running an Application

Griffon applications can be run in standal one mode using the run-app command:

griffon run-app

Or in applet mode using the run-applet command:

griffon run-appl et

Or in webstart mode using the run-webstart command:




griffon run-webstart

More information on the run-app command can be found in the reference guide.

2.7 Testing an Application

Thecr eat e- * commandsin Griffon automatically create integration tests for you within the
test/integrati on directory. It isof course up to you to popul ate these tests with valid test logic, information
on which can be found in the section on Testing. However, if you wish to execute tests you can run the test-app
command as follows:

griffon test-app

Griffon al'so automatically generatesan Ant bui | d. xm which can also run the tests by delegating to Griffon'
test-app command:

ant test

Thisis useful when you need to build Griffon applications as part of a continuous integration platform such as
CruiseControl.

2.8 Creating Artefacts

Griffon ships with afew convenience targets such as create-mvc, create-script and so on that will create Controllers
and different artifact types for you.

These are merely for your convenience and you can just as easily use an IDE or your favorite
text editor.

There are many such cr eat e- * commands that can be explored in the command line reference guide.

20



21

3. Configuration

It may seem odd that in aframework that embraces " convention-over-configuration™ that we tackle this topic now,
but since what configuration there is typically aone off, it is best to get it out the way.

3.1 Basic Configuration

For general configuration Griffon provides afilecalled gri f f on- app/ conf/ Confi g. gr oovy. Thisfile uses
Groovy's ConfigSlurper which is very similar to Java properties files except it is pure Groovy hence you can re-use
variables and use proper Java types!

Y ou can add your own configuration in here, for example:

foo.bar.hello = "worl d"

Then later in your application you can access these settings via the GriffonApplication object, which is available asa
variable in mvc members

assert "world" == app.config.foo.bar.hello

3.1.1 Logging

The Basics

Griffon uses its common configuration mechanism to provide the settings for the underlying Log4j log system, so all
you havetodoisadd al og4j settingtothefilegri f f on- app/ conf/ Confi g. groovy.

So what doesthis| 0g4j setting look like? Here's a basic example:

log4j = {
error 'org.codehaus. griffon'
info "griffon.util’,
‘griffon.core',
"griffon.swng',
"griffon. app’

This says that for the ‘org.codehaus.griffon’ logger, only messages logged at 'error' level and above will be shown.
The loggers whose category start with 'griffon' show messages at the 'info' level. What does that mean? First of all,
you have to understand how levels work.

Logging levels
The are several standard logging levels, which are listed here in order of descending priority:

off

fatal

error

warn

info

debug

trace

. al

When you log a message, you implicitly give that message alevel. For example, the method | og. er r or (nsQ)
will log a message at the 'error' level. Likewise, | og. debug( nsg) will logit at 'debug'. Each of the above levels
apart from ‘off' and 'al’ have a corresponding log method of the same name.

The logging system uses that message level combined with the configuration for the logger (see next section) to
determine whether the message gets written out. For example, if you have an 'org.example.domain’ logger configured
like so:

ONOGA~WDNE


http://logging.apache.org/log4j/1.2/index.html

warn 'org. exanpl e. domai n'

then messages with alevel of ‘warn', ‘error’, or ‘fatal’ will be written out. Messages at other levels will be ignored.
Before we go on to loggers, a quick note about those 'off* and 'all’ levels. These are special in that they can only be
used in the configuration; you can't log messages at these levels. So if you configure alogger with alevel of 'off’,
then no messages will be written out. A level of 'al' means that you will see all messages. Simple.

Loggers

Loggers are fundamental to the logging system, but they are a source of some confusion. For a start, what are they?
Are they shared? How do you configure them?

A logger isthe object you log messagesto, sointhecall | og. debug(nsg), | og isalogger instance (of type
Logger). These loggers are uniquely identified by name and if two separate classes use loggers with the same name,
those loggers are effectively the same instance.

There are two main ways to get hold of alogger:

1. usethel og instance injected into artifacts such as domain classes, controllers and services,

2. usethe SIf4j API directly.
If you use the dynamic | og property, then the name of the logger is 'griffon.app.<type>.<className>', where t ype
isthe type of the artifact, say 'controller’ or 'service, and cl assNane isthe fully qualified name of the artifact. For
example, let's say you have this service:

package org. exanpl e
cl ass MyService {

}

then the name of the logger will be 'griffon.app.service.org.example.MyService'.
For other classes, the typical approach isto store alogger based on the class name in a constant static field:

package org. ot her
i mport org.slf4j.Logger
i nport org.slf4j.LoggerFactory
class Myd ass {
private static final Logger |og = LoggerFactory. get Logger (M/Cl ass)

}

Thiswill create alogger with the name 'org.other.MyClass - note the lack of a'griffon.app.’ prefix. Y ou can also pass
anametotheget Log() method, such as"myLogger", but thisis less common because the logging system treats
names with dots ('.") in a special way.

Configuring loggers
Y ou have already seen how to configure alogger in Griffon:

log4j = {
error 'org.codehaus.griffon.runtime'

This example configures alogger named 'org.codehaus.griffon.runtime’ to ignore any messages sent to it at alevel of
‘warn' or lower. But isthere alogger with this name in the application? No. So why have a configuration for it?
Because the above rule applies to any logger whose name begins with ‘org.codehaus.griffon.runtime.' as well. For
example, the rule applies to both the

org. codehaus. griffon.runtine. core. Defaul t Artifact Manager classandthe

org. codehaus. griffon.runtinme.util.GiffonApplicati onHel per one

In other words, loggers are effectively hierarchical. This makes configuring them by package much, much simpler
than it would otherwise be.

The most common things that you will want to capture log output from are your controllers, services, and other

22


http://www.slf4j.org/apidocs/org/slf4j/Logger.html

23

artifacts. To do that you'll need to use the convention mentioned earlier: griffon.app.<artifactType>.<className> .
In particular the class name must be fully qualifed, i.e. with the package if there is one:

log4j = {
/1 Set level for all application artifacts
info "griffon.app"
/1 Set for a specific controller
debug "griffon.app.controller. YourController"
/1 Set for a specific service class
debug "griffon. app. service. org. exanpl e. Sanpl eSer vi ce"
/] Set for all nodels
info "griffon.app. nodel "

The standard artifact names used in the logging configuration are:

nodel - For model classes

control | er - For controllers

Vi ew- For views

servi ce - For service classes

Griffon itself generates plenty of logging information and it can sometimes be helpful to see that. Here are some
useful loggers from Griffon internals that you can use, especially when tracking down problems with your
application:

o O O

o

© org. codehaus. griffon.runtine. core - Coreinternal information such as MV C group
instantiation, etc.
© griffon.sw ng - Swingrelated initialization and application life cycle.
So far, we've only looked at explicit configuration of loggers. But what about all those loggers that don't have an
explicit configuration? Are they simply ignored? The answer lies with the root logger.

The Root Logger

All logger objects inherit their configuration from the root logger, so if no explicit configuration is provided for a
given logger, then any messages that go to that logger are subject to the rules defined for the root logger. In other
words, the root logger provides the default configuration for the logging system.

Griffon automatically configures the root logger to only handle messages at ‘error’ level and above, and al the
messages are directed to the console (stdout for those with a C background). Y ou can customise this behaviour by
specifying a 'root' section in your logging configuration like so:

logdj = {
root {
i nfo()

The above exampl e configures the root logger to log messages at 'info' level and above to the default console
appender. Y ou can aso configure the root logger to log to one or more named appenders (which we'll talk more
about shortly):

log4j = {
appenders {
file name: " file', file:'/var/logs/nyl og. | og

root {
debug 'stdout', 'file

In the above example, the root logger will log to two appenders - the default 'stdout’ (console) appender and a custom
'file' appender.

For power usersthereis an aternative syntax for configuring the root logger: the root

or g. apache. | og4j . Logger instanceis passed as an argument to the log4j closure. This allows you to work



with the logger directly:

log4j = { root ->
root.l evel = org.apache.| o0g4j. Level . DEBUG

}

For more information on what you can do with thisLogger instance, refer to the Log4j APl documentation.

Those are the basics of logging pretty well covered and they are sufficient if you're happy to only send log messages
to the console. But what if you want to send them to a file? How do you make sure that messages from a particular
logger go to afile but not the console? These questions and more will be answered as we look into appenders.

Appenders

Loggers are a useful mechanism for filtering messages, but they don't physically write the messages anywhere. That's
the job of the appender, of which there are various types. For example, there is the default one that writes messages
to the console, another that writes them to afile, and several others. Y ou can even create your own appender
implementations!

This diagram shows how they fit into the logging pipeline:

Console To console
appender
log(msg) File To afile
— = - -
Logger appender
I""_fl
FE—
Socket To a network
appender socket

Asyou can see, asingle logger may have severa appenders attached to it. In astandard Griffon configuration, the
console appender named 'stdout’ is attached to all loggers through the default root logger configuration. But that's the
only one. Adding more appenders can be done within an ‘appenders’ block:

log4j = {
appenders {
rollingFile name: "nyAppender”, maxFileSize: 1024, file: "/tnp/logs/ nyApp.| og"

The following appenders are available by default:

consol e (ConsoleAppender) - Logs to the console.

file (FileAppender) - Logsto asinglefile.

rollingFile (RollingFileAppender) - Logs to rolling files, for example a new file each day.

event (GriffonA pplicationEventAppender) - Logs to application events. Event nameis"LogEvent"; args are
log level (as String), log message and optional throwable.

Each named argument passed to an appender maps to a property of the underlying Appender implementation. So the
previous example setsthe nane, maxFi | eSi ze andf i | e properties of the Rol | i ngFi | eAppender instance.
Y ou can have as many appenders as you like - just make sure that they all have unique names. Y ou can even have
multiple instances of the same appender type, for example several file appenders that log to different files.

If you prefer to create the appender programmatically or if you want to use an appender implementation that's not
available viathe above syntax, then you can simply declare an appender entry with an instance of the appender
you want:

O O O O

24


http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/ConsoleAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/FileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Appender.html

25

i mport org.apache. |l og4j.*
log4j = {
appenders {

appender new Rol | i ngFi | eAppender (name: "nyAppender"”, maxFileSize: 1024, file: "/tnm/

This approach can be used to configure JMSAppender , Socket Appender , SMTPAppender , and more.
Once you have declared your extra appenders, you can attach them to specific loggers by passing the name as a key
to one of the log level methods from the previous section:

error nmyAppender: "griffon.app.controller.BookController"

Thiswill ensure that the ‘org.codehaus.groovy.griffon.commons' logger and its children send log messages to
'myAppender’ as well as any appenders configured for the root logger. If you want to add more than one appender to
the logger, then add them to the same level declaration:

error nyAppender:

nmyFi | eAppender :
rol lingFile:

“griffon.app.controller.BookController",
["griffon.app.controller.BookController",
“griffon.app.controller.BookController"

"griffon.app. service. Book$e

The above example also shows how you can configure more than one logger at atime for a given appender (
nyFi | eAppender) by using alist.
Be aware that you can only configure asingle level for alogger, so if you tried this code:

error nyAppender: "griffon.app.controller.BookController"
debug nyFi | eAppender: "griffon.app.controller.BookController"
fatal rollingFile: "griffon.app.controller.BookController"

you'd find that only ‘fatal’ level messages get logged for ‘griffon.app.controller.BookController'. That's because the
last level declared for a given logger wins. What you probably want to do is limit what level of messages an
appender writes.

Let's say an appender is attached to alogger configured with the 'adl’ level. That will give us alot of logging
information that may be fine in afile, but makes working at the console difficult. So, we configure the console
appender to only write out messages at 'info' level or above:

log4j = {
appenders {

consol e nanme: "stdout", threshol d: org.apache.| og4j. Level .| NFO

Thekey hereisthet hr eshol d argument which determines the cut-off for log messages. This argument is
available for al appenders, but do note that you currently have to specify aLevel instance - astring such as"info"
will not work.

Custom L ayouts
By default the Log4j DSL assumes that you want to use a PatternL ayout. However, there are other layouts available
including:

xm - Create an XML logfile

ht m - Createsan HTML log file
si nmpl e - A simple textua log
pattern - A Pattern layout

O O O O


http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

Y ou can specify custom patternsto an appender using the | ayout setting:

log4j = {
appenders {
consol e name: "custonmPAppender”, |ayout: pattern(conversionPattern: "%{2} %Pm")

This also works for the built-in appender "stdout”, which logs to the console;

log4j = {
appenders {
consol e nane: "stdout", |ayout: pattern(conversionPattern: "%{2} %Pn")

Environment-specific configuration

Since the logging configuration isinside Conf i g. gr oovy, you can of course put it inside an environment-specific
block. However, there is a problem with this approach: you have to provide the full logging configuration each time
you definethel og4j setting. In other words, you cannot selectively override parts of the configuration - it'sall or
nothing.

To get round this, the logging DSL provides its own environment blocks that you can put anywhere in the
configuration:

log4j = {
appenders {
consol e name: "stdout", layout: pattern(conversionPattern: "%{2} % Pmn")
envi ronnent s {
production {
rollingFile nanme: "nyAppender"”, maxFileSize: 1024, file: "/tnp/logs/ nyApp.Ifo

/1 other shared config
info "griffon.app.controller"
envi ronment s {
production {
/1 Cverride previous setting for 'griffon.app.controller’
error "griffon.app.controller”

The one place you can't put an environment block isinsidether oot definition, but you can put the r oot definition
inside an environment block.

Full stacktraces

When exceptions occur, there can be an awful lot of noisein the stacktrace from Java and Groovy internals. Griffon
filters these typically irrelevant details and restricts traces to non-core Griffon/Groovy class packages.

When this happens, the full trace is always logged to the St ack Tr ace logger, which by default writesits output to
afilecaled st ackt race. | og. Aswith other loggers though, you can change its behaviour in the configuration.
For example if you prefer full stack traces to go to the console, add this entry:

error stdout: "StackTrace"

Thiswon't stop Griffon from attempting to create the stacktrace.log file - it just redirects where stack traces are
written to. An alternative approach is to change the location of the 'stacktrace' appender'sfile:

26



27

log4j = {
appenders {
rollingFile name: "stacktrace", maxFileSize: 1024, file: "/var/tnp/logs/ myApp-stach

or, if you don't want to the 'stacktrace' appender at all, configure it as a'null' appender:

log4j = {
appenders {
"null' nane: "stacktrace"
}

Y ou can of course combine this with attaching the 'stdout’ appender to the 'StackTrace' logger if you want all the
output in the console.

Finally, you can completely disable stacktrace filtering by settingthegri ffon. ful | . stacktrace VM
property tot r ue:

griffon -Dgriffon.full.stacktrace=true run-app

L ogger inheritance

Earlier, we mentioned that all loggers inherit from the root logger and that loggers are hierarchical based on

' '-separated terms. What this meansis that unless you override a parent setting, alogger retains the level and the
appenders configured for that parent. So with this configuration:

log4j = {
appenders {
file name:"'file', file:'/var/logs/nylog. | og

root {
debug 'stdout', 'file

all loggersin the application will have alevel of 'debug' and will log to both the 'stdout’ and ‘file' appenders. What if
you only want to log to 'stdout’ for a particular logger? In that case, you need to change the "additivity' for alogger.
Additivity simply determines whether alogger inherits the configuration from its parent. If additivity isfalse, then its
not inherited. The default for all loggersistrue, i.e. they inherit the configuration. So how do you change this setting?
Here's an example:

log4j = {
appenders {

root {

info additivity: false

So when you specify alog level, add an 'additivity' named argument. Note that you when you specify the additivity,
you must configure the loggers for a named appender. The following syntax will not work:

stdout: ["griffon.app.controller.BookController", "griffon.app.service. BookServiceg"

—



info additivity: false, "griffon.app.controller.BookController", "griffon.app.service. Books

be

3.2 Environments

Per Environment Configuration

Griffon supports the concept of per environment configuration. The Bui | dConf i g. gr oovy file within the

gri ffon-app/ conf directory can take advantage of per environment configuration using the syntax provided by
ConfigSlurper . As an example consider the following default packaging definitions provided by Griffon:

envi ronment s {
devel opnent {
si gni ngkey {
parans {
sigfile ="' GRI FFON
keystore = "${basedir}/griffon-app/conf/keys/devKeyst ore"
alias = 'devel opnent’
st orepass = ' BadSt or ePassword
keypass = ' BadKeyPassword
| azy =true // only sign when unsi gned
}
}
}
test {
griffon {
jars {
sign = fal se
pack = fal se
}
production {
si gni ngkey {
par anms {
sigfile = ' GRI FFON
keystore = ' CHANGE ME
alias = ' CHANGE ME
lazy = false // sign, regardl ess of existing signatures
I
griffon {
jars {
sign = true
pack = true
destDir = "${basedir}/staging"
webstart {
codebase = ' CHANGE ME
}
}
I
griffon {
jars {
sign = fal se
pack = fal se
destDir = "${basedir}/stagi ng"
jarName = "${appNane}.jar"
}

Notice how the common configuration is provided at the bottom level (it actually can be placed before the
envi r onment s block too), theenvi r onnent s block specifies per environment settings for the j ar s property.

Packaging and Running for Different Environments
Griffon' command line has built in capabilities to execute any command within the context of a specific environment.
Theformat is:

griffon [environnent] [command nane]

28


http://groovy.codehaus.org/ConfigSlurper

29

In addition, there are 3 preset environments known to Griffon: dev, pr od, andt est for devel opnent,
producti onandt est . For example to package an application for the devel opnent (avoiding jar signing by
default) environment you could do:

griffon dev package

If you have other environments that you need to target you can passagri f f on. env variable to any command:

griffon -Dgriffon.env=UAT run-app

Programmatic Environment Detection
Within your code, such asin a Gant script or a bootstrap class you can detect the environment using the Environment
class:

i mport griffon.util.Environnent

swi t ch(Envi ronment . current) {
case Environnent . DEVELOPMENT:
confi gur eFor Devel opnent ()
br eak
case Environnent. PRODUCTI ON:
confi gur eFor Producti on()
br eak

Generic Per Environment Execution
Youcanusethegri ffon. util. Environment classto execute your own environment specific logic:

Envi ronnent . execut eFor Curr ent Envi ronnent {
production {
/] do sonething in production

devel opnent {
/1 do sonething only in devel oprment
}

3.3 Versioning

Versioning Basics

Griffon has built in support for application versioning. When you first create an application with the create-app
command the version of the application isset to 0. 1. The version is stored in the application meta data file called
application. properti es intheroot of the project.

To change the version of your application you can run the set-version command:

griffon set-version 0.2

The version is used in various commands including the package command which will append the application version
to the end of the created distribution zip files.

Detecting Versions at Runtime
Y ou can detect the application version using Griffon' support for application metadata using the app class. For
example within controllers there is an implicit app variable that can be used:




def version = app. netadata[' app. version']

If it isthe version of Griffon you need you can use:

def griffonVersion = app. netadata[' app.griffon.version']

3.4 Dependency Resolution

In order to control how JAR dependencies are resolved Griffon features (since version 0.9) a dependency resolution

DSL that allows you to control how dependencies for applications and plugins are resolved.
Insidethegri f f on- app/ conf/ Bui | dConfi g. gr oovy fileyou can specify a

griffon. project.dependency. resol uti on property that configures how dependencies are resolved:

griffon. project.dependency.resolution = {
/'l config here
}

The default configuration looks like the following:

griffon. project.dependency.resol ution = {
/1 inherit Giffon' default dependencies
i nherits("global") {

repositories {
griffonHone()
/1 uncoment the below to enabl e renote dependency resol ution
/1 from public Maven repositories
/I mavenLocal ()
//navenCEntra
[/ mavenRepo "

(

ht snapshots.repository.codehaus.org”
//navenRepo‘ ht

ht

ht

p://

p://repository.codehaus. org"

p: // downl oad. | ava. net / maven/ 2/ "
p://repository.jboss.con maven2/ "

/I mavenRepo "
/| mvenRepo "

— N

dependenci es {
/'l specify dependenci es here under either "build', 'conpile, 'runtinme' or
/] runtinme 'nysql:nysqgl-connector-java:5.1.5'

log "warn" // log |level of Ivy resolver, either "error', 'warn', 'info', 'debug

or

"test’

‘ver

§C

The details of the above will be explained in the next few sections.

3.4.1 Configurations and Dependencies

Griffon features 5 dependency resolution configurations (or ‘scopes) which you can take advantage of:

© bui | d: Dependenciesfor the build system only

© conpi | e: Dependencies for the compile step

© runti ne: Dependencies needed at runtime but not for compilation (see above)
© t est : Dependencies needed for testing but not at runtime (see above)

Within the dependenci es block you can specify a dependency that falls into one of these configurations by

calling the equivalent method. For example if your application requires the MySQL driver to function at r unt i e

you can specify as such:

runtime ' com nysql: nmysql - connector-java:5.1.5'

30



31

The above uses the string syntax which isgr oup: nane: ver si on. You can also use a map-based syntax:

runtime group:'comnysgl', name:'nysgl-connector-java', version:'5.1.5

Muultiple dependencies can be specified by passing multiple arguments:

runti ne 'com nysql: mysqgl - connector-java:5.1.5",
' conmons- | ang: commons- | ang: 2. 6'

Il O

runtime(
[group: 'comnysql', nanme: 'nysql-connector-java', version: '5.1.5'],
[group: 'commons-lang', nane: 'comons-|ang', version: '2.6']

Y ou may specify aclassifier too

runtime 'net.sf.json-lib:json-1ib:2.4:jdkl5'
Il O
runtine group: 'net.sf.json-lib" nane: 'json-lib', version: '2.4', classifier: 'jdkl5

3.4.2 Dependency Repositories

Remote Repositories

Griffon, when installed, does not use any remote public repositories. Thereisadefault gri f f onHone() repository
that will locate the JAR files Griffon needs from your Griffon installation. If you want to take advantage of a public
repository you need to specify assuch insidether eposi t ori es block:

repositories {
mavenCentral ()

In this case the default public Maven repository is specified. To use the SpringSource Enterprise Bundle Repository
you can use the ebr () method:

repositories {
ebr ()

Y ou can also specify a specific Maven repository to use by URL:

repositories {
mavenRepo "http://repository. codehaus. org"
}

Local Resolvers
If you do not wish to use a public Maven repository you can specify aflat file repository:

repositories {
flatDir name:' nmyRepo', dirs:'/path/to/repo’




Custom Resolvers
If al elsefails since Griffon builds on Apache Ivy you can specify an vy resolver:

repositories {
resol ver new URLResol ver(...)
}

Authentication
If your repository requires some form of authentication you can specify assuch usingacr edent i al s block:

credentials {

realm="..

host = "l ocal host"
usernane = "nyuser"
password = "mypass"

The above can also be placed in your USER_HOVE/ . gri f f on/ setti ngs. gr oovy fileusing the
griffon.project.ivy.authentication setting:

griffon.project.ivy.authentication = {
credential s {

realm="..

host = "l ocal host"
username = "myuser"
password = "nypass"

3.4.3 Debugging Resolution

If you are having trouble getting a dependency to resolve you can enable more verbose debugging from the
underlying engine using the | og method:

/1 log level of lvy resolver, either "error', "warn', 'info', 'debug' or 'verbose
| og "warn"

3.4.4 Inherited Dependencies

By default every Griffon application inherits a bunch of framework dependencies. This is done through the line;

i nherits "gl obal "

Insidethe Bui | dConf i g. gr oovy file. If you wish exclude certain inherited dependencies then you can do so
using the excl udes method:

i nherits("global™) {
excl udes "oscache", "ehcache"

3.4.5 Dependency Reports

As mentioned in the previous section a Griffon application consists of dependencies inherited from the framework,

32



33

the pluginsinstalled and the application dependencies itself.
To obtain areport of an application's dependencies you can run the dependency-report command:

griffon dependency-report

Thiswill output areporttothet ar get / dependency-r eport directory by default. Y ou can specify which
configuration (scope) you want areport for by passing an argument containing the configuration name:

griffon dependency-report runtinme

3.4.6 Plugin JAR Dependencies

Specifying Plugin JAR dependencies

The way in which you specify dependencies for a plugin isidentical to how you specify dependenciesin an
application. When a plugin isinstalled into an application the application automatically inherits the dependencies of
the plugin.

If you want to define a dependency that is resolved for use with the plugin but not exported to the application then
you can set the expor t ed property of the dependency:

conpi | e(" org. hi bernat e: hi bernate-core:3.3.1. GA') {
exported = fal se

In this can the hi ber nat e- cor e dependency will be available only to the plugin and not resolved as an
application dependency.

Overriding Plugin JAR Dependenciesin Your Application
If apluginisusing a JAR which conflicts with another plugin, or an application dependency then you can override
how a plugin resolves its dependencies inside an application using exclusions. For example:

pl ugi ns {
conpi | e("org. codehaus. gri ffon. pl ugi ns: m gl ayout:0.3" ) {
excl udes "m gl ayout "

dependenci es {
String mglayoutVersion = '4.2'
conpil e "com mi gl ayout : m gl ayout - cor e: $m gl ayout Ver si on",
"com m gl ayout : mi gl ayout - swi ng: $m gl ayout Ver si on"

In this case the application explicitly declares a dependency on the "miglayout" plugin and specifies an exclusion
using the excl udes method, effectively excluding the miglayout library as a dependency.

3.4.7 Plugin Dependencies

Asof Griffon 0.9 you can declaratively specify dependencies on plugins rather than using the install-plugin
command:

pl ugi ns {
runtine ':artifacts: 0.2
}

If you don't specify agroup id the default plugin group id of or g. gri f f on. pl ugi ns isused. You can specify to
use the latest version of a particular plugin by using "latest.integration” as the version number:



pl ugi ns {
runtime ':artifacts:latest.integration'
}

Integration vs. Release
The "latest.integration™” version label will aso include resolving snapshot versions. If you don't want to include
snapshot versions then you can use the "latest.release” label:

pl ugi ns {
runtinme ':artifacts: | atest.rel ease’

The "latest.release” label only works with Maven compatible repositories. If you have a
regular SV N-based Griffon repository then you should use "latest.integration”.

And of courseif you are using a Maven repository with an alternative group id you can specify agroup id:

pl ugi ns {
runtinme 'myconpany:artifacts:latest.integration’

Plugin Exclusions
Y ou can control how plugins transitively resolves both plugin and JAR dependencies using exclusions. For example:

pl ugi ns {
runtime( ':weceem0.8 ) {
excl udes "searchabl e"
}

Here we have defined a dependency on the "weceem” plugin which transitively depends on the "searchable” plugin.
By using the excl udes method you can tell Griffon not to transitively install the searchable plugin. Y ou can
combine this technique to specify an alternative version of a plugin:

pl ugi ns {
runtime( ':weceem0.8 ) {
excl udes "searchabl e" // excludes nbst recent version

runtime ':searchable:0.5.4" // specifies a fixed searchabl e version

Y ou can also completely disable transitive plugin installs, in which case no transitive dependencies will be resolved:

pl ugi ns {
runtime( ':weceem0.8" ) {
transitive = fal se
}

runtime ':searchable:0.5.4'" // specifies a fixed searchabl e version

3.5 Project Documentation



35

Since Griffon 0.9, the documentation engine that powers the creation of this documentation is available to your
Griffon projects.

The documentation engine uses a variation on the Textile syntax to automatically create project documentation with
smart linking, formatting etc.

Creating project documentation
To use the engine you need to follow afew conventions. Firstly you need to create asr ¢/ docs/ gui de directory
and then have numbered text files using the gdoc format. For example;

+ src/docs/ guide/ 1. Introduction. gdoc
+ src/docs/guide/2. Getting Started. gdoc

Thetitle of each chapter istaken from the file name. The order is dictated by the numerical value at the beginning of
the file name.

Creating referenceitems

Reference items appear in the left menu on the documentation and are useful for quick reference documentation.
Each reference item belongs to a category and a category is adirectory located inthe sr ¢/ docs/ r ef directory.
For example say you defined a new method called r ender PDF, that belongs to a category called Control | er s
this can be done by creating a gdoc text file at the following location:

+ src/ref/ Controllers/render PDF. gdoc

Configuring Output Properties
There are various properties you can set within your gr i f f on- app/ conf/ Bui | dConf i g. gr oovy file that
customize the output of the documentation such as:

griffon.doc.authors - The authors of the documentation
griffon.doc.license - The license of the software
griffon.doc.copyright - The copyright message to display
o griffon.doc.footer - The footer to use
Other properties such as the name of the documentation and the version are pulled from your project itself.

o O O

Generating Documentation
Once you have created some documentation (refer to the syntax guide in the next chapter) you can generate an
HTML version of the documentation using the command:

griffon doc

This command will output an docs/ manual / i ndex. ht nl which can be opened to view your documentation.
Documentation Syntax

As mentioned the syntax is largely similar to Textile or Confluence style wiki markup. The following sections walk
you through the syntax basics.

Basic Formatting

Monospace: nonospace

@monospace@

Italic: italic

_italic_




Bold: bold

*bol d*

~ ) GRIFFON

Ihttp://dist.codehaus.org/griffon/nmedial/griffon.png!

Linking

There are severa ways to create links with the documentation generator. A basic externa link can either be defined
using confluence or textile style markup:

[Giffon|http://griffon.codehaus.org/] or "G iffon":http://griffon.codehaus. org/

For links to other sections inside the user guide you can use the gui de: prefix:

[I'ntro|guide:1. Introduction]

The documentation engine will warn you if any links to sectionsin your guide break. Sometimes though it is
preferable not to hard code the actual names of guide sections since you may move them around. To get around this
you can create an dliasinsidegri f f on- app/ conf/ Bui | dConfi g. gr oovy:

griffon.doc.alias.intro="1. |ntroduction”

And then the link becomes:

[Intro] guide:intro]

Thisisuseful since if you linked the to "1. Introduction™ chapter many times you would have to change al of those
links.
To link to reference items you can use a specia syntax:

[control | ers|render PDF]

In this case the category of the referenceitem is on the left hand side of the | and the name of the referenceitem on
the right.
Finally, to link to external APIsyou can usethe api : prefix. For example:

36



[String|api:java.lang. String]

The documentation engine will automatically create the appropriate javadoc link in this case. If you want to add
additional APIsto the engine you can configurethemingri f f on- app/ conf/ Bui | dConf i g. gr oovy. For
example:

griffon. doc. api.org. hi bernate="http://docs.jboss. org/hi bernat e/ stabl e/ core/api"

The above example configures classes within the or g. hi ber nat e package to link to the Hibernate website's API
docs.

Listsand Headings

Headings can be created by specifying the letter 'h' followed by a number and then a dot:

h3. <space>Headi ng3
h4. <space>Headi ng4

Unordered lists are defined with the use of the * character:

* jtem1
** subitem 1
** subitem 2
* jtem 2

Numbered lists can be defined with the # character:

# iteml1

Tables can be created using thet abl e macro:

Name Number
Albert 46

Wilma 1348
James 12

{t abl e}
*Nanme* | *Nunber*
Al bert | 46
Wlma | 1348
James | 12

{t abl e}

Code and Notes

Y ou can define code blocks with the code macro:



cl ass Book {
String title

{code}
cl ass Book {
String title

}
{code}

The example above provides syntax highlighting for Java and Groovy code, but you can aso highlight XML markup:

<hel | o>wor | d</ hel | 0>

{code: xm }
<hel | o>wor | d</ hel | 0>
{code}

There are aso a couple of macros for displaying notes and warnings:

Note:

Thisis anote!

{not e}
This is a note!
{not e}

Warning:

Thisisawarning!

{war ni ng}
This is a warning!
{war ni ng}

38



39

4. The Command Line

Griffon' command line system is built on Gant - a simple Groovy wrapper around Apache Ant.
However, Griffon takesit a bit further through the use of convention and the gr i f f on command. When you type:

griffon [comand nane]

Griffon does a search in the following directories for Gant scripts to execute:

USER HOVE/ . griffon/scripts
PRQIECT_HOME/ scri pts
PRQIECT_HOVE/ pl ugi ns/ */ scripts
© GRI FFON_HOVE/ scri pts
Griffon will also convert command names that are in lower case form such as run-app into camel case. So typing

O O O

griffon run-app

Results in a search for the following files:

© USER_HOWE/ . griffon/scripts/RunApp. gr oovy

© PRQIECT_HOWVE/ scri pt s/ RunApp. gr oovy

© PLUG NS _HOVE/ */ scri pt s/ RunApp. gr oovy

© GRI FFON_HOVE/ scri pt s/ RunApp. gr oovy
If multiple matches are found Griffon will give you a choice of which one to execute. When Griffon executes a Gant
script, it invokes the "default” target defined in that script. If there is no default, Griffon will quit with an error.
To get alist and some help about the available commands type:

griffon help

Which outputs usage instructions and the list of commands Griffon is aware of:

Usage (optionals marked with *):

griffon [environnent]* [target] [argunents]*

Exanpl es:

griffon dev run-app

griffon create-app books

Avai | abl e Targets (type griffon help 'target-nane’ for nmore info):
griffon clean

griffon conpile

griffon package

The command interpreter is able to expand abbreviations following a camel case convention.
Examples:

griffon tA// expands to test-app
griffon cAd // expands to create-addon
griffon clT // expands to create-integration-test

Refer to the Command Line reference in left menu of the reference guide for more
information about individual commands

4.1 Creating Gant Scripts


http://gant.codehaus.org
http://ant.apache.org

Y ou can create your own Gant scripts by running the create-script command from the root of your project. For
exampl e the following command:

griffon create-script conpile-sources

Will create ascript called scri pt s/ Conpi | eSour ces. gr oovy. A Gant script itself issimilar to aregular
Groovy script except that it supports the concept of "targets' and dependencies between them:

target (default:"The default target is the one that gets executed by Giffon") {
depends(cl ean, conpil e)

target (clean:"Cl ean out things") {
ant . del ete(dir: "output")

target (conpil e:"Conpil e some sources") ({
ant . nkdi r(dir:"nkdir")
ant.javac(srcdir:"src/main", destdir:"output")

As demonstrated in the script above, thereisan implicit ant variable that allows access to the Apache Ant API.
Y ou can also "depend” on other targets using the depends method demonstrated in the def aul t target above.

Thedefault target
In the example above, we specified atarget with the explicit name "default”. Thisis one way of defining the default
target for ascript. An alternative approach isto use the set Def aul t Tar get () method:

target ("clean-conpile": "Perforns a clean conpilation on the app's source files.") {
depends(cl ean, conpil e)

target (clean:"Cl ean out things") {
ant . del ete(dir: "output")

target (conpile:"Conpile sonme sources") {
ant . nkdi r(dir:"nkdir")
ant.javac(srcdir:"src/java", destdir:"output")

}
set Def aul t Tar get (" cl ean-conpi | e")

This allows you to call the default target directly from other scripts if you wish. Also, although we have put the call
toset Def aul t Tar get () at the end of the script in this example, it can go anywhere aslong as it comes after the
target it refers to (“clean-compil€" in this case).

Which approach is better? To be honest, you can use whichever you prefer - there don't seem to be any major
advantages in either case. One thing we would say isthat if you want to allow other scriptsto call your "default"
target, you should move it into a shared script that doesn't have a default target at all. Welll talk some more about this
in the next section.

4.2 Re-using Griffon scripts

Griffon shipswith alot of command line functionality out of the box that you may find useful in your own scripts
(See the command line reference in the reference guide for info on all the commands). Of particular use are the
compile and package scripts.

Pulling in tar gets from other scripts

Gant alows you to pull in al targets (except "default") from another Gant script. Y ou can then depend upon or
invoke those targets as if they had been defined in the current script. The mechanism for doing thisis the

i ncl udeTar get s property. Simply "append” afile or classto it using the left-shift operator:

i ncl udeTargets << new File("/path/to/ny/script.groovy")
i ncl udeTargets << gant.tools.|vy

40


http://ant.apache.org/manual/index.html

41

Don't worry too much about the syntax using a class, it's quite specialized. If you're interested, look into the Gant
documentation.

Core Griffon targets

Asyou saw in the example at the beginning of this section, you use neither the File- nor the class-based syntax for

i ncl udeTar get s when including core Griffon targets. Instead, you should use the specia gri f f onScri pt ()
method that is provided by the Griffon command launcher (note that thisis not available in normal Gant scripts, just
Griffon ones).

Thesyntax forthegri f f onScri pt () method is pretty straightforward: simply passit the name of the Griffon
script you want to include, without any path information. Hereis alist of Griffon scripts that you may want to re-use:

Script Description

GriffonSettinas You really should include this! Fortunately, it isincluded automatically by all other Griffon
- 9 scripts bar one (_GriffonProxy), so you usually don't have to include it explicitly.

GriffonEvents If you want to fire events, you need to include this. Addsan event (St ri ng
- event Name, List args) method. Again, included by amost all other Griffon scripts.

. Sets up compilation, test, and runtime classpaths. If you want to use or play with them,
e include this script. Again, included by almost all other Griffon scripts.
_GriffonProxy If you want to access the internet, include this script so that you don't run into problems with
proxies.

GriffonAraParsin Providesapar seAr gurent s target that does what it says on the tin: parses the arguments
- 9 9 provided by the user when they run your script. Adds them to the ar gs Map property.
_GriffonTest Contains all the shared test code. Useful if you want to add any extratests.

RunApp Provides all you need to run the application in standal one mode.
RunApplet Provides all you need to run the application in applet mode.
RunWebstart Provides all you need to run the application in webstart mode.

There are many more scripts provided by Griffon, so it isworth digging into the scripts themselves to find out what
kind of targets are available. Anything that startswith an"_" is designed for re-use.

Script architecture

Y ou maybe wondering what those underscores are doing in the names of the Griffon scripts. That is Griffon' way of
determining that a script isinternal , or in other words that it has not corresponding "command”. So you can't run
"griffon _griffon-settings' for example. That is also why they don't have adefault target.

Internal scripts are all about code sharing and re-use. In fact, we recommend you take a similar approach in your own
scripts: put al your targets into an internal script that can be easily shared, and provide simple command scripts that
parse any command line arguments and del egate to the targets in the internal script. Say you have a script that runs
some functional tests - you can split it like this:

./scripts/ Functional Tests. groovy:

i ncl udeTargets << new Fil e("${basedir}/scripts/_Functional Tests. groovy")

target (default: "Runs the functional tests for this project.") {
depends(runFuncti onal Test s)

./scripts/_Functional Tests. groovy:

i ncl udeTargets << griffonScript("_GiffonTest")

target (runFunctional Tests: "Run functional tests.") {
depends(...)

}

Here are afew general guidelines on writing scripts:

o Split scriptsinto a*command” script and an internal one.

© Put the bulk of the implementation in the internal script.

© Put argument parsing into the "command" script.

© To pass arguments to atarget, create some script variables and initialize them before calling the target.
©  Avoid name clashes by using closures assigned to script variables instead of targets. Y ou can then pass




arguments direct to the closures.

4.3 Hooking into Events

Griffon provides the ability to hook into scripting events. These are events triggered during execution of Griffon
target and plugin scripts.

The mechanism is deliberately simple and loosely specified. Thelist of possible eventsis not fixed in any way, so it
is possible to hook into events triggered by plugin scripts, for which there is no equivalent event in the core target
scripts.

Defining event handlers
Event handlers are defined in scripts called _Event s. gr oovy. Griffon searches for these scriptsin the following
locations:

© USER HOWE/ . griffon/scripts - user-specific event handlers

© PRQIECT_HOVE/ scri pts - application-specific event handlers

© PLUG NS_HOVE/ */ scri pt s - plugin-specific event handlers
Whenever an event isfired, all the registered handlers for that event are executed. Note that the registration of
handlersis performed automatically by Griffon, so you just need to declare themin therelevant _Event s. gr oovy
file.
Event handlers are blocks defined in _Event s. gr oovy, with a name beginning with "event". The following
example can be put in your /scripts directory to demonstrate the feature;

event CreatedArtefact = { type, name ->
println "Created $type $nane"

event St atusUpdate = { nmsg ->
println nsg

event StatusFinal = { nmsg ->
println nsg

Y ou can see here the three handlers event Cr eat edArt ef act , event St at usUpdat e,
event St at usFi nal . Griffon provides some standard events, which are documented in the command line
reference guide. For example the compile command fires the following events:

© Conpi | eStart - Caled when compilation starts, passing the kind of compile - source or tests
© Conpi | eEnd - Called when compilation is finished, passing the kind of compile - source or tests

Triggering events
To trigger an event smply call the event() closure:

event ("StatusFinal", ["Super duper plugin action conplete!"])

Common Events
Below is atable of some of the common events that can be leveraged:

42




Event Parameters Description

StatusUpdate  message Passed a string indicating current script status/progress

StatusError message Passed a string indicating an error message from the current script
Passed a string indicating the final script status message, i.e. when

StatusFinal message completing atarget, even if the target does not exit the scripting
environment

Called when a create-xxxx script has completed and created an

CreatedArtefact artefactType,artefactName ¢

CreatedFile fileName Called whenever a project source filed is created, not including files

constantly managed by Griffon
Exiting returnCode Called when the scripting environment is about to exit cleanly
Plugininstalled pluginName Called after aplugin has been installed

Called when compilation starts, passing the kind of compile - source

CompileStart  kind or tests

Called when compilation is finished, passing the kind of compile -

CompileEnd kind source or tests

Called when documentation generation is about to start - javadoc or

DocStart kind groovydoc

Called when documentation generation has ended - javadoc or

DocEnd kind groovydoc

4.4 Customising the build

Griffon is most definitely an opinionated framework and it prefers convention to configuration, but this doesn't mean
you can't configure it. In this section, we look at how you can influence and modify the standard Griffon build.

The defaults

In order to customize a build, you first need to know what you can customize. The core of the Griffon build
configurationisthegri ffon. util. Buil dSetti ngs class, which contains quite a bit of useful information. It
controls where classes are compiled to, what dependencies the application has, and other such settings.

Here is a selection of the configuration options and their default values:

Property Config option Default value

griffonWorkDir  griffon.work.dir $USER_HOME/.griffon/<griffonVersion>
projectWorkDir  griffon.project.work.dir <griffonWorkDir>/projects/<baseDirName>
classesDir griffon.project.class.dir <projectWorkDir>/classes

testClassesDir griffon.project.test.class.dir  <projectWorkDir>/test-classes

testReportsDir griffon.project.test.reports.dir <projectWorkDir>/test/reports

resourcesDir griffon.project.resource.dir  <projectWorkDir>/resources

projectPluginsDir griffon.plugins.dir <projectWorkDir>/plugins

TheBui | dSet ti ngs class has some other properties too, but they should be treated as read-only:



Property Description

baseDir The location of the project.

userHome The user's home directory.

griffonHome The location of the Griffon installation in use (may be null).
griffonVersion The version of Griffon being used by the project.
griffonEnv The current Griffon environment.

compileDependencies A list of compile-time project dependenciesas Fi | e instances.

testDependencies A list of test-time project dependencies as Fi | e instances.

runtimeDependencies A list of runtime-time project dependencies as Fi | e instances.

Of course, these properties aren't much good if you can't get hold of them. Fortunately that's easy to do: an instance
of Bui | dSet ti ngs isavailableto your scriptsviathegri f f onSet t i ngs script variable. You can also access
it from your code by usingthegri ffon. util. Buil dSetti ngsHol der class, but thisisn't recommended.

Overriding the defaults
All of the propertiesin the first table can be overridden by a system property or a configuration option - simply use
the "config option" name. For example, to change the project working directory, you could either run this command:

griffon -Dgriffon.project.work.dir=work conpile

or add thisoption to your gri f f on- app/ conf/ Bui | dConfi g. gr oovy file

griffon.project.work.dir = "work"

Note that the default values take account of the property values they depend on, so setting the project working
directory like this would a so relocate the compiled classes, test classes, resources, and plugins.

What happens if you use both a system property and a configuration option? Then the system property wins because
it takes precedence over the Bui | dConf i g. gr oovy file, which in turn takes precedence over the default values.

Available build settings

Name Description

Legacy approach to adding extra dependencies to the compiler classpath. Set it to a

R CRmIErE Spann S s closure containing "fileset()" entries.

A list of Ant path patterns that allow you to control which files are included in the
griffon.testing.patterns tests. The patterns should not include the test case suffix, which is set by the next

property.

By defaullt, tests are assumed to have a suffix of "Tests". Y ou can changeit to
griffon.testing.nameSuffix anything you like but setting this option. For example, another common suffix is
"Test".

4.5 Command Tools Integration

If al the other projects in your team or company are built using a standard build tool such as Ant or Maven, you
become the black sheep of the family when you use the Griffon command line to build your application. Fortunately,
you can easily integrate the Griffon build system into the main build toolsin use today (well, the onesin usein Java
projects at |east).

Ant Integration
When you invoke the integrate-with command with the -ant option enabled



45

griffon integrate-with --ant

Griffon creates an Apache Ant bui | d. xm file for you containing the following targets:

cl ean - Cleansthe Griffon application

debug- app - Runsthe application in debug mode

t est - Runsthe unit tests

r un- app - Equivalent to "griffon run-app"

run- appl et - Equivalent to "griffon run-applet”

run- webst art - Equivalent to "griffon run-webstart"
© di st - Packages the application for production

Each of these can be run by Ant, for example:

O O O O O O

ant clean

The build fileis all geared up to use Apache Ivy for dependency management, which means that it will automatically
download all the requisite Griffon JAR files and other dependencies on demand. Y ou don't even haveto install
Griffon locally to useit! That makesit particularly useful for continuous integration systems such as CruiseControl
or Jenkins

It uses the Griffon Ant task to hook into the existing Griffon build system. The task allows you to run any Griffon
script that's available, not just the ones used by the generated build file. To use the task, you must first declare it:

<t askdef name="griffonTask"
cl assname="griffon.ant. GiffonTask"
cl asspat href ="gri ffon.cl asspath"/>

This raises the question: what should be in "griffon.classpath”? The task itself isin the "griffon-cli" JAR artifact, so
that needs to be on the classpath at least. Y ou should also include the "groovy-all" JAR. With the task defined, you
just need to useit! The following table shows you what attributes are avail able:

Attribute Description Required
h The location of the Griffon installation directory touse  Yes, unless classpath is
ome . s
for the build. specified.
Classpath to load Griffon from. Must include the Yes, unlesshone is set or
classpathref "griffon-bootstrap™ artifact and should include youuseacl asspat h
"griffon-scripts’. element.
script The name of the Griffon script to run, e.g. "TestApp". Yes.
args The arguments to pass to the script, e.g. "-unit -xml". No. Defaultsto "".
environment The Griffon environment to run the script in. y;.aa(tafaults DT eEs 3!
. . Advanced setting: adds the application's runtime
includeRuntimeClasspath classpath to the build classpath if true, No. Defaults to true.

The task also supports the following nested elements, all of which are standard Ant path structures:

o cl asspat h - The build classpath (used to load Gant and the Griffon scripts).
© conpi | ed asspat h - Classpath used to compile the application's classes.
© runti med asspat h - Classpath used to run the application and package the WAR. Typically includes
everything in @compileClasspath.
© test d asspat h - Classpath used to compile and run the tests. Typically includes everything in
runti meCl asspat h.
How you populate these pathsis up to you. If you are using the horre attribute and put your own dependenciesin the



http://ant.apache.org/
http://ant.apache.org/ivy/
http://cruisecontrol.sourceforge.net/
http://jenkins-ci.org/.

I i b directory, then you don't even need to use any of them. For an example of their use, take alook at the generated
Ant build file for new apps.

Maven Integration
TBD

Gradle Integration
When you invoke the integrate-with command with the -gradle option enabled

griffon integrate-with --gradle

Griffon createsa Gradle bui | d. gr adl e file for you. From here you can call the standard Gradle commands such
ascl ean,assenbl e and bui | d to build your application. You can also usegri f f on asacommand prefix to
execute any of the regular Griffon command targets such as

gradle griffon-run-app

4.6 The Griffon Wrapper

This neat feature lets you execute Griffon commands without having a previously installing Griffon in your
environment. Thisis a perfect fit for running tests in a continuous integration environment like Jenkins as there are
no other requirements than a matching JDK.

When an application or plugin are created you'll get also the hooks for calling the wrapper, even configuring itin
case you need it to point to a different Griffon release. Thesefiles are

© griffonw

© griffonw bat

© wrapper/griffon-wapper.jar

wr apper/griffon-w apper. properties

Thefirst 2 files define platform dependent launch scripts. The third file contains the required classes to bootstrap the
wrapper itself. The last file defines the configuration that the wrapper requires to work properly.

The wrapper works in the same way as the Griffon command, this means you can feed it every single command
target and parameter the Griffon command accepts, like the following ones

@)

./griffonw run-app

Compiles and runs the application in standal one mode.

./griffonw |ist-plugin-updates -install

Displays alist of available updates for al plugins installed and proceeds to update them if the confirmation is
successful.

4.7 Command Line Options

The following command line options only have meaning while building the project. They have no effect when
running the application once it has been packaged.

It'sworth noting that all of the following options can also be specified in either

griffon-app/ conf/Buil dConfi g. groovy (loca to project) or

$USER _HOVE/ . gri ffon/settings. groovy (globa to al projects), with the caveat that values specified at
the command prompt will have precedence over those specified in the config file.

4.7.1 Verbose Output

Scripts have the choice of printing to the console whenever they need to communicate something to the devel oper.

46


http://gradle.org/
http://jenkins-ci.org/

They would normally use astandard pr i nt | n sentence. Sometimesit's useful to know what a script is doing with
further detail but it makes no sense to see that information every single time. A conditional output is required.

All scriptsinherit adebug() closurethat will print its argument to stdout if an only if the following flag is enabled:
griffon.cli.verbose. Asanexample, thefollowing script has two print outs

i ncl udeTargets << griffonScript("Init")

target (main: "The description of the script goes herel") {
println '"Hello world!"
debug 'Hello Worl d (debug)

set Def aul t Tar get ( mai n)

Running the script without the flag will print out 'Hello World!" al the time but never the second one

$ griffon hello

Wl come to Giffon 0.9.5-rc2 - http://griffon.codehaus. org/
Li censed under Apache Standard License 2.0

Giffon home is set to: /usr/local/griffon

Envi ronment set to devel opnment
Hel 1 o wor| d!

The second message will only appear if you specify the verbose flag

$ griffon -Dgriffon.cli.verbose=true hello
Wl come to Giffon 0.9.5-rc2 - http://griffon.codehaus. org/
Li censed under Apache Standard License 2.0
Giffon honme is set to: /usr/local/griffon

Envi ronment set to devel opnent
Hel | o worl d!

[11/12/10 4:43:04 PM Hello Wrld (debug)

4.7.2 Disable AST Injection

Since Griffon 0.9.1 al artifacts now share a common interface (GriffonArtifact). They may implement additional
interfaces that define their role in a better way. For example controllers implement GriffonController whereas models
implement GriffonModel. Despite this, you are not forced to implement these interfaces yourself, the Griffon
compiler can do the work for you. It will even inject the appropriate behavior to classes that extend from base types
other than Obj ect . All thisis done by leveraging the powerful AST Transformations framework introduced in
Groovy 1.6.

If this feature ever gets in the way then you can disable it with the following command flag

griffon -Dgriffon.disable.ast.injection=true conpile

Be sure to clean the project before using this flag, otherwise some classes may still have the
AST additions weaved into their bytecode.

4.7.3 Disable Default Imports

Another feature introduced in Griffon 0.9.1 is the ahility to define default imports for artifacts and scripts.
If this feature proves to be a disadvantage then disable it with the following command flag

griffon -Dgriffon.disable.default.inports=true conpile




4.7.4 Disable Conditional L ogging I njection

Griffon 0.9.1 added alog property to all artifacts, and enabled logging on addons. Groovy 1.8 adds a new set of AST
transformations, @L og being one of them. It's job is to transform an unguarded logging statement into a guarded one.
Starting with 0.9.2, Griffon can do the same without the need of annotating artifacts or addons with @L og.

If this feature proves to be a disadvantage then disable it with the following command flag

griffon -Dgriffon.disable.logging.injection=true conpile

4.7.5 Disable Threading I njection

Griffon 0.9.2 adds the option for al controller actions to be executed off the Ul thread automatically. This feature
breaks backward compatibility with previous releases.
In order to regain the previous behavior you can disable this feature by specifying the following command flag

griffon -Dgriffon.disable.threading.injection=true conpile

4.7.6 Default Answer in Non I nteractive Mode

Sometimes a command may require the user to specify amissing value. When the build is run in interactive mode
(the default mode) then it's just a matter of typing the value in the console. However, if the build isrunin
non-interactive mode then it's very likely it will fail.

For this reason, the Griffon build accepts the definition of a default answer if the
griffon.noninteractive. defaul t.answer key isspecified, like this

griffon -Dgriffon.noninteractive. default.answer=y rel ease-plugin

Be warned that this setting applies to every single input asked by a command.
4.7.7 Plugin Install Failure Strategies

Failures may occur during plugin installation. It may be the case that a plugin could not be found in the configured
repositories, or a JAR dependency failed to be resolved. When this happens the build will try its best cope with the
error, usually by continuing installing remainder plugin dependencies (if any).

This behavior can be altered by specifying avaluefor gri ffon. i nstal | . fail ure. Accepted values are:

\Value Description

Aborts the installation sequence, even if there are other plugins left to beinstalled. It will also delete all
installed pluginsin the current session.

abort

continue Continues with the next plugin in thelist. thisis the default behavior.

Retries failed plugins a second time. A second failure skips the plugin from being installed but does not

retry affect any other plugins that have been successfully installed or are yet to be installed.

For example, to return the build to its previous behavior (abort on failures) you'll type the following in your
command prompt

griffon -Dgriffon.install.failure=" abort' conpile

4.7.8 Default Artifact Repository for Sear ching

The Griffon build assumesgr i f f on- | egacy to be the default Artifact Repository to be searched when querying

48



49

for artifacts (either to list them, get someinfo or install them). This setting can be altered by specifying avalue for
griffon.artifact.repository. default.search. Thevalue must beavalid repository name available
in the configuration files.

For example, alocal repository identified by the name 'my- | ocal - r epo’ can be set as the default search repository
like so

griffon -Dgriffon.artifact.repository. default.search="ny-local-repo' install-plugin cool-pl

4.7.9 Default Artifact Repository for Caching

When a plugin or archetype is downloaded from an artifact repository the Griffon build will place acopy of it in the
gri ffon-1ocal repository. This speeds up searches and further plugin installations. If you would like to specify a
different local repository to be used as a cache then define a value for the
griffon.artifact.repository.default.install key.

Assuming that 'my- | ocal - r epo'is configured in the project's settings then the following command will download
the miglayout plugin and place a copy in that specific repository.

griffon -Dgriffon.artifact.repository.default.install="ny-local-repo' install-plugin mglay

4.7.10 Disable Automatic L ocal Repository Synchronization

Section 4.7.9 describes that copies of plugins and archetypes will be placed in alocal repository whenever they are
downloaded from other repositories. Y ou can disable this feature altogether by specifying a value for
griffon.disabl e.local.repository.sync astrue, likethe following example shows

griffon -Dgriffon.disable.local.repository.sync=true install-archetype scala

4.8 The Griffon Shell

Starting with Griffon 0.9.5 there's anew command line tool at your disposal: the Griffon Shell or gri f f onsh for
short. Thisis an interactive shell that can be kept running in the background, this way you don't pay the penalty of
starting anew JVM every time you invoke a command. Other benefits are the bypass of dependency resolution if
dependencies have not changed from the last command invocation. Here's a sample usage session:



$ griffonsh

Wl come to Giffon 0.9.5-rc2 - http://griffon.codehaus. org/
Li censed under Apache Standard License 2.0

Giffon home is set to: /usr/local/griffon

Type 'exit' or "Dto terminate this interactive shel

griffon> conpile
Resol vi ng dependenci es...
Dependenci es resol ved in 903ms.
Envi ronnent set to devel opnent
Resol vi ng pl ugi n dependencies ...
Pl ugi n dependenci es resol ved in 1502 ns.
[mkdir] Created dir: /Users/joe/.griffon/0.9.5-rc2/projects/sanple/classes/cl
[mkdir] Created dir: /Users/joe/.griffon/0.9.5-rc2/projects/sanplel/classes/main
[mkdir] Created dir: /Users/joe/.griffon/0.9.5-rc2/projects/sanple/classes/test
[mkdir] Created dir: /Users/joel/.griffon/0.9.5-rc2/projects/sanple/test-classes
[mkdir] Created dir: /Users/joe/.griffon/0.9.5-rc2/projects/sanplel/test-resources
[mkdir] Created dir: /Users/joe/.griffon/0.9.5-rc2/projects/sanple/resources
[griffonc] Conpiling 8 source files to /Users/joe/.griffon/0.9.5-rc2/projects/sanple/cl asg
[griffonc] Conpiling 4 source files to /Users/joe/.griffon/0.9.5-rc2/projects/sanple/cl asq
griffon> run-app
Resol vi ng dependenci es...
Dependenci es resol ved in 1mns.

2012-02-07 17:27: 11, 007 [main] INFO griffon.sw ng.SwingApplication - Initializing all sta
2012-02-07 17:27:16, 555 [ AWM- Event Queue-0] INFO griffon.sw ng. Swi ngApplication - Shutdown
del ete Deleting directory /projects/sanpl e/ stagi ng/ macosx64

del ete] Deleting directory /projects/sanple/stagi ng/ macosx

griffon> cl ean

Resol vi ng dependenci es...

Dependenci es resol ved in 1ns.

del ete] Deleting directory /Users/joe/.griffon/0.9.5-rc2/projects/sanple/classes/cl
delete] Deleting directory /Users/joe/.griffon/0.9.5-rc2/projects/sanplel/classes/nain
del ete] Deleting directory /Users/joe/.griffon/0.9.5-rc2/projects/sanplel/classes/test
delete] Deleting directory /Users/joe/.griffon/0.9.5-rc2/projects/sanplel/test-classes
del ete] Deleting directory /Users/joe/.griffon/0.9.5-rc2/projects/sanplel/test-resourceg
delete] Deleting directory /Users/joe/.griffon/0.9.5-rc2/projects/sanpl e/ resources

del ete] Deleting directory /projects/sanple/stagin
fon>

gr

[mkdir] Created dir: /Users/joe/.griffon/0.9.5-rc2/projects/sanple/resources/griffon-app

[mkdir] Created dir: /Users/joe/.griffon/0.9.5-rc2/projects/sanple/resources/griffon-af
copy] Copying 1 file to /Users/joel/.griffon/0.9.5-rc2/projects/sanple/resources/griff
copy] Copying 8 files to /Users/joel/.griffon/0.9.5-rc2/projects/sanple/resources/grif
copy] Copying 1 file to /Users/joe/.griffon/0.9.5-rc2/projects/sanple/classes/ min
copy] Copying 11 files to /Users/joel/.griffon/0.9.5-rc2/projects/sanple/resources
copy] Copied 8 enpty directories to 8 enpty directories under /Users/joe/.griffon/0.9.
copy] Copying 1 file to /projects/sanple/staging
copy] Copying 1 file to /projects/sanpl e/ staging
copy] Copying 1 file to /projects/sanple/staging
copy] Copying 1 file to /projects/sanple/staging
copy] Copying 1 file to /projects/sanple/staging
copy] Copying 1 file to /projects/sanple/staging
copy] Copying 1 file to /projects/sanple/staging
copy] Copying 1 file to /projects/sanpl e/ staging

Launchi ng application .

This command environment accepts all commands availableto thegr i f f on command (except those that let you
create a new project) plus afew more that are unique to the griffon shell. Please refer to the help command for more
information on those extra commands.

p
0

f

— —+

50



51

5. Application Overview

5.1 Directory Structure

Here's amore detailed explanation of each directory within the application's structure

© griffon-app -toplevel directory for Groovy sources.
© conf - Configuration sources.
© webst art - Webstart resources.
© keys - Jar signing keys.
© di st - Package specific files.
© shar ed - Common filesto all packaging targets (like LICENSE.txt)
© net ai nf - Filesthat should go in META-INF inside the application/addon jar.
nodel s - Models.
Vi ews - Views.
control | ers - Contrallers.
servi ces - Services.
© resour ces - Images, propertiesfiles, etc.
© i 18n - Support for internationalization (i18n).
O scripts - Gant scripts.
© src - Supporting sources.
© mai n - Other Groovy/Java sources.
© test - Unitand integration tests.
© unit - Directory for unit tests.
© integration - Directory for integration tests.
© cli - Directory for command line tests (Scripts).

O O O O

5.2TheMVC Pattern

All Griffon applications operate with a basic unit called the MV C group. An MV C group is comprised of 3 member
parts: Models, Views and Controllers. However it is possible to add (or even remove) members from an MV C group
by carefully choosing a suitable configuration.

MV C groups configuration issetup in Appl i cati on. gr oovy located insidegri f f on- app/ conf . Thisfile

holds an entry for every MV C group that the application has (not counting those provided by plugins/addons).
Here's how atypical MV C group configuration looks like

mvcG oups {
/[l MWC Goup for "sanple"

"sanpl e’ {
nodel = ' sanpl e. Sanpl eMbdel '
Vi ew = 'sanpl e. Sanpl eVi ew

controller ' sanpl e. Sanpl eControl | er’

The order of the membersis very important, it determines the order in which each member will be initialized. In the
previous example both nodel and vi ewwill beinitialized beforethecont r ol | er . Do not mistake initialization
for instantiation, asinitialization relies on calling mvcGrouplnit on the group member.

MV C group configurations accept a special key that defines additional configuration for that group, asit can be seen
in the following snippet




mvcG oups {
/'l MWC Goup for "sanple"

"sanple' {
nodel = ' sanpl e. Sanpl eMbdel '
Vi ew = 'sanpl e. Sanpl eVi ew
controller = 'sanpl e. Sanpl eControl | er'
}
/'l WC Goup for "foo"
"foo' {
nodel = ' sanpl e. Fooivbdel *
Vi ew = ' sanpl e. FooVi ew
controller = 'sanple. FooController’
config {
key = 'bar’
}

Values placed under this key become available to MV C members during the call to mvcGrouplnit, as part of the
arguments sent to that method. Here's how the FooCont r ol | er can reach the key defined in the configuration

cl ass FooController {
voi d nvcG ouplnit(Map args) {
println args. configuration. config.key

While being able to set additional values under this key is a certainly an advantage it would probably be better if
those values could be mutated or tweaked, probably treating them as variables, effectively making a group
configuration work as atemplate. For that we'll have to discuss the mvcGroupManager first.

5.2.1 MVCGroupM anager

This classis responsible for holding the configuration of all MV C groups no matter how they were defined, which
can be either in Appl i cati on. gr oovy or in an addon descriptor.

During the startup sequence an instance of \WCG oupManager will be created and initialized. Later the
application will instruct this instance to create all startup groups as required. WCG oupManager has a handful set
of methods that deal with MV C group configuration alone; however those that deal with group instantiation comein
3 versions, with 2 flavors each (one Groovy, the other Java friendly).

Locating a group configuration is easily done by specifying the name you're interested in finding

def configuration = app. mvcG oupManager. fi ndConfi guration('foo')

Once you have a configuration reference you can instantiate a group with it by calling any of the variants of the
cr eat e method

def configuration = app. mvcG oupManager. fi ndConfi guration('foo')
def groupl = configuration.create('fool')

def group2 = configuration.create('foo2', [soneKey: 'soneValue'])
/1 the following will nmake the group's id match its nane

def group3 = configuration.create()

def group4 = configuration.create(sonmeKey: 'soneVal ue')

Be careful that creating groups with the same name is usually not agood idea. The default MV CGroupManager will
complain when this happens and will automatically spit out an exception. This behavior may be changed by setting a
configuration key in Conf i g. gr oovy

griffon.nmvcid.collision = "warning" // accepted values are 'warning', 'exception' (default

52




53

The manager will log awarning and destroy the previously existing group before instantiating the new one when
‘warning' isthe preferred strategy

Now, even though you can create group instances based on their configurations the preferred way is to call any of
createMV CGroup, buildMV CGroup or withMV CGroup methods. These methods are available to the app property
every GriffonArtifact has, which points to the currently running application. Griffon artifacts also inherit these
methods as part of their default contract. Finally, any class annotated with the MV CAware AST transformation will
also gain access to these methods.

Groups will be available by id regardless of how they were instantiated. Y ou can ask the mvcGroupManager for a
particular group at any time, for example

def gl = app. mvcG oupManager . groups. f ool

def g2 = app. nvcG oupManager. fi ndG oup(' fool')
def g3 = app. nvcG oupManager . f ool

assert gl == g2

assert gl == g3

It's also possible to query al models, views, controllers and builders on their own. Say you'd want to inspect all
currently instantiated models, thisis how it can be done

app. mvcGr oupManager . nodel s. each { nodel ->
/1 do sonething with nodel
}

5.2.2 MVCGroups and Configuration

Now that you know there are several waysto instantiate MV C groups we can go back to customizing them.
The simples way isto passin new values as part of the arguments map that mvcGrouplnit receives, for example

def group = app. nvcG oupManager . bui | dWCG oup(' foo', [key: 'foo'])

However isyou wish to use the special conf i g key that every MV C group configuration may have then you must
instantiate the group in the following way

def configuration = app. mvcG oupManager. cl oneM/CConfi guration('foo', [key: 'sonmeValue'])
def group = configuration.create()

Note that you can still send custom argumentsto the cr eat e() method.

5.2.3 Configuration Options

The following options are available to all MV C groups as long as you use the conf i g key.

Disabling Lifecycle Events

Every MV C group triggers afew events during the span of its lifetime. These events will be sent to the event bus
even if no component isinterested in handling them. There may be times when you don't want these events to be
placed in the event busin order to speed up group creation/destruction. Use the following configuration to gain this
effect:



mvcG oups {
/'l MWC Goup for "sanple"

"sanple' {
nodel = ' sanpl e. Sanpl eMbdel '
Vi ew = 'sanpl e. Sanpl eVi ew
controller = 'sanpl e. Sanpl eControl | er'
config {
events {
lifecycle = fal se
}

The following events will be disabled with this setting:

© InitializeMVCG oup
© Creat eMCG oup
© DestroyWCG oup

Disabling I nstantiation Events

The Griffon runtime will trigger an event for every artifact it manages. As with the previous events this one will be
sent to the event bus even if no component handles it. Skipping publication of this event may result in aslight
increase of speed during group instantiation. Use the following configuration to gain this effect:

mvcG oups {
/[l MWC Goup for "sanple"
'sanmple' {
nmodel = ' sanpl e. Sanpl eMbdel *
Vi ew = ' sanpl e. Sanpl eVi ew
controller = 'sanple. Sanpl eControl | er'
config {
events {
instantiation = fal se
}
}
}

The following events will be disabled with this setting:

© Newl nst ance

Disabling Controllersas Application Event Listeners

Controllers are registered as application event handlers by default when a group in instantiated. This makesit very
convenient to have them react to events placed in the application's event bus. However you may want to avoid this

automatic registration altogether, as it can lead to performance improvements. Y ou can disable this feature with the
following configuration:

m/cG oups {
/1 MWC Goup for "sanple"
'sanmple' {
nodel = ' sanpl e. Sanpl eMbdel '
Vi ew = ' sanpl e. Sanpl eVi ew
controller = 'sanpl e. Sanpl eControl |l er'
config {
events {
listener = fal se
}
}
}
}

Y ou can still manually register a controller as an application event handler at any time, with the caveat that it's now
your responsibility to unregister it when the time is appropriate, most typically during the group's destroy segquence.

54




55

5.3 Application Lifecycle

Every Griffon application goes through the same life cycle phases no matter in which mode they are running, with
the exception of applet mode where there is an additional phase due to the intrinsic nature of applets. The
application's lifecycle has been inspired by JSR-296, the Swing Application Framework.

Every phase has an associated life cycle script that will be invoked at the appropriate time. These scripts are
guaranteed to be invoked inside the Ul thread (the Event Dispatch Thread in Swing). The script names match each
phase name; you'll findtheminsidegri f f on-app/ i fecycl e.

5.3.1Initialize

Theinitialization phaseis thefirst to be called by the application's life cycle. The application instance has just been
created and its configuration has been read. No other artifact has been created at this point, which means that event
publishing and the Ar t i f act Manager are not yet available to the script's binding.

This phase istypically used to tweak the application for the current platform, including its Look & Feel.

Addons will beinitialized during this phase.

Thel ni tiali ze script will be called right after the configuration has been read but before
addons are initialized. Y ou wont have access to addon contributions.

5.3.2 Startup

This phase is responsible for instantiating all MV C groups that have been defined in the application's configuration (
Appl i cati on. gr oovy) and that also have been marked as startup groups in the same configuration file.

The St ar t up script will be called after all MV C groups have been initialized.

5.3.3 Ready

This phase will be called right after Startup with the condition that no pending events are available in the Ul queue.
The application's main frame will be displayed at the end of this phase.

5.3.4 Shutdown

Called when the application is about to close. Any artifact can invoke the shutdown sequence by calling
shut down() ontheapp instance.

The Shut down script will be called before any Shut downHandl er or event handler
interested in the Shut downSt art event.

5.3.5 Stop

This phase is only available when running on applet mode. It will be called when the applet container invokes
destroy() onthe applet instance.

5.4 Application Events

Applications have the ability to publish events from time to time to communicate that something of interest has
happened at runtime. Events will be triggered by the application during each of its life cycle phases, also when MVC
groups are created and destroyed.

All application event handlers are guaranteed to be called in the same thread that originated
the event.



Any artifact or class can trigger an application event, by routing it through the reference to the current running
application instance. All artifacts posses an instance variable that points to that reference. All other classes can use
ApplicationHolder to gain access to the current application's instance.

Publishing an event can be done synchronously on the current thread or asynchronously relative to the Ul thread. For
example, the following snippet will trigger an event that will be handled in the same thread, which could be the Ul
thread itself

app. event (' MyEvent Nane', ['arg0', 'argl'])

Whereas the following snippet guarantees that al event handlers that are interested in an event of type
My Event Nane will be called outside of the Ul thread

app. event Qut si de(' MyEvent Nane', ['arg0', 'argl'])

Finally, if you'd want event notification to be handed in athread that is not the current one (regardless if the current
one isthe Ul thread or not) then use the following method

app. event Async(' MyEvent Nane', ['arg0', 'argl'])

There may be times when event publishing must be stopped for awhile. If that's the case then you can instruct the
application to stop delivering events by invoking the following code

app. event Publ i shi ngEnabl ed = fal se

Any events sent through the application's event bus will be discarded after that call; there's no way to get them back
or replay them. When it's time to enable the event bus again simply call

app. event Publ i shi ngEnabl ed = true

5.4.1 LifeCycle Events

The following events will be triggered by the application during each one of its phases

Log4j ConfigStart[config] -during the Initialize phase.

Boot st rapSt art [ app] - after logging configuration has been setup, during the Initialize phase.
Boot st rapEnd[ app] - at the end of the Initialize phase.

StartupStart[app] - atthebeginning of the Startup phase.

St art upEnd[ app] - at the end of the Startup phase.

ReadySt art [ app] - at the beginning of the Startup phase.

ReadyEnd[ app] - at the end of the Startup phase.

Shut downRequest ed[ app] - before the Shutdown begins.

Shut downAbor t ed[ app] - if aShutdown Handler prevented the application from entering the Shutdown
phase.

© Shut downSt art [ app] - at the beginning of the Shutdown phase.

O O O O O 0O O O ©O

5.4.2 Artifact Events

The following events will be triggered by the application when dealing with artifacts

© New nstance[ kl ass, type, instance] -whenanew artifact iscreated.
© LoadAddonsSt art [ app] - before any addons are initialized, during the Initialize phase.

56



57

© LoadAddonsEnd[ app, addons] - after all addons have been initialized, during the Initialize phase.
addons isaMap of <name, instance> pairs.
© LoadAddonSt art[ nane, addon, app] - beforean addonisinitiaized, during the Initialize phase.
© LoadAddonEnd[ nanme, addon, app] - after an addon has been initialized, during the Initialize phase.
These events will be triggered when dealing with MV C groups

© InitializeM/CG oup[configuration, group] -whenanew MVC groupisinitialized.
confi gurati on isof type MV CGroupConfiguration; gr oup is of type MV CGroup.

© Creat eM/CG oup[ group] - whenanew MVC group iscreated. conf i gur ati on isof type
MV CGroupConfiguration; gr oup is of type MV CGroup.

© Dest royMVCG oup| gr oup] - whenan MVC group isdestroyed. gr oup is of type MV CGroup.

5.4.3 Miscellaneous Events

These events will be triggered when a specific condition is reached

© Uncaught Excepti onThr own[ except i on] - when an uncaught exception bubbles up to
GriffonExceptionHandler.

© W ndowShown[ wi ndow] - triggered by the WindowManager when a Window is shown.

© W ndowH dden[ wi ndow] - triggered by the WindowManager when a Window is hidden.

5.4.4 Custom Events

Any artifact that holds areference to the current application may trigger events at its leisure by calling the event ()
or event Async methods on the application instance. The following example demonstrates how a Controller
triggersa"Done" event after an action has finished

class MyController {
def action = { evt = null ->
/] do sonme work
app. event (' Done')

There are two versions of the event () method. The first takes just the name of the event to be published; the
second accepts an additional argument which should be aList of parameters to be sent to every event handler. Event
handlers notified by this method are guaranteed to process the event in the same thread that published it. However, if
what you need isto post a new event and return immediately then use the event Async variants. If you want the
event to be handled outside of the Ul thread then use the event CQut si deUl () variants.

5.45 Event Handlers

Any artifact or class that abides to the following conventions can be registered as an application listener, those
conventions are;

© itisaScript, class, Map, RunnableWithArgs or closure.
© inthe case of scripts or classes, they must define an event handler whose name matches on<EventName>,
this handler can be a method, RunnableWithArgs or a closure property.
© inthe case of aMap, each key maps to <EventName>, the value must be a RunnableWithArgs or a closure.
© scripts, classes and maps can be registered/unregistered by calling addAppl i cat i onLi st ener/
renoveAppl i cati onLi st ener onthe app instance.
©  RunnableWithArgs and closure event handlers must be registered with an overloaded version of
addAppl i cati onLi st ener/renmoveAppl i cati onLi st ener that takes <EventName> as the first
parameter, and the runnable/closure itself as the second parameter.
Thereisageneral, per application, script that can provide event handlers. If you want to take advantage of this
feature you must define ascript named Event s. gr oovy insidegri f f on- app/ conf . Lastly both Controller
and Service instances are automatically registered as application event listeners. Thisisthe only way to declare event
listenersfor Log4j Confi gSt art and Boot strapSt art events.

You can also write aclassnamed Event s. j ava insr ¢/ mai n asan dternative to
gri ffon-app/ conf/ Events. groovy, but not both!



These are some examples of event handlers:

® Display amessage right before default MV C groups are instantiated
File: griffon-app/conf/Events. groovy

onBoot strapEnd = { app ->
println """Application configuration has finished | oading
MC G oups will be initialized now """

= Quit the application when an uncaught exception is thrown
File: src/main/Events.java

inmport griffon.util.ApplicationHol der;
public class Events {
publ i c void onUncaught Excepti onThr own( Excepti on e) {
Appl i cati onHol der. get Appl i cati on(). shut down();

® Print the name of the application plus a short message when the application is about to shut down.

File: griffon-app/controller/MController.groovy

class MyController {
def onShutdownStart = { app ->
println "${app.config.application.title} is shutting down"

" Print amessage every time the event "Foo" is published
File: griffon-app/controller/MController.groovy

class MyController {
voi d mvcG oupl ni t(

t

app. addAppl i cat

Foo: {-> prin
1)

def fooAction = { evt = null ->
/1 do sonething
app. event (' Foo")

Map args) {
onLi st ener ([
In 'got foo!' }

|
t

= An dternative to the previous example using a closure event handler
File: griffon-app/controller/MController.groovy

class MyController {
voi d mvcG ouplnit(Map args) {
app. addAppl i cati onLi stener (' Foo' ){-> println 'got foo!' }

def fooAction = { evt = null ->
/1 do sonething
app. event (' Foo")

= Second aternative to the previous example using a RunnableWithArgs event handler
File: griffon-app/controller/MController.java

58



59

i mport java.util.Mp;
i mport griffon.util.Runnabl eWthArgs;
i mport org.codehaus. griffon.runtine.core. AbstractGiffonController;
public class MyControl |l er extends AbstractGiffonController {
public void mvcG ouplnit(Map<String, Object> parans) {
get App() . addAppl i cati onLi st ener ("Foo", new Runnabl eWthArgs() {
public void run(Cbject[] args) {
Systemout.println("got foo!");

1)

public void fooAction() {
/] do sonething

get App() . event (" Foo");

5.4.6 Custom Event Publishers

As the name implies application events are sent system wide. However there is an option to create localized event
publishers. Griffon provides a @griffon.transform.EventPublisher AST transformation that you can apply to any
class that wishes to be an event publisher.

This AST transformation will inject the following methods to the annotated classes:

addEventL istener(Object)

addEventListener(String, Closure)
addEventListener(String, RunnableWithArgs)
removeEventListener(Object)
removeEventListener(String, Closure)
removeEventListener(String, RunnableWithArgs)
publishEvent(String)

publishEvent(String,List)

publishEventOutsideUl (String)
publishEventOutsideUl (String,List)
publishEventAsync(String)
publishEventAsync(String,List)
isEventPublishingEnabled()
setEventPublishingEnabl ed(boolean)

Event listeners registered with these classes should follow the same rules as application event handlers (they can be
Scripts, classes, maps or closures, and so on).

The following example shows atrivial usage of this feature

O 0O 0O 0O o0 O O O O O O O O O

@riffon.transform Event Publ i sher
cl ass Publisher {
void doit(String name) {
publ i shEvent (' arg', [nane])

void doit() {
publ i shEvent (' enpty')

cl ass Consuner {
String val ue
void onArg(String arg) { value = '"arg ="' + arg }
void onEmpty() { value = "enpty' }

}

p = new Publisher()

¢ = new Consuner ()

p. addEvent Li st ener (¢)
assert !c.val ue

p. doit()

assert c.value == "enpty'

p. doit (' Groovy')

assert c.value == "arg = G oovy'

5.5 Application Features

The GriffonApplication interface defines the base contract for all Griffon applications. However there are some meta



enhancements done at runtime to all applications. The following methods become available before the Initialize
phase is executed:

° MVC
© newlnstance
© buildMV CGroup
© createMV CGroup
© destroyMV CGroup
© withMV CGroup
O Threading
execlnsideUlSync
execlnsideUIAsync
execOutsideUl
execFuture
isUlThread

O O O O O

5.5.1 Runtime Configuration

The application's runtime configuration is available through the conf i g property of the application instance. Thisis
aConf i ghj ect whose contents are obtained by merging Appl i cati on. gr oovy and Confi g. gr oovy.
Builder configuration is available through the bui | der Conf i g property and reflects the contents of

Bui | der. groovy.

However starting with Griffon 0.9.2 there's an alternative for defining the application's configuration. Y ou can now
use properties filesinstead of Groovy scripts. If both properties files and Groovy scripts are available in the classpath
then the settings of the scripts will be overriden by those set in the properties file. Each properties file must match the
name of the configuration script. The following table shows the conventions

Script File Properties File
Application.groovy Application.properties

Config.groovy Config.properties

Builder.groovy Builder.properties

An application can change the name of the configuration script but it can not change the name of the configuration
propertiesfile.

5.5.2 Metadata

Accessto the application's metadata file (appl i cat i on. properti es) isavailable by querying the
griffon.util.Metadat a singleton. Here's a snippet of code that shows how to setup a welcome message that
displays the application’'s name and version, along with its Griffon version

import griffon.util.Metadata

def nmeta = Metadata. current

application(title: "Sonme app", package: true) {
gridLayout cols: 1, rows: 2
label "Hello, I'm ${neta['app. nane']}-${neta[' app.version']}"
label "Built with Giffon ${neta[' app.griffon.version]}"

There are dso afew helpful methods on this class

get Appl i cati onNanme() - sameresult asret a[ ' app. hanme' ]

get Appl i cati onVersion() -sameresult asnet a[ ' app. versi on' ]

getGiffonVersion() -sameresultasnet a[ ' app. gri ffon. version']
getGiffonStartDir() -returnsthevalueof ' griffon.start. dir' fromthe System properties
get GiffonWrkingDir() -returnsaFilethat pointsto' gri ffon. start. dir' ifthevaueisset
and the file is writable, otherwise returns a File pointing to the current location if it iswritable; if that fails
then attemptsto return aFile pointingto ' user . di r' ; if al fail it will return the location to atempora file,
typicaly ' / t np/ ${ gri f f onAppNane}"' .

O O O O O

60



61

5.5.3 Environment

A Griffon application can run in severa environments, default ones being DEVELOPMENT, TEST and
PRODUCTION. An application can inspect its current running environment by means of the
griifon.util.Environnment enum.

The following example enhances the previous one by displaying the current running environment

import griffon.util.Mtadata
i mport griffon.util.Environnent
def meta = Metadata. current
application(title: "Sone app", package: true) {
gridLayout cols: 1, rows: 3
label "Hello, |I'm${neta[' app.nane']}-${neta[' app.version']}"
label "Built with Giffon ${neta[' app.griffon.version']}"
| abel "Current environnment is ${Environnment.current}"

5.5.4 Running Mode

Applications can run in any of the following modes: STANDALONE, WEBSTART or APPLET. The
griffon.util.RunMode enum alows access to the current running mode.
This example extends the previous one by adding information on the current running mode

inmport griffon.util.Metadata
i mport griffon.util.Environnent
import griffon.util.RunMbde
def meta = Metadata. current
application(title: "Sonme app", package: true) {
gridLayout cols: 1, rows:
label "Hello, I'm ${neta[' app. nane']}-${neta[’ app.version']}"
label "Built with Giffon ${neta[' app.griffon.version]}"
| abel "Current environnent is ${Environnent.current}"
| abel "Current running node is ${RunMdde. current}"

5.5.5 Shutdown Handlers

Applications have the option to let particular artifacts abort the shutdown sequence and/or perform atask while the
shutdown sequenceisin process. Artifacts that desire to be part of the shutdown sequence should implement the
gri ffon. core. Shut downHandl er interface and register themselves with the application instance.

The contract of a Shut downHandl er isvery simple

© bool ean canShutdown(GriffonApplication app) -returnf al se to abort the shutdown
sequence.
© voi d onShutdown(GiffonApplication app) - caledif the shutdown sequence was not aborted.
There are no default ShutdownHandlers registered with an application.

5.5.6 Application Phase

All applications have the same life-cycle phases. Y ou can inspect in which phase the application is currently on by
calling the get Phase() method on an application instance. Valid values are defined by the ApplicationPhase
enum: | NI TI ALI ZE, STARTUP, READY, MAI N and SHUTDOWN.

5.5.7 Application Locale

Starting with Griffon 0.9 applications have abound | ocal e property that isinitialized to the default Locale.
Components can listen to Locale changes by registering themselves as PropertyChangeL isteners on the application
instance.

5.5.8 Default Imports

Since Griffon 0.9.1 default imports per artifacts are supported. All Groovy based artifacts will resolve classes from
thegriffon.coreandgriffon. util packagesautomaticaly, thereisno longer a need to define imports on
those classes unless you require an static import or define an alias. An example of this feature would be as follows.



class MyController {
voi d mvcG ouplnit(Map args) {
println Metadata.current.'app. nane'

The Met adat a classisdefined in packagegri f f on. uti | . There are additional imports per artifact type, here's
thelist of default definitions

© Modée
© groovy.beans-> @Bindable, @V etoable
© java.beans -> useful for al PropertyChange* classes
° View (when using Swing)
java.awt
java.awt.event
javax.swing
javax.swing.event
javax.swing.table
javax.swing.text
javax.swing.tree
Thelist of imports per artifacts can be tweaked or changed completely at will. Y ou only need to specify afile named
META- I NF/ gri ffon-defaul t-inports. properti es withthefollowing format

O O O O 0O O O

<artifact_type> = <conme_separ at ed_package_| i st>

These are the contents of the default file

views = javax.sw ng., javax.sw ng.event., javax.swing.table., javax.sw ng.text., javax.sw I
nmodel s = groovy. beans., java.beans.

Imports are cumulative, this means you a package can't be removed from the default list provided by Griffon.

5.5.9 Startup Arguments

Command line arguments can be passed to the application and be accessed by calling get St ar t upAr gs() onthe
application instance. Thiswill return a copy of the args (if any) defined at the command line.
Here'satypica example of thisfeature in development mode

griffon run-app arg0 argl argn

Here's another example demonstrating that the feature can be used once the application has been packaged, in this
caseasasinglejar

griffon dev package jar
java -jar dist/jars/app.jar arg0 argl argn

5.5.10 L ocating Resour ces

Resources can be loaded form the classpath using the standard mechanism provided by the Java runtime, that is, ask
aC assLoader instanceto load aresource URL or obtain an | nput St r eamthat points to the resource.

But the code can get quite verbose, take for example the following view code that locates a text file and displaysit on
atext component

62



63

scrol | Pane {
text Area(col umms: 40, rows: 20,
text: this.class.classLoader. get Resource(' soneTextFile.txt').text)

In order to reduce visual clutter, also to provide an abstraction over resource location, both
GiffonApplicationandGiffonArtifact haveanew pair of methods that simply working with
resources. Those methods are provided by Resour ceHandl er :

© URL get ResourceAsURL(String resourceNane)
© I nput Stream get Resour ceAsStrean(String resourceNane)
© Li st <URL> get Resources(String resourceNane)

Thus, the previous example can be rewritten this way

scrol | Pane {
text Area(col umms: 40, rows: 20,
text: getResourceAsURL('sonmeTextFile.txt').text)

In the future Griffon may switch to a modularized runtime, this abstraction will shield you from any problems when
the underlying mechanism changes.

These methods can be attached to any non-artifact class at compile timeif you apply the
@griffon.transform.ResourcesAware AST transformation.

5.5.10 Uncaught Exceptions

There are times when an exception catches you off guard. The VM provides a mechanism for handling these kind of
exceptions. Thread.UncaughtExceptionHandler. Y ou can register an instance that implements this interface with a
Thread or ThreadGroup, however it's very likely that exceptions thrown inside the EDT will not be caught by such
instance. Furthermore, it might be the case that other components would like to be notified when an uncaught
exception isthrown. Thisis precisely what GriffonExceptionHandler does.

Stack traces will be sanitized by default, in other words, you won't see along list containing Groovy internals.
However you can bypass the filtering process and instruct Griffon to leave the stack traces untouched by specifying
the following flag either in the command line with - D switch or in Conf i g. gr oovy

griffon.full.stacktrace = true

Exceptions will be automatically logged using the er r or level. Should you choose to disable logging but still have
some output when an exception occurs then configure the following flag

griffon. exception.output = true

Any exception caught by GriffonExceptionHandler will trigger a pair of events. The event names match the
following convention

©  Uncaught<exception.class.simpleName>

0 UncaughtExceptionThrown
The exception is sent as the sole argument of these events. As an example, assume that a service throws an
I'I'l egal Argunrent Except i on during the invocation of a service method. This method was called from within a
Controller which defines a handler for this exception, like this


http://download.oracle.com/javase/6/docs/api/java/lang/Thread.UncaughtExceptionHandler.html

cl ass Sanpl eService {
void work() {
throw new || I egal Argurment Excepti on(' boom ")

}
cl ass Sanpl eControl |l er {
def sanpl eServi ce
def someAction = {
sanpl eServi ce. wor k()

def onUncaught| || egal Argunent Exception = { iae ->
/'l process exception
}

As mentioned before, the name of an event handler matches the type of the exception it will handle, polymorphismis
not supported. In other words, you wont be ableto handlean | | | egal Ar gunent Except i on if you declarea
handler for Runt i meExcept i on. You can however, rely on the second event triggered by this mechanism. Be
aware that every single exception will trigger 2 events each time it is caught. It is best to use a synchronization
approach to keep track of the last exception caught, like so

i mport groovy.transform Synchroni zed
cl ass Sanpl eController {
private | ast Caught Excepti on
@ynchroni zed
voi d onUncaught Runti meExcepti on( Runti neException e) {
| ast Caught Exception = e
/1 handl e runtine exception only

}

@ynchroni zed

voi d onUncaught Excepti onThrown(e) {
i f(IastCaught Exception == e) return
| ast Caught Exception = e
/1 handl e any ot her exception types

Asafinal remark, any exceptions that might occur during the handling of the events wont trigger
Gri ffonExcepti onHandl er again, they will smply be logged and discarded instead.

5.6 Swing specific
The following features are available to Swing based applications only.
5.6.1 WindowM anager

The W ndowivanager classisresponsible for keeping track of all the windows managed by the application. It also
controls how these windows are displayed (viaa pair of methods: show, hide). WindowManager relies on an instance
of W ndowbDi spl ayHandl er to actually show or hide awindow. The default implementation simple shows and
hide windows directly, however you can change this behavior by setting a different implementation of

W ndowDi spl ayHandl er on the application instance.

WindowM anager DSL
Starting with Griffon 0.9.2 there's anew DSL for configuring show/hide behavior per window. This configuration
canbesetingri f f on- app/ conf/ Confi g. gr oovy, and hereis how it looks



65

swi ng {
wi ndowvanager {
myW ndowNane = [
show. {w ndow, app -> ...},
hi de: {w ndow, app -> ...}

]
nyQ her W ndowNane = [

show. {w ndow, app -> ...}
]

The name of each entry must match the value of the Window's name: property. Each entry may have the following
options

© show - used to show the window to the screen. It must be a closure that takes two parameters: the window to
display and the current application.
© hide - used to hide the window from the screen. It must be a closure that takes two parameters: the window to
hide and the current application.
© handler - acustom W ndowDi spl ayHandl er .
Thefirst two options have priority over the third one. If one is missing then the WindowManager will invoke the
default behavior. There is one last option that can be used to override the default behavior provided to all windows

swi ng {
wi ndowvanager {
def aul t Handl er = new MyCust omW ndowDi spl ayHandl er ()
}

Y ou can go a bit further by specifying aglobal show or hide behavior as shown in the following example

swi ng {
wi ndowManager {
def aul t Show = {w ndow, app -> ...}
/1 defaultH de = {wi ndow, app -> ...}
someW ndowNane = |
hi de: {w ndow, app -> ...}

Custom WindowDisplayHandlers

The following example shows how you can animate all managed windows using a dropln effect for show() and a
dropOut effect for hide(). This code assumes you have installed the Effects plugin.

Insrc/ mai n/ Dropper. gr oovy

i nport java.awt.W ndow
i mport griffon.sw ng.Swi ngUtils
i mport griffon.sw ng. Def aul t Wndowbi spl ayHandl| er
i mport griffon.core.GiffonApplication
import griffon.effects. Effects
cl ass Dropper extends Defaul t WndowDi spl ayHandl er {
voi d show( Wndow wi ndow, GiffonApplication app) {
Swi ngUti | s. cent er OnScr een(w ndow)
app. execCQut si deUl {
Ef f ect s. dropl n(wi ndow, wait: true)
}

}
voi d hi de(W ndow wi ndow, GiffonApplication app) {
app. execCQut si deUl {
Ef f ects. dropQut (Wi ndow, wait: true)
}



http://griffon.codehaus.org/Effects+Plugin

Notice that the effects are executed outside of the Ul thread because we need to wait for them to finish before
continuing, otherwise we'll hog the Ul thread.

The second step to get this example to work is to inform the application it should use Dropper to display/hide
windows. Thisatask that can be easily achieved by adding an application event handler, for examplein

gri ffon-app/ conf/Events. groovy

/1 No w ndows have been creat ed before this step
onBoot strapEnd = { app -

app. wi ndowDi spl ayHandI er = new Dropper ()
}

Custom W ndowDi spl ayHandl er implementations set in this manner will be called for
all managed windows. Y ou'll loose the ability of using the WindowManager DSL.

Alternatively, you could specify an instance of Dr opper asthe default handler by changing the W ndowivanager
's configuration to

swi ng {
wi ndowManager {
def aul t Handl er = new Dr opper ()
}

The W ndowDi spl ayHandl er interface also defines show/hide methods that can manage JI nt er nal Fr ame
instances.

Starting Window

Previousto Griffon 0.9.2 the first window to be displayed during the Ready phase was determined by asimple
algorithm: picking the first available window from the managed windows list. With 0.9.2 however, it's now possible
to configure this behavior by means of the WindowManager DSL. Simply specify avalue for

swi ng. wi ndowivanager . st arti ngW ndow, like this

swi ng {
wi ndowManager {
starti ngWndow = ' pri mary’

This configuration flag accepts two types of values:

© aString that defines the name of the Window. Y ou must make sure the Window has a matching name
property.
© aNumber that defines the index of the Window in the list of managed windows.
If no match is found then the default behavior will be executed.

5.7 Artifact API

The Artifact API provides introspection capabilities on the conventions set on each artifact type. The following
sections explain further what you can do with this API.

5.7.1 Evaluating Conventions

Every Griffon application exposes al information about its artifacts and addons via a pair of helper classes

© AddonManager - used for al installed addons
°© Artifact Manager - usedfor al remaining artifacts

66



ArtifactM anager

TheArtifact Manager class provides methods to evaluate the conventions within the project and internally
stores references to all classes within a GriffonApplication using subclasses of GriffonClass class.

A Giffond ass represents a physical Griffon resources such as a controller or a service. For exampleto get al
G i ffond ass instances you can call:

app. arti fact Manager. al | d asses.each { println it.name }

There are afew "magic" propertiesthat the Ar t i f act Manager instance possesses that allow you to narrow the
type of artifact you are interested in. For example if you only need to deal with controllers you can do:

app. arti fact Manager. control | erC asses. each { println it.nane }

Dynamic method conventions are as follows:

© get *C asses - Retrieves dl the classes for a particular artifact type. Example
app. artifact Manager. getControl |l erC asses().
© *(Cl asses - Retrieves all the classes for a particular artifact type. Example
app. artifact Manager. control | erCl asses.
° is*({ ass - Returnstrueif the given classis of the given artifact type. Example
app. artifact Manager.isControl |l erd ass(Exanpl eControll er)
TheGri f f onC ass interfaceitself provides a number of useful methods that allow you to further evaluate and
work with the conventions. These include:

© newl nst ance - Creates a new instance of the enclosed class.
© get Nane - Returnsthe logical name of the class in the application without the trailing convention part if
applicable
© get O azz - Returnsthe artifact class
© get Type - Returnsthe type of the artifact, i.e "controller"
© get Trai | i ng - Returnsthe suffix (if any) of the artifact, i.e "Controller"
For afull reference refer to the javadoc API.

AddonM anager

The AddonManager classis responsible for holding references to al addons (which are of type
griffon.core.GriffonAddon), as well as providing metainformation on each addon via an addon descriptor. The latter
can be used to know at runtime the name and version of a particular addon, useful for building a dynamic About
dialog for example.

All addons have the same behavior which is explained in detail in section 12.6 Addons.

5.7.2 Adding Dynamic M ethods at Runtime

For Griffon managed classes like controllers, models and so forth you can add methods, constructors etc. using the
ExpandoM etaClass mechanism by accessing each controller's M etaClass:

cl ass Exanpl eAddon {
def addonPost | nit (app) {
app. arti fact Manager. control | erd asses. each { controllerd ass ->
control |l erC ass. net ad ass. myNewiet hod = {-> println "hello world" }
}

Inthiscaseweusetheapp. arti f act Manager object to get areferenceto all of the controller classes
MetaClass instances and then add a new method called my Newivet hod to each controller. Alternatively, if you
know before hand the class you wish add a method to you can simple reference that classes net aCl ass property:


http://groovy.codehaus.org/ExpandoMetaClass
http://groovy.codehaus.org/api/groovy/lang/MetaObjectProtocol.html

cl ass Exanpl eAddon {
def addonPost | nit(app) {
String. met adl ass. swapCase = {->
def sb = new StringBuffer()
del egat e. each {
sb << (Character.isUpperCase(it as char) ?
Char act er.toLower Case(it as char) :
Char act er.toUpperCase(it as char))

}
sb.toString()
}
assert "UpAndDown" == "uPaNDdOM'. swapCase()

In this example we add a new method swapCase toj ava. | ang. Stri ng directly by accessingitsnet adl ass.

5.7.3 Artifact Types

All Griffon artifacts share common behavior. This behavior is captured by an interface named
griffon.core.GriffonArtifact. Additional interfaces with more explicit behavior exist per each artifact type. The
following isalist of the basic types and their corresponding interface

© Model -> griffon.core.GriffonModel

° View -> griffon.core.GriffonView

© Controller -> griffon.core.GriffonController

© Service -> griffon.core.GriffonService
Starting with Griffon 0.9.1 the compiler will make sure that each artifact implements its corresponding interface via
AST injection. Thisfeature can be very useful when accessing artifacts from languages other than Groovy (see
section 13.1 Dealing with Non-Groovy Artifacts to learn more about this kind of artifacts).

AST injection is always enabled unless you disable it as explained in section 4.7.2 Disable
AST Injection.

Additionally to each artifact type you will find a companion GriffonClass that is speciaized for each type. These
specialized classes can be used to discover metadata about a particular artifact. The following isalist of the
companion GriffonClass for each of the basic artifacts found in core

© Model -> griffon.core.GriffonModel Class

© View -> griffon.core.GriffonViewClass

© Controller -> griffon.core.GriffonControllerClass

o Service -> griffon.core.GriffonServiceClass
Be aware that additional artifacts provided by plugins (such as Charts and Wizards) may provide their own interface
and companion GriffonClass. These too will be available when querying the Ar t i f act Manager .

5.8 Archetypes

Whileit's true that artifact templates can be provided by pluginsit ssmply was not possible to configure how an
application is created. Application Archetypesfill this gap by providing a hook into the application creation process.
Archetypes can do the following:

© provide new versions of existing templates, like Model, Controller and so forth

© create new directories and files

© most importantly perhaps, install a preset of plugins
So, if your company requires all applications to be built following the same template and basic behavior then you can
create an archetype that enforces those constraints. Archetypes are simple zip files with an application descriptor and
templates. Despite this, Griffon provides afew scripts that let you manage archetypes

O create-archetype
©  package-archetype

© ingtal-archetype
© uninstall-archetype
Archetypes are installed per Griffon location under SUSER _HOVE/ . gri f f on/ <ver si on>/ ar chet ypes.

68



69

Archetypes are registered with an application's metadata when creating an application. Y ou can either manually
modify the value of ‘app.archetype' to a known archetype name or specify an - ar chet ype=<ar chet ypeNane>
flag when creating a new application.

If no valid archetype is found then the default archetype will be used. Following is the default template for an
application archetype

inmport griffon.util.Metadata
i ncl udeTargets << griffonScript('CreateMc')
target (name: 'createApplicationProject',
description: 'Creates a new application project’,

prehook: null, posthook: null) {
creat eProj ect Wt hDef aul t s()
creat eMVC()

/1 to install plugins do the follow ng
/1 Metadata nmd = Metadat a. getlnstance(new Fil e("${basedir}/application.properties"))

for a single plugin
instal | Pl ugi nExternal nd, plugi nNane, pl ugi nVersion
** pluginVersion is optional **

for multiple plugins where the |atest version is preferred
instal | Pl ugi nsLatest mnd, [plugi nNanel, pl ugi nName2]

le plugins with an specific version
I Pl ugi ns nd, [plugi nNanel: pl uginVersionl]

—~— e~~~
—~ e e e e e e

for multip
i nst al

}
set Def aul t Tar get (cr eat eAppl i cati onProj ect)

5.8.1 A Fancy Example

This section demonstrates how an archetype can be created and put to good use for building applications.

#1 Createthe archetype

Thefirst step isto create the archetype project and its descriptor, which can be done by executing the following
command

griffon create-archetype fancy
cd fancy

#2 Tweak the ar chetype descriptor

L ocate the archetype descriptor (appl i cat i on. gr oovy) and open it in your favorite editor, paste the following
snippet



i mport griffon.util.Metadata
i ncl udeTargets << griffonScript('CreateMc')
target (nane: 'createApplicationProject',
description: 'Creates a new application project',
prehook: null, posthook: null) {
creat eProj ect Wt hDef aul t s()
ar gsMap. nodel ' Mai nvbdel '
ar gsMap. vi ew ' Mai nVi ew
argsMap. control |l er ' Mai nController’

creat eMV(C()
createArtifact(

nane: mvcFul | Qual i fi edd assNane,

suffix: 'Actions',

type: ' Mai nActions',

pat h: "griffon-app/views')
createArtifact(

nane: mvcFul | Qual i fi edd assNane,

suffix: 'MenuBar',

type: ' Mai nMenuBar ',

pat h: "griffon-app/views')
createArtifact(

nane: mvcFul | Qual i fi edCl assNane,

suffix: 'StatusBar',

type: ' Mai nSt at usBar ',

pat h: "griffon-app/views')
createArtifact(

nane: mvcFul | Qual i fi edd assNane,

suffix: 'Content',

type: ' Mai nContent',

pat h: "griffon-app/views')

Met adata nd = Met adat a. get | nst ance(new Fil e("${basedir}/application.properties"))
i nstall Plugi nExternal mnd, 'mglayout'

}
set Def aul t Tar get (cr eat eAppl i cati onProj ect)

This archetype overrides the default templates for Model, View and Controller that will be used for the initial MVC
group. It also creates 4 additional filesinsidegri f f on- app/ vi ews. Findly it installs the latest version of the

MigLayout plugin.
#3 Createtheartifact templates

According to the conventions laid out in the archetype descriptor there must exist afile under

tenpl ates/ artifact s that matches each one of the specified artifact types, in other words we need the
following files

MainM odel.gr oovy

@rtifact. package@nport groovy. beans. Bi ndabl e
inmport griffon.util.GiffonNameUtils
class @rtifact. nane@ {
@i ndabl e String status
void mvcG oupl ni t (Map args)
status = "Welconme to ${GiffonNameUtils.capitalize(app.config.application.title)}"

MainController.groovy

70


http://griffon.codehaus.org/Miglayout+Plugin

71

@rtifact.package@l ass @rtifact. name@ {
def nodel
def view
/1 void nmvcGouplnit(Map args) {

I I/ this method is called after nodel and view are injected

I}

/1 void m/cG oupDestroy() {

I /1 this nethod is called when the group is destroyed

I}

def newAction = { evt = null ->
nodel . status = ' New acti on'

}

def openAction = { evt = null ->
nmodel . status = ' Open action'

}

def saveAction = { evt = null ->
nmodel . status = ' Save action’

}

def saveAsAction = { evt = null ->
nodel . status = ' Save As action'

}

def aboutAction = { evt = null ->
nodel . status = ' About action'

}

def quitAction = { evt = null ->
nodel . status = 'Quit action'

}

def cutAction = { evt = null ->
nodel . status = ' Cut action'

}

def copyAction ={ evt = null ->
nmodel . status = ' Copy action’

}

def pasteAction = { evt = null ->
nmodel . status = ' Paste action’

}

MainView.groovy

@rtifact.package@uil d(@rtifact.nane. pl ai n@cti ons)
application(title: GiffonNameUtils.capitalize(app.config.application.title),
pack: true,
| ocati onByPl at form true,
i conl mage: imagelcon('/griffon-icon-48x48.png').inage,
i conl mages: [imagelcon('/griffon-icon-48x48.png').i mage,
i magelcon('/griffon-icon-32x32.png'). I nage,
i mgel con('/griffon-icon-16x16.png').imge]) {

menuBar (bui l d(@rtifact. name. pl ai n@knuBar))

m glLayout (| ayout Constraints: "fill")

wi dget (buil d(@rtifact.nane. pl ai n@ontent), constraints: 'center, grow)
wi dget (bui l d(@rtifact.nane. pl ai n@t at usBar), constraints: 'south, grow )

MainActions.gr oovy




@rtifact.package@ nport groovy.ui.Consol e

actions {
action( id: 'newAction',
nanme: ' New ,

cl osure: controller.newAction,

menoni c: 'N,

accel erator: shortcut('N),

smal | | con: inmagel con(resource: "icons/ page. png", class: Consol e),
short Description: ' New

action( id: 'openAction',
nanme: 'Qpen..."',
cl osure: controller.openAction,
menonic: 'O,
accel erator: shortcut('0O),
smal | | con: inmagel con(resource: "icons/fol der _page. png", class: Console),
short Description: ' Open’

action( id: 'quitAction',

nane: 'Qit', _ )
cl osure: controller.quitAction,
menoni c: '

accel erator: éhortcut(' Q).

action( id: 'aboutAction',
nane: ' About',
cl osure: controll er.about Acti on,
menonic: 'B',
accel erator: shortcut('B')

action( id: 'saveAction',
nane: ' Save',
cl osure: controller.saveAction,
mmenonic: 'S,
accel erator: shortcut('S'),
smal | | con: inmagel con(resource: "icons/di sk. png", class: Consol e),
short Description: 'Save'

action( id: 'saveAsAction',
name: 'Save as...',
cl osure: controller.saveAsActi on,
accel erator: shortcut('shift S')

action(id: 'cutAction',
nane: 'Cut',
cl osure: controller.cutAction,
menonic: 'T,
accel erator: shortcut('X ),
smal | I con: inmagel con(resource: "icons/cut.png", class: Console),
short Description: 'Cut'

action(id: 'copyAction',
nane: ' Copy',
closure: controller.copyAction,
menonic: 'C ,
accel erator: shortcut('C),
smal | I con: inagel con(resource:"icons/ page_copy. png", class: Console),
short Descri ption: ' Copy'

action(id: 'pasteAction',
nanme: 'Paste',
closure: controller.pasteAction,
menonic: 'P',
accel erator: shortcut('V),
smal | I con: inagel con(resource:"icons/ page_paste. png”, class: Console),
short Descri ption: 'Paste'

MainM enuBar .gr oovy



@rtifact.package@nport static griffon.util.GiffonApplicationUils.*
menuBar = nenuBar {
menu(text: 'File', menonic: 'F) {
menul t em( newAct i on)
menul t em( openAct i on)
separator ()
menul t em( saveAct i on)
nmenul t em( saveAsAct i on)
if( lisMacOSX ) {
separat or ()
menul t em( qui t Acti on)

menu(text: "Edit', menonic: 'E) {
menul t em( cut Act i on)
menul t em( copyActi on)
menul t em( past eAct i on)

}
i f(lisvacOsX) ({
gl ue()
menu(text: 'Help', menonic: "H) {
menul t em( about Act i on)

MainContent.groovy

@rtifact.package@ abel (' Main content')

MainStatusBar.groovy

@urtifact. package@abel (id: 'status', text: bind { nodel.status })

#4 Package and install the ar chetype

This step is easily done with a pair of command invocations

griffon package- archetype
griffon install-archetype target/package/griffon-fancy-0.1.zip

#5 Use the ar chetype
Now that the archetype has been installed all that isleft is put it to good use, like this

griffon create-app sanple --archetype=fancy

This command should generate the following filesin the application directory

o griffon-app
© controllers
© sample
© Sanpl eControl | er
© models
© sample
© sanpl eModel
© views
© sample
© Sanpl eActi ons

73



Sanpl eCont ent

Sanpl eMenuBar

Sanpl eSt at usBar

Sanpl eVi ew

If you inspect theappl i cati on. properti es fileyou'll notice that the miglayout plugin has been installed too.
Archetypes can be versioned, installed and released in the same way plugins are.

5.9 Platform Specific

o O O

¢}

The following sections outline specific tweaks and options available for a particular platform.
5.9.1 Tweaksfor a Particular Platform

Griffon will automatically apply tweaks to the application depending on the current platform. However you have the
option to specify a different set of tweaks. For example, the following configuration in Conf i g. gr oovy specifies
adifferent handler for macosx:

pl atform {
handl er = [
macosx: ' com acrme. MyMacOSXPI at f or mHandl er’
]

Now you only need to create such handler, like this:

package com acne
inport griffon.core.GiffonApplication
import griffon.util.PlatfornHandl er
cl ass MyMacOSXPI at f or mHandl er i npl ements Pl at f or nHandl er {
voi d handl e(Gri ffonApplication app) {
System set Property(' appl e. | af . useScreenMenuBar', 'true')

}

The following platform keys are recognized by the application in order to locate a particular handler: | i nux,
macosx, sol ari s andw ndows.

5.9.2 MacOSX

Applications that run in Apple's MacOSX must adhere to an strict set of rules. We recommend you to have alook at
Apple's (Human Interface Guidelines).

Griffon makesit easier to integrate with MacOSX by automatically registering a couple of System properties that
make the applicaiton behave like a native one

© appl e. | af . useScr eenMenuBar - if set to true will force the application's menu bar to appear at the
top. Griffon setsits valueto true.
© com appl e. nrj.application. appl e. nenu. about . nane - sets the name that will appear next to
the About menu option.
Java applications running on MacOSX also have the option to register handlers for About , Pr ef er ences and
Qui t menu options. The default handlers will trigger an specific application event each. These events can be
disabled with acommand flag setingri f f on- app/ conf/ Confi g. gr oovy. Thefollowing table outlines the
events, flags and the default behavior when the flags are enabled

Event Fired when Flag Default behavior
OSXAbout user activates About menu osx.noabout Default about dialog is displayed

OSXPrefs user activates Preferences menu osx.noprefs No Preferences menu is available

OSXQuit  user activates Quit menu osx.noquit  Application shutdowns immediately

74


http://developer.apple.com/library/mac/#documentation/UserExperience/Conceptual/AppleHIGuidelines/XHIGIntro/XHIGIntro.html

75

6. Models and Binding

This section describe models and all binding options.
6.1 Models

Models are very simple in nature. Their responsibility is to hold data that can be used by both Controller and View to
communicate with each other. In other words, Models are not equivalent to domain classes.

Models can be observable by means of the @Bindable AST Transformation. This actually simplifies setting up
bindings so that changesin the Ul can automatically be sent to model properties and vice versa.

@Bindable will inject aj ava. beans. Propert yChangeSupport field and all methods required to make the
model an observable class. It will also make sure that a Pr oper t yChangeEvent isfired for each observable
property whenever said property changes value.

Thefollowing isalist of al methods added by @Bindable

© voi d addPropertyChangeli stener (PropertyChangeLi stener |i stener)

© voi d addPropertyChangelLi stener(String propertyNamne,
PropertyChangelLi stener i stener)

© voi d renovePropertyChangelLi st ener ( PropertyChangelLi stener |istener)

© voi d renovePropertyChangelLi stener(String propertyNane,
Pr opert yChangelLi stener |i stener)

© PropertyChangelLi stener[] get PropertyChangelLi st eners()

© PropertyChangelLi stener[] getPropertyChangelLi steners(String propertyNane)

© void firePropertyChange(String propertyName, Object ol dval ue, noject
newval ue)

Thefollowing isalist of al methods added by @V etoable

© voi d addVet oabl eChangeli st ener ( Vet oabl eChangeLi stener |i stener)
© voi d addVet oabl eChangelLi stener (Stri ng propertyNamne,
Vet oabl eChangelLi st ener |i stener)
© voi d renoveVet oabl eChangelLi st ener ( Vet oabl eChangelLi st ener 1i stener)
© voi d renpveVet oabl eChangelLi st ener (String propertyNane,
Vet oabl eChangelLi st ener 1istener)
© Vet oabl eChangelLi st ener[] get Vet oabl eChangelLi st eners()
© Vet oabl eChangelLi st ener[] get Vet oabl eChangelLi steners(String propertyNane)
© void fireVetoabl eChange(String propertyName, Object ol dval ue, noject
newval ue)
Another annotation, @Listener, helpsyou register Pr oper t yChangelLi st ener s without so much effort. The
following code

i mport griffon.transform Propertyli stener

i mport groovy. beans. Bi ndabl e

@r opertyLi stener(snoopAll)

cl ass MyMbdel {
def controller
@i ndabl e String nane
@i ndabl e
@ropertyListener({controller.someAction(it)})
String | astname
def snoopAll = { evt -> ...}

is equivalent to this one


http://groovy.codehaus.org/Bindable+and+Vetoable+transformation

i mport groovy. beans. Bi ndabl e
i nport java. beans. PropertyChangelLi st ener
cl ass MyMbdel {
def controller
@i ndabl e String nane
@i ndabl e String | astnane
def snoopAll = { evt -> ...}
My/Model () {
addPr opert yChangelLi st ener (snoopAl | as PropertyChangelLi st ener)
addPr opert yChangelLi st ener (' | ast nane’
control |l er.soneAction(it)
} as PropertyChangelLi stener)

@PropertyListener accepts the following values

© in-place definition of aclosure
© reference of aclosure property defined in the same class
© alist of any of the previoustwo

6.2 Binding

Binding in Griffon is achieved by leveraging Java Beans Pr oper t yChangeEvent and their related classes, thus
binding will work with any class that fires this type of event, regardless of its usage of @Bindable or not.

6.2.1 Syntax

These are the three options for writing a binding using the bi nd node

" Long
The most complete of al three, you must specify both ends of the binding explicitly. The following snippet sets an
unidirectional binding frombeanl. pr opl tobean2. prop2

bi nd(source: beanl, sourceProperty: 'propl
target: bean2, targetProperty: 'prop2')

= Contextual
This type of binding can assume either the sources or the targets depending on the context. The following snippets
set an unidirectional binding from beanl. pr opl to bean2. prop2

® |mplicit source

bean(beanl, propl: bind(target: bean2, targetProperty: 'prop2'))

" Implicit target

bean(bean2, prop2: bind(source: beanl, sourceProperty: 'propl'))

When used in thisway, either sour ceProperty: ortarget Property: canbeomitted; the bind node's value
will become the property name, in other words

bean(beanl, propl: bind('prop2', target: bean2))

® Short

76



This type of binding is only useful for setting implicit targets. It expects a closure as the definition of the binding
value

bean(bean2, prop2: bind{ beanl.propl })

6.2.2 Additional Properties

The following properties can be used with either the long or contextual binding syntax

" mutual:
Bindings are usually setup in one direction. If this property is specified with avalue of t r ue then abidirectional

binding will be created instead.

i mport groovy. beans. Bi ndabl e
i mport groovy.sw ng. Swi ngBui | der
cl ass MyModel

@i ndabl e String val ue

}

def nmodel = new MyModel ()

def swing = new Sw ngBuil der ()

swi ng. edt {

frame(title: 'Binding', pack: true, visible: true) {

gridLayout (cols: 2, rows: 3)
| abel ' Nornmal'
text Fi el d(col ums: 20, text: bind('value', target: nodel))
| abel ' Bidirectional’
textField(colums: 20, text: bind('value', target: nodel, nutual: true))
| abel ' Model'
textField(colums: 20, text: bind('value', source: nodel))

Typing text on textfield #2 pushes the value to model, which in turns updates textfield #2 and #3, demonstrating that
textfield #2 listens top model updates. Typing text on textfield #2 pushes the value to textfield #3 but not #1,
demonstrating that textfield #1 is not a bidirectiona binding.

= converter:
Transforms the value before it is sent to event listeners.

i mport groovy. beans. Bi ndabl e
i nport groovy.sw ng. Swi ngBui | der
cl ass MyModel {

@i ndabl e String val ue

def convertValue = { val ->
"*'o* yal ?.size()

}

def nodel = new MyModdel ()

def swing = new Sw ngBuil der ()

swi ng. edt {

frame(title: 'Binding', pack: true, visible: true) {

gridLayout (cols: 2, rows: 3)
| abel " Nornal
text Fi el d(col ums: 20, text: bind('value', target: nodel))
| abel ' Converter'
text Fi el d(col ums: 20, text: bind('value', target: nodel, converter: convert Val ue))
| abel ' Mbdel'
text Fi el d(col ums: 20, text: bind('value', source: nodel))

Typing text on textfield #1 pushes the value to the model as expected, which you can inspect by looking at textfield
#3. Typing text on textfield #2 however transform's every keystroke into an ™' character.

= validator:
Guards the trigger. Prevents the event from being sent if the return valueisf al se or nul | .



i mport groovy. beans. Bi ndabl e
i nport groovy.sw ng. Swi ngBui | der
cl ass MyModel {

@i ndabl e String val ue

}
def isNunber = { val ->
if(lval) return true
try {
Doubl e. par seDoubl e(val )
} cat ch(Nurber For mat Exception e) {
fal se

}

def nodel = new MyModdel ()

def swing = new Sw ngBuil der ()

swi ng. edt {

frame(title: 'Binding', pack: true, visible: true) {

gridLayout (cols: 2, rows: 3)
| abel " Nornal
textFi el d(col ums: 20, text: bind('value', target: nodel))
| abel ' Converter'
text Fi el d(col ums: 20, text: bind('value', target: nodel, validator: isNunber))
| abel ' Mbdel'
text Fi el d(col ums: 20, text: bind('value', source: nodel))

Y ou can type any characters on textfield #1 and see the result in textfield #3. Y ou can only type numbers on textfield
#2 and seetheresult in textfield #3

This type of validation is not suitable for semantic validation (a.k.a. constraints in domain
classes). Y ou would want to have alook at the Validation plugin.

" sourceEvent:
Maps a different event type, instead of Pr opert yChangeEvent .

® sourceValue
Specify avalue that may come from a different source. Usually found in partnership with sour ceevent .

i mport groovy. beans. Bi ndabl e
i mport groovy.sw ng. Swi ngBui | der
cl ass MyModel

@i ndabl e String val ue

}
def nodel = new MyModel ()
def swing = new Swi ngBuil der ()
swi ng. edt {
frame(title: 'Binding', pack: true, visible: true) {
gridLayout (cols: 2, rows: 3)
| abel ' Text'
textField(colums: 20, id: "tfl")
| abel ' Trigger'
button(' Copy Text', id: '"btl')
bi nd(source: bt1,
sour ceEvent: ' acti onPerforned',
sourceVal ue: {tfl.text},
target: nodel,
targetProperty: 'value')
| abel ' Model'
textField(colums: 20, text: bind('value', source: nodel))

A contrived way to copy text from one textfield to another. The copy is performed by listening to Act i onEvent s
pumped by the button.

78


http://gvalidation.sourceforge.net/

79

7.Views

Views are responsible for defining how the application looks like. View scripts are always executed in the context of
an UberBuilder, which means that Views have access to all nodes, properties and methods contributed by builders
configured in Bui | der . gr oovy.

Views can reference directly both the nbdel and cont r ol | er instances that belong directly to their own MVC

group.
View scripts are where you would usually setup bindings with their corresponding model instances.

7.1 Views and Swing

Views are usually written as Groovy scripts that create the Ul by composing elements using builder nodes. Griffon
supports al nodes provided by SwingBuilder by default. A typical View looks like this

package | ogin
actions {
action(id: 'loginAction',
nanme: 'Login',
enabl ed: bi nd{ nodel . enabl ed },
cl osure: controller.|ogin)

}
application(title: 'Some title', pack:true,
| ocati onByPl at form true,
i conl mage: imagelcon('/griffon-icon-48x48.png').inage,
i conl mages: [imagelcon('/griffon-icon-48x48.png').i mge,
i magel con('/griffon-icon-32x32.png').i nage,
i mgelcon('/griffon-icon-16x16.png').imge]) {
gridLayout (cols: 2, rows: 3)
| abel " Usernane:'
textField colums: 20, text: bind('username', target: nodel)
| abel ' Password:'
passwor dFi el d col ums: 20, text: bind('password', target: nodel)
| abel "'
button | ogi nAction

The resulting Ul may ook like this

LG Some title
Username: griffon
Password: LY
{ Login j',

It is pretty evident that changing layouts will greatly improve how this application looks. Additional nodes can be
configuredingri f f on- app/ conf/ Bui | der. gr oovy, the Griffon runtime will make sure to setup the builder
correctly. Here's an example with JideBuilder nodes used to setup atop banner. It also relies on MigLayout to
arrange the components in a better way


http://groovy.codehaus.org/Swing+Builder
http://griffon.codehaus.org/JideBuilder
http://miglayout.com

package | ogin
i nport java.awt. Col or
actions {
action(id: 'loginAction',
nane: 'Login',
enabl ed: bi nd{ nodel . enabl ed },
cl osure: controller.|ogin)

application(title: 'Some title', pack:true,
| ocati onByPl at form true,
i conl mage: imagelcon('/griffon-icon-48x48.png').inage,
i conl mages: [imagel con('/griffon-icon-48x48.png').i mage,
i magelcon('/griffon-icon-32x32.png').i nage,
i magel con('/griffon-icon-16x16.png').imge]) {
m gLayout (| ayout Constraints: 'fill")
banner Panel (constraints: 'span 2, growx, wap',
title: 'Login',
subtitle: '"Please enter your credentials',
titlelcon: inmagelcon('/griffon-icon-48x48.png'),
border: |ineBorder(color: Color.BLACK, thickness: 1),
subTi tl eCol or: Col or.WH TE,
background: new Col or(0,0,0, 1),
start Col or: Col or. VWH TE,
endCol or: Col or. BLACK,
vertical: true)

| abel 'Usernane:', constraints: 'left'
textField colums: 20, text: bind('username', target: nodel), constraints: 'wap'
| abel 'Password:', constraints: 'left'

passwor dFi el d col ums: 20, text: bind('password' , target: nodel), constraints: 'wap'
button | ogi nAction, constraints: 'span 2, right'

ey Some title

Please enter your credentials

Username: griffon

Password: sessss

You'll need to install 2 pluginsif you intend to run this application: jide-builder and miglayout. Here's the rest of the
application, first the model

package | ogin
i mport groovy. beans. Bi ndabl e
import griffon.transform PropertylLi stener
@r opertylLi st ener (enabl er)
cl ass Logi nMvbdel
@i ndabl e String usernane
@i ndabl e String password
@i ndabl e bool ean enabl ed
private enabler = { evt ->
i f(evt.propertyName == 'enabled') return
enabl ed = usernane && password

Then the controller

80


http://griffon.codehaus.org/JideBuilder+Plugin
http://griffon.codehaus.org/Miglayout+Plugin

81

package | ogin
i nport javax.sw ng. JOpti onPane
cl ass LoginControl ler {
def nodel
def login = {
JOpt i onPane. showivessageDi al og( app. wi ndowivanager . wi ndows[ 0] ,

user nane = $nodel . user nane
password = $nodel . password
"t"".ostriplndent(14).toString())

There are many plugins that will contribute additional nodes that can be used on Views.
7.2 Special Nodes

The rule of thumb to find out the node name of a Swing classisthis:

© dropthefirst J from the class name
© uncapitalize the next character
Examples

© JButton=>button

© JLabel =>1 abel
Thisrules apply to all Swing classes available in the JDK. There are afew additional nodes that provide a special
function, which will be explained next.

7.2.1 Application

Provided by: Griffon
This node defines atop level container depending on the current running mode. It it's STANDAL ONE or WEBSTART
it will create a Window subclass according to the following rules:

© classnamedefinedinapp. confi g. appl i cati on. f ramed ass (configuredin
Appl i cati on. gr oovy)

o JXFr ane if SwingX isavailable

© JFrane if al othersfail
There's a dlight change for the APPLET run mode, the container returned for the first invocation of the
appl i cat i on node will be the applet itself, for al othersthe previous rules apply.
Of all the properties suggested by the default template you'll noticei conl mage andi conl mages. Thefirst
property is astandard property of JFr ane. It'susually defines the icon to be displayed at the top of the frame (on
platforms that support such setting). The second property (i conl mages) is aJdk6 addition to
j ava. awt . W ndow. This property instructs the window to select the most appropriate icon according to platform
preferences. Griffon ignores this setting if running in Jdk5. This property overrides the setting specified for
i conl mage if its supported in the current Jdk and platform.

7.2.2 Container
Provided by: SwingBuilder

Thisis a pass through node that accepts any Ul component as value. This node allows nesting of child content. It's
quite useful when what you need is to embed a custom component for which a node is not available, for example

cont ai ner (new MyCust onPanel ()) {
| abel ' Groovy is cool"'
}

7.2.3 Widget

Provided by: SwingBuilder

Thisis a pass through node that accepts any Ul component as value. As opposed to cont ai ner , this node does not
allow nesting of child content. It's quite useful when what you need is to embed a custom component for which a
node is not available, for example


http://griffon.codehaus.org/Plugins
http://download.oracle.com/javase/6/docs/api/javax/swing/JFrame.html#setIconImage(java.awt.Image)
http://download.oracle.com/javase/6/docs/api/java/awt/Window.html#setIconImages(java.util.List)

wi dget (new MyCust onDi spl ay(), title: 'Goovy') {

7.2.4 Bean

Provided by: SwingBuilder
Thisisacatch-all node, it allows you to set properties on any object using the builder syntax, for example setting up
bindings on a model

textField colums: 20, id: usernane
bean(nodel , val ue: bind{ usernane.text })

The previous code is equivalent to

textField colums: 20, text: bind('value', target: nodel)

7.2.5 Noparent

Provided by: SwingBuilder
Child nodes are always attached to their parents, there are times when you explicitly don't want that to happen. If that
is the case then wrap those nodes with nopar ent

panel {
gridLayout (cols: 2, rows: 2)
button('Cick 1', id: ")
button('dick 2', id: )
button('Click 3, id: b2")
button('Cdick 4', id: )
/1 the following lin |
/1 to be reordered
/1 bean(buttonl, text: 'Cick 11')
nopar ent {
/1 this is safe, buttons do not change pl aces
bean(buttonl, text: 'dick 11')

cause the buttons

7.2.6 Root

Provided by: Griffon

Identifies the top level node of a secondary View script. View scripts are expected to return the top level node,
however there may be times when further customizations prevent this from happening, for example wiring up a
custom listener. When that happens the result has to be made explicit otherwise the script will return the wrong
value. Using ther oot () node avoids forgetting this fact while also providing an alias for the node.

Secondary view script named " SampleSecondary™

r oot (
tree(id: 'mytree')

mytree. addTr eeSel ecti onMbdel (new Def aul t TreeSel ecti onMbdel () {
})

Primary view script named " SampleView"

82




83

bui | d( Sanpl eSecondar y)
application(title: 'Sample') {
bor der Layout ()
| abel ' Options', constraints: NORTH
wi dget root ( Sanpl eSecondar y)

This node accepts an additional parameter nane that can be used to override the default alias assigned to the node. If
you specify avalue for this parameter when the node is built then you'll need to use it again to retrieve the node.



8. Controllersand Services
This section describes the artifacts that hold the logic of a Griffon application.

8.1 Controllers

Controllers are the entry point for your application's logic. Each controller has access to their model and view
instances from their respective MV C group.
Controller actions are usually defined using a closure property form, like the following one

class MyController {
def someAction = { evt = null ->
/1 do sone stuff
}

It isalso possible to define actions as methods, however the closure property formis preferred (but not enforced).
The caveat is that you would need to tranglate the method into a M ethodClosure when referencing them form aView
script. In the following example the action ‘actionl' is defined as a closure property, whereas the action ‘action2' is
defined as a method

application(title: 'Action sanple', pack: true) {
gridLayout (cols: 2, rows: 1) {
button 'Action 1', actionPerfornmed: controller.actionl
button 'Action 2', actionPerformed: controller. &ction2

}

Actions must follow these rules in order to be considered as such:

must have public (Java) or default (Groovy) visibility modifier.
name does not match an event handler, i.e, it does not begin with on.
mustpassGi ffond assUtils.isPl ai nMet hod() if it'samethod.
must have voi d asreturn typeif it's a method.

© value must be a closure (including curried method pointers) if it's a property.
Controllers can perform other tasks:

O O O O

listen to application events.

create and destroy MV C groups viaa pair of methods (createMV CGroup, destroyMV CGroup).
react to MV C initialization/destruction viaa pair of methods (mvcGrouplnit, mvcGroupDestroy).
hold service references.

O O O O

8.1.1 Threads and Actions

A key aspect that you must always keep in mind is proper threading. Often times controller actions will be bound in
response to an event driven by the Ul. Those actions will usualy be invoked in the same thread that triggered the
event, which would be the Ul thread. When that happens you must make sure that the executed code is short and that
it quickly returns control to the Ul thread. Failure to do so may result in unresponsive applications.

The following example is the typical use case that must be avoided



85

cl ass BadControl |l er {
def badAction = {
def sqgl = Sgl . new nstance(
app. confi g. dat asource. url
nodel . user namne,
nodel . passwor d,
app. confi g. dat asour ce. dri ver

nmodel . products. cl ear ()
sql . eachRow( "sel ect * from products") { product ->
nmodel . products << [product.id, product.name, product.price]

sql . cl ose()

There are two problems here. First the database connection is established inside the Ul thread (which takes precious
milliseconds or even longer), then atable (which could be arbitrarily large) is queried and each result sent to a List
belonging to the model. Assuming that thelist is bound to a Table Model then the Ul will be updated constantly by
each added row; which happens to be done all inside the Ul thread. The application will certainly behave slow and
sluggish, and to top it off the user won't be able to click on another button or select a menu item until this actions has
been processed entirely.

Chapter 9 will discuss with further detail the options that you have at your disposal to make use of proper threading
constructs. Here'sa quick fix for the previous controller

cl ass GoodControl ler {
def goodAction = {
execQut si deUl {

def sql = nul
try {
sql = Sgl . newl nst ance(

app. confi g. dat asour ce. url
nodel . user nane,
nodel . password,

app. confi g. dat asource. dri ver

List results =[]
sql . eachRow "sel ect * from products") { product ->
results << [product.id, product.nanme, product.price]

execl nsi deU Async {
nmodel . product s. cl ear ()
nodel . addAl | (resul ts)

} fi%ally {
sql 2. cl ose()

However starting with Griffon 0.9.2 you're no longer required to surround the action code with execQut si deUl as
the compiler will do it for you. This feature breaks backward compatibility with previous releases so it's possible to
disableit altogether. Please refer to section 4.7.5 Disable Threading Injection. This feature can be partially
enabled/disabled too. Y ou can specify with absolute precision which actions should have this feature enabled or
disabled, by adding the following settingsto gri f f on- app/ conf/ Bui | dConfi g. gr oovy

conpi l er {
threadi ng {
sanpl e {
Sanpl eControl | er {
actionl = fal se
action2 = true

FooController = fal se

bar = fal se




The compiler will evaluate these settings as follows:

© theaction identified by sanpl e. Sanpl eControl | er. acti onl will not have automatic threading
injected into its code, while sanpl e. Sanpl eControl | er. acti on2 (and any other found in the same
controller) will have it.

o dl actions belonging to sanpl e. FooCont r ol | er will not have automatic threading injected.

© dl actions belonging to all controllersinthe bar package will not have threading injected.

Automatic threading injection only works for Groovy based controllers. Y ou must add
appropriate threading code to controller actions that are written in languages other than
Groovy.

8.2 Services

Services are responsible for the application logic that does not belong to a single controller. They are meant to be
treated as singletons, injected to MV C members by following a naming convention. Services are optional artifacts,
and as such thereis no default folder created for them when anew application is created.

Services must be located insidethe gri f f on- app/ ser vi ces directory witha Ser vi ce suffix. The
create-service command performs this job for you; also adding a unit test for the given service.

Let's say you need to create a Math service, the command to invoke would be

griffon create-service math

Thisresultsin the following files being created

© griffon-app/services/ Mat hServi ce. gr oovy - the service class.

© test/unit/MathServiceTests. groovy - service unit test.
A trivial implementation of an addition operation performed by the MathService would look like the following
snippet

cl ass Mat hServi ce {
def addition(a, b) { a + b}
}

Using this service from a Controller is astraight forward task. As mentioned earlier services will be injected by
name, which means you only need to define a property whose name matches the uncapitalized service name, for
example

class MyController {
def mat hService
def action = {
nodel . result = mat hServi ce. additi on nodel .a, nodel.b
}

The type of the service classis optional as basic injection is done by name aone.

Serviceinjection istrivia, it does not provide afull blown DI, in other words further service
dependencies will not be resolved. Y ou will need aricher DI solution in order to achieve this,
fortunately there isa Spring plugin that does this and more.

Given that services are inherently treated as singletons they are also automatically registered as application event
listeners. Be aware that services will be instantiated lazily which means that some events might not reach a particular

86


http://griffon.codehaus.org/Spring+Plugin

87

service if it has not been instantiated by the framework by the time of event publication. It also discouraged to use
the @Singleton annotation on a Service class asit will cause trouble with the automatic singleton management
Griffon hasin place.

Lastly, all servicesinstances will become available through an instance of type

griffon. core. Servi ceManager . Thishelper class exposes available services viaaMap. Y ou can query al
currently available servicesin the following manner

app. servi ceManager . servi ces. each { nanme, instance ->
/1 do sonmething cool with services
}

Y ou can also query for a particular service instance in the following way

def fooService = app.servi ceManager.findService('foo')

It's worth mentioning that the previous method will instantiate the service if it wasn't available up to that point.
All services are instantiated |azily by default. Y ou can change this behavior by adding a configuration flag to
Confi g. gr oovy

griffon.services.eager.instantiation = true




9. Threading

Building a well-behaved multi-threaded desktop application has been a hard task for many years, however it does not
have to be that way anymore. The following sections explain the threading facilities exposed by the Griffon
framework.

Prior to version 0.9.2 Controller actions were called in the same thread that published the
event; most of the times this thread would be the Ul thread. From 0.9.2 and onwards
Controller actions will be executed outside of the Ul thread. This feature can be disabled
altogether or in a per case basis as explained in section 8.1.1.

9.1 Swing Threading

The Swing toolkit has asingle golden rule: all long computations must be performed outside of the Event
Dispatch Thread (or EDT for short). Thisrule also states that all interaction with Ul components must be done
insidethe EDT, including building a component and reading/writing component properties. See Concurrency
in Swing for more information.

Often times this rule can be broken easily as there is no compile time check for it. The Swing toolkit offers a helper
classSwi ngUti | i ti es that exposesapair of method that let you run code inside the EDT, however thereis no
helper method for running code outside of the EDT

SwingBuilder provides afew methods that let you build multi-threaded applications the easy way. These methods are
availablein Views and Controllers.

9.1.1 Synchronous Calls

Synchronous callsinside the EDT can be achieved by calling the edt { } method. This method is smarter than plain
SwingUtilities.invokeAndWait asitwon't throw an exception if caled inside the EDT, on the contrary, it
will simply call the block of code it was given.

Example:

class MyController {
def node
def actionl = {
/1 will be invoked inside the EDT by default (pre 0.9.2)
def val ue = nodel . val ue
Thread. start {
/1 do sone cal cul ations
edt {
/1 back inside the EDT
nodel .result = ..

}
}

def action2 = {
/1 will be invoked outside of the EDT by default (post 0.9.2)
def val ue = nodel . val ue
/! do sone cal cul ati ons
edt {
/'l back inside the EDT
nodel .result = ..

}

9.1.2 Asynchronous Calls

Asynchronous callsinside the EDT can be made by calling the doLat er {} method. This method simply posts a
new event to the underlying EventQueue using Swi ngUti i ti es. i nvokelLat er, meaning you spare afew
characters and a class import.

Example:

88


http://download.oracle.com/javase/tutorial/uiswing/concurrency/index.html
http://download.oracle.com/javase/tutorial/uiswing/concurrency/index.html

89

class MyController {
def node
def actionl = {
/1 will be invoked inside the EDT by default (pre 0.9.2)
def val ue = nodel . val ue
Thread. start {
/1 do sone cal cul ations
doLater {
/1 back inside the EDT
nodel .result = ..

}

def action2 = {
/1 will be invoked outside of the EDT by default (post 0.9.2)
def val ue = nodel . val ue
/! do sone cal cul ations
doLater {
/1 back inside the EDT
nodel .result = ..

9.1.3 Outside Calls

The previous two examples showed a simple way to execute code outside of the EDT, simply put they spawn a new
Thread. The problem with this approach is that creating new threads is an expensive operation, also you shouldn't
need to create a new thread if the code is already being executed outside of the EDT.

ThedoCQut si de{} method takes these concerns into account, spawning a new thread if and only if the code is
currently being executed inside the EDT. A rewrite of the previous example would be thus

class MyController {
def node
def actionl = {
/1 will be invoked inside the EDT by default (pre 0.9.2)
def val ue = nodel . val ue
doQut si de {
// do sone cal cul ations
doLater {
/'l back inside the EDT
nmodel .result = ..

}

def action2 = {
/1 will be invoked outside of the EDT by default (post 0.9.2)
def val ue = nodel . val ue
/1 do sone cal cul ations
doLater {
/'l back inside the EDT
nodel .result = ..
doQut si de {
// do nmore cal cul ations
}

9.2 Toolkit-agnostic Threading

Swing is not the only toolkit supported by Griffon. For those additional toolkits the three methods exposed in the
previous sections (edt, doL ater, doOutside) make no sense, however running code inside the Ul thread in a
synchronous/asynchronous way, as well as outside of it is something you must keep in mind.

The following sections outline toolkit-agnostic threading options, which can also be used with Swing in case you're
wondering. These methods are available to all classes that implement the griffon.core.GriffonArtifact or
griffon.core.GriffonApplication interfaces.

9.2.1 Synchronous Calls
Synchronous calls inside the Ul Thread are made by invoking the execl nsi deUl Sync{} method. This method is




equivalent to calling edt { } in Swing.
Example:

class MyController {
def node
def actionl = {
/1 will be invoked inside the U thread by default (pre 0.9.2)
def val ue = nodel . val ue
Thread. start {
// do sone cal cul ations
execl nsi deU Sync {
/! back inside the U thread
nodel .result = ..

}

def action2 = {
/1 will be invoked outside of the U thread by default (post 0.9.2)
def val ue = nodel . val ue
// do some cal cul ations
execl nsi deU Sync
/] back inside the U thread
nodel .result = ..

9.2.2 Asynchronous Calls

Similarly to synchronous calls, asynchronous calls inside the Ul Thread are made by invoking the
execl nsi deUl Async{} method. This method is equivaent to calling doLat er {} in Swing.
Example:

class MyController {
def nodel
def actionl = {
/1 will be invoked inside the U Thread by default (pre 0.9.2)
def val ue = nodel . val ue
Thread. start {
/] do sone cal cul ations
execl nsi deUl Async {
/1 back inside the U Thread
nmodel .result = ..

}

def action2 = {
/1 will be invoked outside of the U Thread by default (post 0.9.2)
def val ue = nodel . val ue
/1 do sone cal cul ations
execl nsi deUl Async {
/1 back inside the U Thread
nodel .result = ..

9.2.3 Outside Calls

Making sure a block of code is executed outside the Ul Thread is made by invoking the execQut si deUl {}
method. This method is equivalent to calling doQut si de{} in Swing.
Example:

90



class MyController {
def nodel
def actionl = {
/1 will be invoked inside the U Thread by default (pre 0.9.2)
def val ue = nodel . val ue
execCQut si deUl {
// do some cal cul ations
execl nsi deU Async {
/'] back inside the U Thread
nmodel .result = ..

}

def action2 = {
/1 will be invoked outside of the U Thread by default (post 0.9.2)
def val ue = nodel . val ue
/! do sone cal cul ations
execl nsi deU Async {
/! back inside the U Thread
nodel .result = ...
execCQut si deUl {
// do nmore cal cul ations
}

9.2.4 Additional M ethods

There are two additional methods that complement the generic threading facilities that Griffon exposes to the
application and its artifacts

© isU Thread() - returnstrueif the current thread is the Ul Thread, false otherwise. Functionally equivalent
tocalingSwi ngUtilities.isEvent D spat chThread() in Swing.

o execFut ure(ExecutorService s, Cosure c) -schedulesaclosureon the target
ExecutorService. The executor service can be left unspecified, if so adefault Thread pool executor (with 2
threads) will be used.

© execFut ure(ExecutorService s, Callable c) -schedulesacalableon thetarget
ExecutorService. The executor service can be left unspecified, if so adefault Thread pool executor (with 2
threads) will be used.

9.3 Annotation Based Threading

Starting with Griffon 0.9.2 there's also the possibility to define an specific thread execution policy for methods and
properties via annotations

Thisfeatureis only available for Groovy code at the moment asit relies on the AST
Transformation framework.

Y ou must annotate a method or property with @ri f f on. t r ansf or m Thr eadi ng and define avalue of type
griffon.transform Threadi ng. Pol i cy (though the annotation uses

Thr eadi ng. Pol i cy. QUTSI DE_UI THREAD by default). Annotated methods and properties must conform to
theserules

© must be public.

© name does not match an event handler.

© mustpassGiffonC assUtils.isPlai nMet hod() if it'samethod.
O

must have voi d asreturn typeif it's a method.
© itsvaue must be aclosure (including curried method pointers) if it's a property.
Here'satrivial example



package sanpl e
i mport griffon.transform Threadi ng
cl ass Sanmpl e {
@hr eadi ng
voi d doStuff() {
/| executed outside of the U thread

}
@hr eadi ng( Thr eadi ng. Pol i cy. | NSI DE_Ul THREAD_SYNC)
void moreStuff() {

/'l executed synchronously inside the U thread

}
@hr eadi ng
def work = {
/'l executed outside of the U thread

}
@hr eadi ng( Thr eadi ng. Pol i cy. | NSI DE_Ul THREAD_SYNC)
def update = {

/'l executed synchronously inside the U thread
}

It isworth noting that a @ 'hr eadi ng annotation applied to a Controller's action/method will take precedence, this
means you can force an specific threading policy on a Controller action other than the default one.

package sanpl e
cl ass Sanpl eControl |l er {
@hr eadi ng( Thr eadi ng. Pol i cy. | NSI DE_Ul THREAD_ASYNC)
def popupDi al og = {
/] build and show t he dial og

def equi val ent PopupDi al og = {
execl nsi deU Async {
/] build and show t he dial og
}

92



93

10. Testing

Automated testing is seen as akey part of Griffon, implemented using Groovy Tests. Hence, Griffon provides many
ways to making testing easier from low level unit testing to high level integration tests. This section details the
different capabilities that Griffon offersin terms of testing.

Thefirst thing to be aware of isthat all of the cr eat e- * commands actually end up creating uni t tests
automatically for you. For example say you run the create-mvc command as follows:

griffon create-m/c com yourconpany. yourapp. si npl e

Not only will Griffon create an MV C group with a controller at

griffon-app/controllers/com yourconpany/yourapp/ Si npl eControl |l er. groovy, butaso
an integration test at

test/integration/coniyourconpany/yourapp/ Si npl eControl | er Tests. groovy. What
Griffon won't do however is populate the logic inside the test! That is left up to you.

Asof Griffon 0.9, the suffix of Test isalso supported for test cases.

Running Tests
Test are run with the test-app command:

griffon test-app

The above command will produce output such as:

Running Unit Tests...
Runni ng test FooTests...FAl LURE
Unit Tests Conpleted in 464ns ...

Tests failed: 0 errors, 1 failures

Whilst reports will have been written out thet ar get / t est - r epor t s directory.

Y ou can force a clean before running tests by passing - cl ean tothet est - app command.

Targeting Tests

Y ou can selectively target the test(s) to be run in different ways. To run all tests for a controller named
Si mpl eCont r ol | er youwould run:

griffon test-app SinpleController

Thiswill run any tests for the classnamed Si npl eCont r ol | er . Wildcards can be used...

griffon test-app *Controller



http://groovy.codehaus.org/Testing+Guide

Thiswill test al classesendingin Cont r ol | er . Package names can optionally be specified...

griffon test-app sone.org.*Controller

or to run al testsin a package...

griffon test-app sone.org.*

or to run al tests in a package including subpackages...

griffon test-app sone.org. **

Y ou can also target particular test methods...

griffon test-app SinpleController.testLogin

Thiswill runthet est Logi n testinthe Si npl eCont rol | er tests. You can specify as many patternsin
combination asyou like...

griffon test-app sone.org.* SinpleController.testLogin BookController

Targeting Test Typesand/or Phases

In addition to targeting certain tests, you can also target test types and/or phases by using the phase: t ype syntax.

Griffon organises tests by phase and by type. A test phase relates to the state of the Griffon
application during the tests, and the type relates to the testing mechanism.

Griffon comes with support for 3 test phases (uni t , i nt egr at i on, and ot her ) and JUnit
test typesfor theuni t andi nt egr at i on phases. These test types have the same name as
the phase.

Testing plugins may provide new test phases or new test types for existing phases. Refer to
the plugin documentation.

To execute the JUnit i nt egr at i on testsyou can run:

griffon test-app integration:integration

Both phase andt ype are optional. Their absence acts as awildcard. The following command will run all test types
intheuni t phase:

griffon test-app unit:

The Griffon Spock Plugin is one plugin that adds new test typesto Griffon. It addsaspock test type to the uni t

94


http://griffon.codehaus.org/Spock+Plugin

95

andi nt egr ati on phases. To run al spock testsin all phases you would run the following:

griffon test-app :spock

Toruntheall of the spock testsinthei nt egr at i on phase you would run...

griffon test-app integration: spock

More than one pattern can be specified...

griffon test-app unit:spock integration: spock

Targeting Testsin Typesand/or Phases

Test and type/phase targetting can be applied at the same time:

griffon test-app integration: unit: sone.org.**

Thiswould run all testsinthei nt egr at i on and uni t phasesthat are in the page sone. or g or a subpackage of.
10.1 Unit Testing

Unit testing are tests at the "unit" level. In other words you are testing individual methods or blocks of code without
considering for surrounding infrastructure. The following is an unit test created using the default template

import griffon.test.*
cl ass SoneUnitTests extends GiffonUnitTestCase {
protected void setUp() {
super . set Up()

protected void tearDown() {
super . t ear Down()

i/oi d test Sonet hing() {

Y ou have access to all mocking facilities exposed by GriffonUnitTestCase within this test.

10.2 Integration Testing

Integration tests differ from unit testsin that you have full access to the Griffon application within the test. The
following is an integration test created using the default template



i mport griffon.core.GiffonApplication
inmport griffon.test.*
cl ass SoneControl |l erTests extends GiffonUnitTestCase {
G i ffonApplication app
protected void setUp() {
super . set Up()

}
protected void tearDown() {
super . t ear Down()

voi d test Sonet hing() {

As with unit tests, you have access to all mocking facilities exposed by GriffonUnitTestCase within this test, but you
also have access to afull running Griffon application. By default this application is bootstrapped to the INITIALIZE
phase. It's up to you to instruct the application to move to another phase depending on what you want to test (refer to
startup(),ready(),realize() andshow() methods).

The type of application to be run depends on the type of project and/or a configuration flag as explained next:

° if aconfigurationflaggri f f on. appl i cati on. mai nCl ass existsthen its value will be used (assumes
thevalueisalitera full quaified class).

© if theprojectisan addon thenit will usegri ff on. t est. nock. MockAppl i cati on

© finaly it will fall back togri f f on. swi ng. Swi ngAppl i cati on

10.3 Mocking

Mocking is but one of the many alternatives you have at your disposal to reduce complexity while setting up atest
that requires a good number of components to be setup before actually testing the real class under test. Griffon
provides a few mocking helper methods and classes, which will be discussed next.

10.3.1 MockGriffonApplication

MockGi ffonAppl i cationisafully functional GriffonApplication with the advantage that it lets you override
the location of all configuration classes: Appl i cati on, Bui | der, Confi g and Event s.

If you choose to change the default Ul Thr eadHandl er then you must do it so right after
the application has been instantiated and no other operation that requires multi-thread access
has been called, otherwise you won't be able to change it's value.

By default, a MockGriffonA pplication defines the following:

© MockAppl i cati on - setups a'mock’ MV C group with 3 elements:. MockMbodel , MockVi ewand
MockControl | er
© MockBui | der Conf i g - definesasingle builder entry: gri f f on. t est . mock. MockBui | der
© MockConfi g - definesasingle config entry: nocked = true
© MockEvent s - defines an event handler for '‘Mock'
The remaining classes have these settings:

© MbckBui | der - asingle node named nock that returns a map with any properties that were defined on the
node.

© MbockModel - aloneobservable property val ue of type String.

© MockVi ew- simple script that calls the nock node defined by the builder.

© MockControl | er -acontroller with no actions.

96



97

11. Packaging and Deployment

Griffon can package applicationsin several modes. There are 4 modes supported by default: zip, jar, webstart and
applet.

To package an application use the package command. All modes will be used when calling the package command
with no arguments. Y ou can specify one or more packaging modes when executing the command. Packages will be
place in their respective directory inside the di st directory located at the root of the application. Y ou can configure
adifferent default set of deployment targets that will be used when invoking this command without arguments.
Simply add a configuration flag to Bui | dConf i g. gr oovy like this

griffon. packaging = 'zip'

Now, any time you call the package command without arguments only the zi p target will be executed.

It is possible to specify files that can be shared across packaging modes, like a README or a LICENSE file. Make
sureto placethem under gri f f on- app/ conf/ di st/ shar ed.

Files that should be packed inside the application's jar META-INF directory must be placed in

gri ffon-app/ conf/ metai nf. This setting works for addons too.

Packaging an application will be executed in the production environment by default. Y ou may specify adifferent
environment as you would with other command. This setting impacts directly how webstart and applet modes are
executed, asthey will sign and pack all jars by default when in production mode. Please review and update your
configuration if you desire adifferent behavior.

Each packaging target triggersaPackageSt art and PackageEnd events, with their type as the single event
parameter.

11.1 Zip

Packages the application using a conventional directory layout as found typically in Un*x packages. The directory
layout is as follows:

© [roof] - contains al filesavailableat gri f f on- app/ conf/ di st/ shared
© bin - binary launchers (Windows and Un*x)
© lib - application jars
The application launcher will bear the name of the application.
Run it with the following command

griffon package zip

Arguments: None
Configuration options: None

11.2 Jar
Thisisthe simplest packaging mode available. It will package the application in asingle jar file, by unpacking al

dependencies and packing them once morein a solefile, so place close attention to potential duplicate entries,
especially those found inside META-INF.

griffon package jar

Arguments:

© nane - override the name of the generated jar file.
Configuration Options:

o griffon.jars.jarNane - name of the application'smain jar file.
o griffon.dist.jar.nozip-skipzippingthedistribution if set to true.
There's a high chance of some files to have duplicates, e.g. griffon-artifacts.propertiesif you have installed aplugin



that provides MV C groups. It's possible to instruct the build to merge duplicate files by specifying aregular
expression and a merging strategy. The following table explains the different merging strategies available

Strategy Description

Skip Do not perform any merge. Duplicate is discarded.

Replace Duplicate is preferred and overwrites previous.

Append Duplicate is appended at the end of previous.

Merge Common lines found in duplicate are discarded. New lines found in duplicate are appended
at the end.

MergeManifest Duplicate keys override the previous ones. New keys are added to the merged result.

MergeProperties Duplicate keys override the previous ones. New keys are added to the merged result.

MergeGriffonArtifacts Merges artifact definitions per type.

Y ou can specify merging preferencesin Bui | dConf i g. gr oovy likethis

griffon {
jars {
merge = |
".*.xm"': org.codehaus.griffon.ant.taskdefs. Fil eMergeTask. Repl ace
]

This setting will overwrite any XML file found in the path with the last version encountered as jars are processed.
The griffon build defines a set of default mappings, which are the ones found in the next table

Regexp M er geStrategy
META-INF/griffon-artifacts.properties MergeGriffonArtifacts
META-INF/MANIFEST.MF MergeManifest
META-INF/services/ .* Merge
*.properties MergeProperties

Merging preferences must be defined from the most specific to the least. Y our preferences will override any default
settings.

11.3 Webstart

Packages the application to be used in webstart mode. Will generate an appropriate INLP file similarly asit's done
when running the application in webstart mode.

griffon package webstart

Arguments:

© codebase - specify the codebase to be written in the INLP file.
Configuration Options:

o griffon.dist.webstart. nozip - skip zipping the distribution if set to true.
© same configuration options used when running in webstart mode.

11.4 Applet

98



Packages the application to be used in applet mode. Will generate an appropriate INLP and Html files similarly asit's
done when running the application in applet mode.

griffon package appl et

Arguments:

© codebase - specify the codebase to be written in the INLP file.
Configuration Options:

© griffon.dist.applet.nozip -skipzipping the distribution if set to true.
© same configuration options used when running in applet mode.

11.5 Additional modes

If any of the afore mentioned packaging modes does not suite your needs you may use the Installer plugin to craft a
better packaging option. This plugin supports the following additional modes:

i zpack - universal installer using Izpack.

mac - for MacOSX.

r pm- for rpm based Linux distributions.

deb - for .deb based Linux distributions.

j snoot h - for Windows.

You may call any of these modes as you would with the standard ones when the installer plugin is available, in other
words

O O O O O

griffon package izpack

Many of these modes support additional configuration before generating the final package. It isagood ideato follow
atwo-step process

griffon prepare-izpack

[l edit target/installer/izpack/resources/installer.xm
/1 and/or add nmore files to that directory

griffon create-izpack

Each additional packaging mode triggers 4 events with their type as the single event parameter:
Pr epar ePackageSt art, Prepar ePackageEnd, Cr eat ePackageSt art and Cr eat ePackageEnd.

11.6 Custom M anifest Entries

Griffon will automatically create the following entries in the application's manifest

Mani f est-Version: 1.0

Ant - Versi on: Apache Ant 1.8.1

Created-By: ${)jvmversion} (${jvm vendor})

Mai n- G ass: ${griffonApplicationC ass} | ${griffonAppl et ass}
Bui |l t-By: ${user.nane}

Bui | d- Dat e: dd- MM yyyy HH: mm ss

Giffon-Version: ${griffonVersion}

I npl enentation-Title: capitalize(${griffonAppNane})

| mpl enent ati on- Ver si on: ${appVer si on}

| npl enent ati on- Vendor: capitalize(${griffonAppNane})

There might be times when you must specify additional attributes or override existing ones. Y ou can do this by
adding a new block of configuration to Bui | dConf i g. gr oovy, for example


http://griffon.codehaus.org/Installer+Plugin
http://izpack.org

griffon {

jars {
mani fest = [
'Foo': 'Bar'
"Built-By': 'Acne'
]
}

100



12. Plug-ins

Griffon provides a number of extension points that allow you to extend anything from the command line interface to
the runtime configuration engine. The following sections detail how to go about it.

12.1 Creating and Installing Plug-ins

Creating Plug-ins
Creating a Griffon plugin is a simple matter of running the command:

griffon create-plugin [ PLUG N NAMVE]

Thiswill create aplugin project for the name you specify. Say for exampleyourungri f f on creat e-pl ugin
exanpl e. Thiswould create anew plugin project called exanpl e.

The structure of a Griffon plugin is exactly the same as aregular Griffon project's directory structure, except that in
the root of the plugin directory you will find a plugin Groovy file called the "plugin descriptor".

The plugin descriptor itself ends with the convention Gri f f onPl ugi n and isfound in the root of the plugin
project. For example:

cl ass Exanpl eGri ffonPl ugin {
def version = 0.1

}

All plugins must have this class in the root of their directory structure to be valid. The plugin class defines the
version of the plugin and optionally various hooks into plugin extension points (covered shortly).
Y ou can also provide additional information about your plugin using several specia properties:

© titl e - short one sentence description of your plugin
© ver si on - theversion of your plugin. Valid versions are for example "0.1", "0.2-SNAPSHOT", "0.1.4" etc.
© griffonVersion - Theversion of version range of Griffon that the plugin supports. eg. "1.1 > *"
© | i cense - the plugin'slicense name in one sentence
© pl ugi nl ncl udes - additional resources that should be included in the plugin zip
© tool kits -alist of supported toolkits [swing, javafx, swt, pivot, gtk]
© pl atforns -alist of supported platforms [linux, linux64, windows, windows64, macosx, macosx64,
solaris, solarist4]
aut hosr - alist of plugin author names/emails
descri pti on - full multi-line description of plugin's features
docunent at i on - URL where plugin's documentation can be found
© sour ce - URL where plugin's source can be found
Hereis an example from Swing plugin :

o O O

101


http://artifacts.griffon-framework.org/plugin/swing

class Swi ngGiffonPl ugln{
String version = '0.9.5
String grlffonVerS|on ='0.9.5 > *'
Map dependsOn = [:]
Li st pluginlncludes = []
String |license = ' Apache Software License 2.0
List toolkits = ['sw ng']
List platfornms = []
String docunent atlon ="'
String source = https //glthub com griffon/griffon-sw ng-plugin'
Li st authors = [

nane: 'Andres Almray',
emai | : ' aal mi ray@ahoo. com

]

String title = 'Enabl es Swi ng support’

String description ="'
Enabl es t he usage of Swi ng based conponents in Views.
Usage

Thi s plugin enables the usage of the follow ng nodes inside a View

Conf i guration

There's no special configuration for this plugin.
[1]: http://groovy. codehaus. or g/ Swi ng+Bui | der

}

Installing & Distributing Plugins
To distribute a plugin you need to navigate to its root directory in atermina window and then type:

griffon package-pl ugin

Thiswill create azip file of the plugin starting with gr i f f on- then the plugin name and version. For example with
the example plugin created earlier thiswould be gri f f on- exanpl e- 0. 1. zi p. The package- pl ugi n
command will also generate pl ugi n. j son file which contains machine-readable information about plugin's name,
version, author, and so on.

Once you have a plugin distribution file you can navigate to a Griffon project and type:

griffon install-plugin /path/to/plugin/griffon-exanple-0.1.zip

If the plugin is hosted on aremote HT TP server you can also do:

griffon install-plugin http://nmyserver.conl plugins/griffon-exanple-0.1.zip

Releasing Pluginsinto a Griffon Artifact Repository

Torelease aplugin cal ther el ease- pl ugi n command while inside the plugin project. If nor eposi t ory flag
is specified then the default artifact repository (gri f f on- cent r al ) will be used. For quick testing purposes you
can publishareleasetogri ff on-1 ocal (whichisawaysavailable) by issuing the following command

griffon install-plugin --repository=griffon-I|ocal

The aforementioned steps can be applied to archetypes too, you just need to change the command names from
package- pl ugi ntopackage- archet ype; fromi nstal | - pl ugi ntoi nstal | -archet ype; from
rel ease-pl ugi ntorel ease- archet ype.

Should you decide to become a plugin/archetype author and wish to publish your artifacts to the Griffon Central

102



103

repository then you must follow these steps:

Create an account at http://artifacts.griffon-framework.org

After confirming your email, log into your profile and click the button for membership request.

Ping us at the developer mailing list or at @theaviary

Once approved configure your credentialsin SUSER_HOVE/ . gri f f on/ set ti ngs. gr oovy likethis

O O O O

griffon.artifact.repositories = |
"griffon-central': [
user nane: 'yourUsernange',
password: ' your Password'

12.2 Artifact Repositories

There are 3 types of plugin repositories. | ocal , r enpt e and | egacy. Artifact repositories can be either
configured locally to aproject (insidegri f f on- app/ conf / Bui | dConf i g) or globally to all projects (inside
$USER HOVE/ . gri ffon/ settings. groovy),

Local Artifact Repositories

This type of repository isfile based and can be hosted anywhere in the file system, even on shared folders over the
network. Local repositories makesit easier to share snapshot releases among team mates as the network latency
should be smaller. Their configuration requires but one parameter to be specified: the path where the artifacts will be
placed. Here's a sample configuration for alocal repository named 'my- | ocal - r epo’.

griffon.artifact.repositories = |
"ny-local -repo': [
type: 'local',
path: '/usr/local/share/griffon/repository'

]

There'salocal repository availableto you at al times. It'snameis'gri f f on-1 ocal 'and it'sdefault pathis
$USER HOME/ . gri ffon/ repository. Thisrepository isthe default place where downloaded plugins will be
installed for speeding up retrievals at alater time.

Remote Artifact Repositories

This type of repository allows developers to publish releases via SCP or web. The repository is handled by a Grails
application whose code is freely available at https://github.com/griffon/griffon-artifact-portal .

This code has been released under Apache Software License 2.0. Follow the instructions found in the README to
run your own artifact portal. Configuring a remote repository requires a different set of properties than those exposed
by local repositories. For example, if your organization is running a remote artifact repository located at
http://acnme. com 8080/ port al then usethefollowing configuration

griffon.artifact.repositories = |

"acne':
type: 'renote',
url: "http://acnme.com 8080/ portal'

Y ou may specify additional properties such as



http://artifacts.griffon-framework.org
http://twitter.com/#!/theaviary
http://grails.org
https://github.com/griffon/griffon-artifact-portal

griffon.artifact.repositories = |

"acne'
type: 'renote',
url: "http://acnme.com 8080/ port al

user nane: 'wall ace'
password: 'gromit',
port: 2345,
timeout: 60

Where the following defaults apply

© port=2222

© timeout = 30 (in seconds)
Y ou may leave both user nane and passwor d out however you will be asked for this credentials when publishing
arelease to this particular repository. Adding your credentials in the configuration avoids typing them when releasing
artifacts.

Legacy Artifact Repository

Thisisavery special type of repository that exists only for backward compatibility during the migration of the old
Griffon plugin repository to the new infrastructure in http://artifacts.griffon-framework.org .

There are no configuration options for this repository, neither you can publish areleasetoit; it's effectively
read-only.

12.3 Under standing a Plugins Structure

As mentioned previoudly, aplugin is merely a project with an structure similar to a Griffon application with the
addition of a contained plugin descriptor. However when installed, the structure of a plugin differs dightly. For
example, take alook at this plugin directory structure:

+ griffon-app
+ controllers
+ nodel s
+ Vi ews

= —o

+ +
» —
+++00:

mai n
cli
doc

Essentially when aplugin isinstalled into a project, the contents of the zip file will go into adirectory such as
pl ugi ns/ exanpl e- 1. 0/ . Plugin contents will not be copied into the main source tree. A plugin never interferes
with a project’s primary source tree.

12.4 Providing Basic Artefacts

Adding a new Script
A plugin can add a new script simply by providing the relevant Gant script within the scripts directory of the plugin:

+ MyPl ugi n. groovy
+ scripts <-- additional scripts here
+ griffon-app
+ controllers
+ nodel s
+ etc.
+1lib

Adding a new Controller, Modéd, View or Service
A plugin can add anew MV C Group, service or whatever by simply creating the relevant file within the
gri f f on- app tree. However you'll need to create an Addon in order to package them properly.

104


http://artifacts.griffon-framework.org

105

+ Exanpl ePl ugi n. gr oovy
+ scripts
+ griffon-app
+ controllers <-- additional controllers here
+ services <-- additional services here
+ etc. <-- additional XXX here
+lib

12.5 Hooking into Build Events

Post-Install Configuration and Participating in Upgrades

Griffon plugins can do post-install configuration and participate in application upgrade process (the upgrade
command). Thisis achieved viatwo specially named scriptsunder scri pt s directory of the plugin -
_Install.groovy and Upgrade. groovy.

_I'nstal | . groovy isexecuted after the plugin has been installed and _Upgr ade. gr oovy is executed each
time the user upgrades his application with upgrade command.

These scripts are normal Gant scripts so you can use the full power of Gant. An addition to the standard Gant
variablesisthe pl ugi nBasedi r variable which points at the plugin installation basedir.

Asan examplethebelow _| nst al | . gr oovy script will create anew directory type under thegri f f on- app
directory and install a configuration template:

ant. mkdir (dir:"${basedir}/griffon-app/jobs")

ant.copy(file:"${plugi nBasedi r}/src/sanpl es/ Sanpl ePl ugi nConfi gurati on. groovy",
todir:"${basedir}/griffon-app/conf")

/] To access Griffon hone you can use follow ng code:

/] ant.property(environnent:"env")

/] griffonHome = ant.antProject.properties."env. GRl FFON_HOVE"

Scripting events

It isalso possible to hook into command line scripting events through plugins. These are events triggered during
execution of Griffon target and plugin scripts.

For example, you can hook into status update output (i.e. "Tests passed”, "Server running") and the creation of files
or artifacts.

A plugin merely hasto providean _Event s. gr oovy script to listen to the required events. Refer the
documentation on Hooking into Events for further information.

12.6 Addons

Understanding Addons

Addons are a plugin's best friend. While plugins can only contribute build-time artifacts (such as scripts) and
participate on build events, addons may contribute runtime artifacts (such as MV C Groups or services) and
participate on application events.

Often times whenever you'd like to package a reusable runtime artifact you'd have to create an Addon as well.

Addon responsibilities

Addons may contribute any of the following to your application: MV C Groups and application event handlers. They
can also contribute the following to the CompositeBuilder: factories, methods, properties and FactoryBuilderSupport
delegates (attribute, prel nstantiate, postl nstantiate, postNodeCompl etion).

Addons are created using a template that suggests al of the properties and methods you can use configure. The
completelist follows:

addonl ni t - caled right after the addon has been loaded but before contributions are taken into account
addonPost I ni t - called after al contributions haven been made

addonBui | der | ni t - caled before contributions to the CompositeBuilder are taken into account
addonBui | der Post 1 ni t - called after all CompositeBuilder contributions haven been made

event s - Map of additional application event handlers

fact ori es - Map of additional node factories, added to CompositeBuilder

nmet hods - Map of additional methods, added to CompositeBuilder

pr ops - Map of additional methods, added to CompositeBuilder

attribut eDel egat es - List of attributeDelegates (as Closures), added to CompositeBuilder
prelnstanti at eDel egat es - List of prelnstantiateDel egates (as Closures), added to CompositeBuilder

O 0O 0 0O O O O O o ©o



http://groovy.codehaus.org/FactoryBuilderSupport

© post | nst anti at eDel egat es - List of postlnstantiateDelegates (as Closures), added to
CompositeBuilder

© post NodeConpl et i onDel egat es - List of postNodeCompletionDelegates (as Closures), added to
CompositeBuilder

Configuring Addons

Thistask is done automatically for you when you package an addon inside aplugin. The plugin's_| nstal | and
_Uni nstal | scriptswill makesurethat gri f f on- app/ conf/ Bui | der. gr oovy stays up to date. When you
install a plugin that contains an addon you'll notice that Bui | der . gr oovy may get updated with aline similar to
the next one

root.' Custoni ffonAddon'. addon=t rue

This means that al factories, methods and props defined on the Addon will be available to View scripts. However
you need to explicitly specify which contributions should be made to other MV C members. Y ou can list them one by
one, or use aspecia group qualified by *'. In recent releases of Griffon the default configuration is assumed meaning
you won't see any changesin the Bui | der . gr oovy file. You can still apply modifications as explained below.

The following snippet shows how to configure an Addon to contribute al of its methods to Controllers, and all of its
contributions to Models.

root.' CustoniffonAddon'.controller="*:nmet hods'
root."' CustoniffonAddon'. nodel =" *'

The specia groups are: *', *:factories, "*:methods, *:props

Should you encounter a problem with duplicate node names you can change the default prefix (r oot ) of the addon
to something more suitable to your needs. All nodes contributed by the addon will now be accessible using that
prefix. Here's an example

nx.' CustonGiffonAddon' . addon=t r ue

Assuming Cust ontr i f f onAddon isdefined as follows

cl ass CustonGiffonAddon {
def factories = |
button: com acne. Cust onButt on
]

Then instances of Cust onBut t omcan be obtained by using nxbut t on, whereas regular instances of JBut t on
will be accessible with but t on.

12.7 Under standing Plugin Order

Controlling Plugin Dependencies

Plugins often depend on the presence of other plugins and can also adapt depending on the presence of others. To
cover this, aplugin can defineadependsOn property. For example, take alook at this snippet from the Griffon
Clojure plugin:

class ClojureGiffonPlugin {
def version = 0.3
def dependsOn = ["l|ang-bridge": "0.2.1"]

106



107

As the above example demonstrates the Clojure plugin is dependent on the presence of asingle plugin: the

| ang- bri dge plugin.

Essentially the dependencies will be loaded first and then the Clojure plugin. If all dependencies do not load, then the
plugin will not load.

The dependsOn property also supports amini expression language for specifying version ranges. A few examples
of the syntax can be seen below:

def dependsOn = [foo:"* > 1.0"]
def dependsOn = [foo0:"1.0 > 1.1"]
def dependsOn = [fo00:"1.0 > *"]

When the wildcard * character is used it denotes "any" version. The expression syntax also excludes any suffixes
such as-BETA, -ALPHA etc. so for example the expression "1.0 > 1.1" would match any of the following versions:

11

1.0

101
1.0.3-SNAPSHOT
1.1-BETA2

O O O O O

Controlling Addon Load Order

Addons will be loaded in the order determined by the dependencies set forth in their containing plugins. Using
dependsOn establishes a"hard" dependency. Any addons provided by the dependencies will be added first to the
builder configuration file when installed.

12.8 CLI Dependencies

Plugins can provide compile time classes that should not be bundled with runtime classes (i.e, addon sources).
Sources and resources placed under $basedi r/ src/ cl i will be automatically compiled and packaged into ajar
whose name matchesgr i f f on- ${ pl ugi n. nane} - ${ pl ugi n. versi on} - conpi | e. j ar. A typical use
case for these type of classesis a custom AST transformation that should be run during compile time but not at
runtime.



13. Tipsand Tricks

13.1 Using Artifact Conventionsto your Advantage

The Artifact API can be avery powerful ally. Not only it's useful for adding new methods (explained in section 5.7.2

Adding Dynamic Methods at Runtime) but also comes in handy to finding out what application specific attributes an
artifact has, for example Controller actions or Model properties. The following screenshot shows a simple application

that presents aform based View.

AL Simple
Person Actions

. £ Alaoe B
First Name Joe [ Clear

Last Mame Cool

Address Awesomeville

When the user clicksthe Subm t button a dialog appears

- @@ Message

First Name = Joe
Last Mame = Cool
Address = Awesomeville

Believe it or not both the View and the Controller know nothing about the specific property names found in the
Model. Let's have alook at the Model first

package sinple

@Bi ndabl e

cl ass Si npl eMbdel {
String firstName
String | ast Nane
String address

There are 3 observabl e properties defined in the Model. Note the usage of default imports to avoid an extraline for
importing groovy.beans.Bindable. Now, the Controller on the other hand defines two actions

108


http://groovy.codehaus.org/api/groovy/beans/Bindable.html

109

package sinple
inmport griffon.util.GiffonNameUtils as GNU
cl ass SinpleController {
def nodel
def clear = {
nmodel . gri ffond ass. propertyNames. each { nane ->
nmodel [ nane] = "'

}
@rhr eadi ng( Thr eadi ng. Pol i cy. SKI P)
def submit = {
j avax. swi ng. JOpt i onPane. showMessageDi al og(
app. wi ndowivanager . wi ndows. fi nd{it.focused},
nmodel . gri ffond ass. propertyNames. collect([]) { n
"${ G\U. get Nat ur al Name( nane)} = ${nodel [ nane]

}.join('n")

ame ->

pr

Thecl ear () actionisresponsible for reseting the values of each Model property. It does so by iterating over the
names of the properties found in the Model. The submi t () action constructs alist fo model property names and
their corresponding values, then presentsit in adialog. Notice that the Controller never refersto aModel property
directly by its name, i.e, the Controller doesn't really know that the Model hasaf i r st Nane property. Finally the
View

package sinple
inmport griffon.util.GiffonNameUtils as GNU
application(title: 'Sinple',
pack: true,
| ocati onByPl at form true,
i conl mage: imagelcon('/griffon-icon-48x48.png').inage,
i conl mages: [imagelcon('/griffon-icon-48x48.png').i mge,
i magel con('/griffon-icon-32x32.png').i nage,
i mgelcon('/griffon-icon-16x16.png').imge]) {
bor der Layout ()
panel (constrai nts: CENTER,
border: titledBorder(title: 'Person')) {
m gLayout ()
nmodel . gri ffond ass. propert yNanmes. each { nane ->
| abel (GNU. get Nat ur al Nane(nane), constraints: 'left')
text Fi el d(col ums: 20, constraints: 'growx, wap',
text: bind(nane, target: nodel, mutual: true))

}

panel (constraints: EAST,
border: titledBorder(title: 'Actions')) {
m gLayout ()
control ler.griffond ass. acti onNanes. each { nanme ->
but t on( GNU. get Nat ur al Narme( nane) ,
actionPerfornmed: controller."$nane",
constraints: 'growx, wap')

The View also iterates over the Model's property names in order to construct the form. It follows a similar approach
to dynamically discover the actions that the Controller exposes.

Y ou must install the MigLayout Plugin before running this application.

13.2 Dealing with Non-Groovy Artifacts

Since version 0.9.1 Griffon supports writing artifactsin JVM languages other than Groovy. The first of such
languages is Java and it's supported in core by default. Additional languague support will be provided by plugins.

Creating a Non-Groovy Artifact


http://griffon.codehaus.org/MigLayout+Plugin

Many of thecr eat e- * scripts that come bundled with Griffon support an additional parameter that can be used to
specify the language or filetype of the artifact. Non-Groovy artifacts must extend a particular classin order to receive
all the benefits of atypical artifact. The default artifact templates can handle both Groovy and Javatypes. The
following command will create an application that uses Java as the default language for the the initial MV C group

griffon create-app sinple -fil eType=j ava

The fileType switch indicates that the templates must pick a Java based template first. If no suitable template is
found then a Groovy based template will be used. The setting of thisflag is saved in the application's build
configuration, thisway you don't need to specific the fileType switch again if your intention is to create another
artifact of the same type. Of course you can specify the flag at any time with a different value. It's worth mentioning
that the default Groovy based template will be used if a suitable template for the specified fileType cannot be found.
Peeking into each member of the si npl e MV C group we find the following code. First the Model

package si npl e;
i mport org.codehaus. griffon.runtime.core. AbstractGiffonhbdel ;
public class SinpleMdel extends AbstractGiffonMdel {
an observabl e property
private String input;
public String getlnput() {
return input;

}
public void setlnput(String input) {
firePropertyChange("input”, this.input, this.input = input);

~ — . — — ~— —
~ e~ e e e~

Next is the Controller

package sinpl e;
i mport java.awt.event.Acti onEvent;
i mport org.codehaus. griffon.runtine.core. AbstractGiffonController;
public class SinpleController extends AbstractGiffonController {
private Sinpl eMbdel nodel;
public void set Model (Si npl eMbdel nodel ) {
thi s. nbdel = nodel ;

}
/*
public void action(Acti onEvent e) {

}
*/

And finally the View

110



111

package sinpl e;
i nport java.awt.*;
i mport javax.sw ng. *;
i mport java.util.Mp;
i nport griffon.sw ng.Swi ngGiffonApplication;
i mport griffon.sw ng. Wndowivanager ;
i mport org.codehaus. griffon.runtinme.core. AbstractGiffonView,
public class SinpleView extends AbstractGiffonView {
private SinpleController controller;
private Sinpl eMbdel nodel;
public void setController(SinpleController controller) {
this.controller = controller;

}
public void set Model (Si npl eMbdel nodel ) {
thi s. nbdel = nodel ;

}

[/ build the U

private JConmponent init() {
JPanel panel = new JPanel (new BorderLayout());
panel . add( new JLabel (" Cont ent Goes Here"), BorderLayout. CENTER);
return panel;

}
@verride
public void mvcG ouplnit(Map<String, oject> args) {
execl nsi deU Sync(new Runnabl e() {
public void run() {
Cont ai ner contai ner = (Container) getApp().createApplicationContainer();
i f(container instanceof Wndow) {
cont ai nerPrel nit ((Wndow) container);

container.add(init());
i f (container instanceof W ndow) ({
cont ai ner Post I ni t ((W ndow) contai ner);

1)
}

private void containerPrelnit(Wndow wi ndow)
i f(wi ndow i nstanceof Frane) ((Frane) w ndow).setTitle("sinple");
wi ndow. set | conl mage(get | mage("/griffon-icon-48x48. png"));
/1 uncoment the following lines if targeting +JDK6
/1 wi ndow. setl conl mages(j ava. util.Arrays. asLi st (

I getl mage("/griffon-icon-48x48. png"),
I getl mage("/griffon-icon-32x32. png"),
I getl mage("/griffon-icon-16x16. png")
I/ ;

))
wi ndow. set Locat i onByPl atform(true);
i ndow. set Pref erredSi ze(new Di nensi on(320, 240));

private void containerPostlnit(Wndow wi ndow) {
wi ndow. pack() ;
((Swi ngGiffonApplication) getApp()).get Wndowivanager (). attach(w ndow);

private | mage getlmage(String path) ({
return Tool ki t. get Def aul t Tool ki t (). getl mage(Si npl eVi ew. cl ass. get Resource(path));
}

13.3 Externalizing Views

Groovy isthe default language/format for writing Views, however there might be times where you would rather use a
different format for describing a View. It might be the case that you have alegacy View (plain Java code) that you
would like to plugin into Griffon. Here are afew tips to get the job done.

13.3.1 NetBeans M atisse

NetBeans comes with a visual designer named Matisse which is quite popular among a good number of devel opers.
Matisse views are usually defined by a Java class. Most of the times all Ul widgets are exposed as fields on the Java
class. Based with this information Griffon can generate a View script that is backed by this particular Java class.
Follow these steps to reuse a Matisse view.

#1 Placethe M atisse View in your application

If you have access to the View's source code then please it somewhere in the application’s source tree. A matching
package to the traget MV C group in sr ¢/ mai n iswhat is preferred. However, if the View is distributed in byte


http://netbeans.org

code form the make sure to place the jar that contains the View inside the application's | i b directory. Alternatively
you can use the Dependency DSL if the jar is available from ajar file repository (such as Maven or Ivy). Lastly,
make sure that you have added the jar that contains G- oupLayout , Matisse's work horse. thisis easily
accomplished by adding the following confurationingr i f f on- app/ conf/ Bui | dConfi g. gr oovy

griffon. project.dependency.resol ution = {
repositories {
/] enable this option in an existing 'repositories' block
mavenCentral ()

dependenci es {
/] add this to an existing 'dependencies' block
conpi l e 'org. sw ngl abs: swi ng-1ayout:1.0. 3

#2 Convert the View into a Script

Griffon includes a script commmand target that can read a Matisse View and generate a Groovy View Script fromiit:
gener at e- vi ew scr i pt . Execute the command by specifying the name of the Java class that defines the
Matisse View, like this

griffon generate-viewscript sanple. Logi nDi al og

This command should generate thefilegri f f on- app/ vi ews/ sanpl e/ Logi nDi al ogVi ew. gr oovy with
the following contents

/'l create instance of view object

wi dget (new Logi nDi al og(), id:'loginD alog)

nopar ent {
/1 javax.sw ng.JText Fi el d usernaneFi el d declared in Logi nDi al og
bean(| ogi nDi al og. user naneFi el d, id:"'usernaneField")
/1 javax.sw ng. JPasswor dFi el d passwordFi el d decl ared in Logi nDi al og
bean(| ogi nDi al og. passwordFi el d, id:'passwordField')
/1 javax.sw ng.JButton okButton declared in LoginD al og
bean(| ogi nDi al og. okButton, id:"'okButton')
/] javax.sw ng.JButton cancel Button decl ared in LoginD al og
bean(| ogi nDi al og. cancel Button, id:'cancel Button')

return | oginbDi al og

#3 Tweak the generated View

From here on you can update the generated View as you seefit, for example by adding bindings to each field and
actions to the buttons

wi dget (new Logi nDi al og(mai nFrane, true), id:'loginDialog)
nopar ent {
bean(| ogi nDi al og. user naneFi el d, id:'usernaneField",

text: bind(target: nodel, 'usernane'))
bean(| ogi nDi al og. passwordFi el d, id:' passwordField',
text: bind(target: nodel, 'password'))

bean( | ogi nDi al og. okButton, id:'okButton',
acti onPerformed: controller.|oginCk)

bean(| ogi nDi al og. cancel Button, id:'cancel Button',
actionPerformed: controller.|oginCancel)

return | oginbDi al og

13.3.2 Abeille Forms Designer

Another interesting choice is Abeille Forms, which is supported viaa Builder and a plugin. Abeille Formsincludes a

112


http://java.net/projects/abeille/
http://docs.codehaus.org/display/GRIFFON/AbeilleformBuilder+Plugin

113

visual designer that arranges the widgets with either JGoodies FormLayout or the JDK's GridBagL ayout. Integrating
these kind of views is a bit easier than the previous ones, as Abeille Forms views are usually distributed in either
XML or abinary format. The plugin provides a View node that is capable of reading both formats. Follow these
steps to setup aView of thistype.

#1 Install the Abeille Forms plugin

Aswith any oher plugin, just call thei nst al | - pl ugi n command with the name of the plugin

griffon install-plugin abeilleformbuil der

#2 Place the form definition in your source code

If you have direct access to the files generated by Abeille's designer then place them somewhere under

gri ffon-app/ resources. Otherwiseif thefiles are packaged in ajar, place the jar in your application's| i b
directory. Alternatively you can use the Dependency DSL if thejar is available from ajar file repository (such as
Maven or Ivy).

#3 Use the formPanel node

Asafinal step you just need to usethe f or nPanel nodein aregular Groovy View script. All of the form's
elements will be exposed to the Script, which means you can tweak their bindings and actions too, like this

di al og(owner: mai nFrame
id: "loginD al og",
resi zabl e: fal se
pack: true
| ocationByPl atformtrue
i conl nage: inmagel con('/griffon-icon-48x48.png').inage
i conl nages: [inmagelcon('/griffon-icon-48x48.png').imge
i magel con('/griffon-icon-32x32. png').inmage
i mgel con('/griffon-icon-16x16.png').inmge]) {
fornPanel ("1 ogin.xm")
noparent {

bean(nodel, usernane: bind{ usernaneField.text })
bean(nodel , password: bind{ passwordField.text })
bean(okButton, actionPerforned: controller.|ogi nCk)

bean(cancel Button, actionPerformed: controller.|oginCancel)

13.3.3 XML

Y et another option to externalize aView is a custom XML format that closely ressembles the code that you can find
inaGroovy View script. Why XML you ask? Well becauseit is aver popular format choice still, some devel opers
prefer writing declarative programming with it. This option is recommended to be paired with Java views, just
because if you're writing a Groovy View it makes more sense to use Groovy to write the whole instead. Follow these
stepsto get it done.

#1 Changethe Java View class
A typical JavaView class will extend from AbstractGriffonView. This super class defines a method named

bui | dVi ewFr omXmi () that takes a Map asits sole argument. This map should contain all variablesthat the
builder may require to wire the View, such as ‘app’, ‘controller' and ‘'model’ for example.




package sanpl e;
i nport java.util. Map;
i mport org.codehaus. griffon.runtine.core. AbstractGiffonView,
public class Sanpl eVi ew extends AbstractGiffonView {
private Sanpl eController controller;
private Sanpl eMbdel nodel
public void setController(Sanpl eController controller) {
this.controller = controller;

}
public void set Mbdel (Sanpl eModel nodel) {
t hi s. nodel = nodel ;

}

public void mvcG ouplnit(Map<String, bject> args) {
bui | dVi ewFr onXmi (ar gs) ;

}

#2 Definethe XML view

Thebui | dVi ewFr omXm () method expects an XML file whose name matches the name of the class from where
it'scaled, in this case it should be Sanpl eVi w. xm . Make sure to place the following contentsin
griffon-app/ resources/ sanpl e/ Sanpl eVi ew. xm

<application title="app.config.application.title"
pack="true">
<acti ons>
<action id="'clickAction""
nane="'Cick""
closure="{controller.click(it)}"/>
</ actions>
<gri dLayout cols="1" rows="3"/>
<textField id=""input'" colums="20"
text ="bi nd(' val ue', target: nodel)"/>
<textField id=""output'" columms="20"
text ="bi nd{ nodel . val ue}" editabl e="fal se"/>
<button action="clickAction"/>
</ application>

Notice that every string literal value must be escaped with additional quotes otherwise the builder will have trouble
setting the appropriate values. When the time comes for the builder to parse the view it will translate the XML to a
Groovy scritpt then interpret it. Thisis the generated Groovy script that matches the previous XML definition

application(title: app.config.application.title, pack: true) {
actions {
action(id: 'clickAction', name: 'dick', closure: {controller.click(it)})

gridLayout (cols: 1, rows: 3)

textField(id: "input', text: bind('value', target: nodel), colums: 20)
textField(id: '"output', text: bind{nodel.value}, colums: 20, editable: false)
button(action: clickAction)

13.4 Creating Bindingsin Java

Bindings are an effective way to keep two propertiesin sync. Unfortunately Java does not provide a mechanism nor
an API to make bindings, but Griffon does.

As shown in section 6.2 Binding, Griffon relieson Pr oper t yChangeEvent and Pr opert yChangelLi st ener
to keep track of property changes and notify observers. Swing components are already observable by default. Y ou
can build your own observabl e classes by following a convention, or implement the Observable interface (there'sa
handy partial implementation in AbstractObservable that you can subclass).

Bindings can be created by using BindUtils.binding(), like the following example shows

114



115

package sanpl e;
i nport java.util.Map;
i mport groovy. util.FactoryBuil der Support;
i mport griffon.sw ng.BindUils;
i nport org.codehaus. griffon.runtine.core. AbstractGiffonView,
public class Sanpl eVi ew extends AbstractGiffonView {
private Sanpl eController controller;
private Sanpl eMbdel nodel ;
public void setController(Sanpl eController controller) {
this.controller = controller;

}
public void set Model (Sanmpl eMbdel nodel ) {
t hi s. nodel = nodel ;

}
public void nmvcG ouplnit(Map<String, Object> args) {
bui | dVi ewFr omXml (ar gs) ;
Fact or yBui | der Support buil der = getBuil der();
/*
* Equi val ent G oovy code
* bind(source: input, sourceProperty: 'text',
* target: nodel, targetProperty: 'value')
*
/
Bi ndUti | s. bi ndi ng()
. Wi t hSour ce(buil der. getVari abl e("i nput"))
. W t hSour ceProperty("text")
.wi t hTar get (nodel ))
. W t hTar get Property("val ue")
. make(buil der);
/*
* Equi val ent Groovy code
* bind(source: nodel, sourceProperty: 'value',
* target: input, targetProperty: 'text')
*/
Bi ndUti | s. bi ndi ng()
. W t hSour ce( nodel )
. Wi t hSour ceProperty("val ue")
.w t hTar get (bui |l der. get Vari abl e( " out put™))
.wi thTarget Property("text")
. make(buil der);

The following rules apply:

© bothsource andt ar get values must be specified. Anl | | egal Ar gunent Except i on will be thrown

if that's not the case.
© bothsource andt ar get instances must be observable. This does not imply that both must implement
Observable per se, as Swing components do not.
© either sour ceProperty ort ar get Property can beomitted but not both. The missing value will be
taken from the other property.
© thebui | der instance must be able to resolve the bi nd() node. Thisistypicaly the case for the default
builder supplied to Views (because Swingbuilder isincluded).
Bindings created in this way also support the following attributes: mut ual , convert er andval i dat or. The
next snippet improves on the previous example by setting a converter and a validator, only numeric values will be
accepted.



package sanpl e;
i nport java.util.Map;
i mport groovy. util.FactoryBuil der Support;
i mport griffon.sw ng.BindUils;
import griffon.util.CallableWthArgs;
i mport org.codehaus. griffon.runtinme.core. AbstractGiffonView,
public class Sanpl eVi ew extends AbstractGiffonView {
private Sanpl eController controller;
private Sanpl eMbdel nodel ;
public void setController(Sanpl eController controller) {
this.controller = controller;

}
public void set Mbdel (Sanpl eModel nodel) {
t hi s. nodel = nodel ;

}
public void mvcG ouplnit(Map<String, bject> args) {
bui | dVi ewFr onXmi (ar gs) ;
Fact or yBui | der Support buil der = getBuilder();
/*
* Equi val ent Groovy code

* bind(source: input, sourceProperty: 'text',

* target: nodel, targetProperty: 'value',

* converter: {v -> v? "FOO $v" : 'BAR },

* validator: {v ->

* if(v == null) true

* try { Integer.parselnt(String.valueO(v)); true }
* cat ch( Nunber For mat Exception e) { false }

* })

*

Bi ndUti | s. bi ndi ng()
.wi t hSour ce(buil der. getVari abl e("i nput"))
. W t hSour ceProperty("text")
.wi t hTar get (nodel )
.W thTarget Property("val ue")
.wi thConverter(new Cal |l abl eWthArgs<String>() {
public String call (oject[] args)
return args.length >0 ? "FOO "+ args[0] : "BAR';

1)
.w thVal i dat or (new Cal | abl eW t hAr gs<Bool ean>() {
publ i c Bool ean call (Object[] args) {

if(args.length == 0) return Bool ean. TRUE;

try {
I nt eger. parselnt (String.val ued (args[0]));
return Bool ean. TRUE;

} cat ch(Nunber For mat Exception e) {
return Bool ean. FALSE;

}

, . make(bui |l der);
* Equi val ent Groovy code
* bind(source: nodel, sourceProperty: 'value',
* target: input, targetProperty: 'text')
*/
Bi ndUt i | s. bi ndi ng()
.wi t hSour ce( nodel )
. W t hSour ceProperty("val ue")
.wi t hTar get (bui | der. get Vari abl e( " out put™))
.W thTarget Property("text")
. make(buil der);

The View for these examplesis defined in XML format (as described in the previous section)

116



<application title="app.config.application.title"
pack="true">
<actions>
<action id="'clickAction""
nanme=""Click""
closure="{controller.click(it)}"/>
</ actions>
<gri dLayout cols="1" rows="3"/>
<textField id=""input'" colums="20"/>
<textField id=""output'" colums="20" editable="false"/>
<button action="clickAction"
</ application>

However you can build the View in any way, bindings do not require an specific View construction mechanismin
order to work.

Griffon - building rich applications the Groovy way

117



