LIBCGRAPH(3) LibraryFunctions Manual LIBCGRAPH(3)

NAME
libcgraph — abstract graph library

SYNOPSIS
#include <graphviz/cgraph.h>

TYPES
Agraph_t;
Agnode_t;
Agedge _t;
Agdesc _t;
Agdisc_t;
Agsym_t;
Agrec_t;
Agcbdisc t;

GLOBALS
Agmemdisc_t AgMemDisc;
Agiddisc_t AgldDisc;
Agiodisc_t AgloDisc;
Agdisc_t AgDeéultDisc;

GRAPHS

Agraph_t *agopen(chaname, Agdesc_t kind, Agdisc_t *disc);

int agclose(Agraph_*g);

Agraph_t *agread@®id *channel, Agdisc_t *);

Agraph_t *agmemread(chay;

void agreadline(intine_no);

void agsetfile(chatfile_name);

Agraph_t *agconcat(Agraph*g, void *channel, Agdisc_t *disc)

int agwrite(Agraph_tg, void *channel);

int agnnodes(Agraph *g),agnedges(Agraph_t *g), agnsubg(Agraph_t * g);

int agisdirected(Agraph *tg),agisundirected(Agraph_t * g),agisstrict(Agraph_t * g), agissimple(Agraph
SUBGRAPHS

Agraph_t *agsubg(Agraph *g, char *name, int createflag);

Agraph_t *agidsubg(Agraph *tg, unsigned long id, int cflag);

Agraph_t *agfstsubg(Agraph*g), agnxtsubg(Agraph_t *);

Agraph_t *agparent(Agraph*g);

int agdelsubg(Agraph *tg, Agraph_t * sub); /* same as agclose() */
NODES

Agnode_t *agnode(Agraph*g, char *name, int createflag);

Agnode _t *agidnode(Agraph*g, ulong id, int createflag);

Agnode _t *agsubnode(Agraph*d, Agnode_t *n, int createflag);

Agnode _t *agfstnode(Agraph*g);

Agnode _t *agnxtnode(Agraph*g, Agnode_t *n);

Agnode _t *agprvnode(Agraph*g, Agnode_t *n);

Agnode _t *aglstnode(Agraph*g);

int agdelnode(Agraph *g, Agnode_t *n);

int agdgree(Agraph_t *g, Agnode_t *n, int use_inedges, int use_outedges);

int agcountunigedges(Agrapl* ¢, Agnode_t * n, int in, int out);
EDGES

Agedge _t *agedge(Agraph_¢f;, Agnode_t *t, Agnode_t *h, char *name, int createflag);

Agedge t *agidedge(Agraph* g, Agnode_t * t, Agnode_t * h, unsigned long id, int createflag);

Agedge _t *agsubedge(Agraphtd, Agedge_t *e, int createflag);

Agnode _t *aghead(Agedge*e), *agtail(Agedge_t *e);

Agedge t *agfstedge(Agraph_¢f Agnode_t *n);

28 FEBRJARY 2013 1

LIBCGRAPH(3)

Agedge _t
Agedge _t
Agedge _t
Agedge _t
Agedge _t
int

Agedge _t
int

LibraryFunctions Manual

*agnxtedge(Agraph_g¢f Agedge_t *e, Agnode_t *n);

*agfstin(Agraph_t, Agnode_t *n);
*agnxtin(Agraph_t, Agedge_t *e);
*agfstout(Agraph_u, Agnode_t *n);
*agnxtout(Agraph_t, Agedge_t *e);
agdeledge(Agraph*g, Agedge_t *e);
agopp(Agedge¢);
agegedge(Agedge*¢0, Agedge_t *el);

STRING ATTRIBUTES

Agsym_t

Agsym_t

Agsym_t

char

char

int

int

int

int
RECORDS

void

Agrec_t

int

void

void
CALLB ACKS

int

void

int
MEMORY

void

void

void
STRINGS

char

char

int

char

int

char

char

char

*a@ttr(Agraph_t *g, int kind, char *name, char *value);

*a@ttrsym(void *obj, char *name);

*agnxtattr(Agraph_*g, int kind, Agsym_t *attr);

*agget(eid *obj, char *name);
*agxget(wid *obj, Agsym_t *sym);

agset(wvid *obj, char *name, char *value);
agxset(wid *obj, Agsym_t *sym, char *value);
agsafeset@id *obj, char *name, char *value, char *def);

agcoyyattr(void *, void *);

*agbindrec(wid *obj, char *name, unsigned int size, vaoto_front);
*aggetrec(@id *obj, char *name, int me_to_front);
agdelrec(Agraph_*g, void *obj, char *name);

LIBCGRAPH(3)

aginit(Agraph_t g, int kind, char *rec_name, int rec_size, intvadao_front);

agclean(Agraph_*g, int kind, char *rec_name);

*agpopdisc(Agraph_*g);

agpushdisc(Agraph *g, Agcbdisc_t *disc);
agcallbacks(Agraph *tg, int flag);

*agalloc(Agraph_t *g, size_t request);

*agrealloc(Agraph_tg, void *ptr, Sze_t oldsize, size_t newsize);

agfree(Agraph_tg, void *ptr);

*agstrdup(Agraph *t char *);
*agstrdup_html(Agraph*f char *);
aghtmlstr(char);
*agstrbind(Agraph *tg, char *);
strfree(Agraph_t, char *);
*agcanonStr(chay;
*agstrcanon(chdr char *);
*agcanon(chdy, int);

GENERIC OBJECTS

Agraph_t
Agraph_t
int

char

void

int
Agrec_t
ulong

int

agraphof(@id);

agroot(wid);
agcontains(Agraph_t¥oid*);
agnameof(@id);
agdelete(Agraph *g, void *obj);
agobjkind(wid *obj);

*AGDATA (void *obj);
AGID(void *obj);
AGTYPE(void *obj);

28 FEBRJARY 2013

LIBCGRAPH(3) LibraryFunctions Manual LIBCGRAPH(3)

ERROR REPORTING
typedef enum { AGWARN, AGERR, AGMAX, AGPREYV } agervd_t;
typedef int (*fagusererrf) (char*);

agerrlevel_t agerrno;

agerrlevel_t agseterr(agernel_t);

char *aglasterr(@id);

int agerr(agerrieel_t level, char *fmt, ...);

void agerrorf(charfmt, ...);

void agwarningf(char *fmt, ...);

int agerrors(wid);

agusererrf agseterrf(agusererrf);
DESCRIPTION

Libcgraph supports graph programming by maintaining graphs in memory and reading and writing graph
files. Graphsare composed of nodes, edges, and nested subgraphs. These graph objects maydak attrib
with string name-value pairs and programmer-defined records (see Attributes).

All of Libcgraph’s dobal symbols hee the prefixag (case arying). Inthe following, if a function has a
parametemt createflagand the object does not exist, the function will create the specified oljesht-
flag is non-zero; otherwise, it will return NULL.

GRAPH AND SUBGRAPHS
A “‘main” or “root” graph defines a namespace for a collection of graph objects (subgraphs, nodes, edges)
and their attribtes. Objectsnay be named by unique strings or by integer IDs.

agopencreates a e graph with the gien name and kind. (Graph kinds a#gdirected, Agundirected,
Agstrictdirected, and Agstrictundirected. A strict graph cannot ka nulti-edges or self-arcs.) The final
argument points to a discpline structure which can be used to tailor I/O, memory allocation, and 1D alloca-
tion. Typically, a NULL value will be used to indicate the default disciplingDefaultDisc. agclose
deletes a graph, freeing its associated storagesad agwrite, and agconcatperform file I/O using the

graph file language described helagread constructs a e graph whileagconcatmeiges the file con-

tents with a presasting graph. Though I/O methods may beeroidden, the default is that the channel
argument is a stdio FILE pointeagmemreadattempts to read a graph from the input striagsetfileand
agreadline are helper functions that simply set the current file name and input line number for subsequent
error reporting.

The functionsagisdirected agisundirected agisstrict, and agissimplecan be used to query if a graph is
directed, undirected, strict (at most one edge withvendgil and head), or simple (strict with no loops),
respectiely,

agsubgfinds or creates a subgraph by naragidsubgallows a programmer to specify the subgraph by a
unique integer ID.A new subgraph is initially empty and is of the same kind as its pafdasted sub-
graph trees may be createfl.subgraph$ rame is only interpreted rele# © its parent. A program can

scan subgraphs under &ei graph usingagfstsubgand agnxtsubgA subgraph is deleted withgdelsubg
(oragclosé. Theagparentfunction returns the immediate parent graph of a subgraph, or itself if the graph
is already a root graph.

By default, nodes are stored in ordered sets for efficient random access to insert, find, and delete nodes.
The edges of a node are also stored in ordered sets. The sets are maintained internally as splay tree dictio-
naries using Phong W&t library.

agnnodes agnedgesand agnsubgreturn the sizes of node, edge and subgraph sets of a graph. The func-
tion agdegreereturns the size of the edge set of a nodes, and takes flags to select in-edges, out-edges, or
both. Thefunctionagcountunigedgegeturns the size of the edge set of a nodes, awed fidgs to select
in-edges, out-edges, or both. Unlikgdegree each loop is only counted once.

NODES
A node is created by giving a unique string name or programmer defingeriiide and is represented by a
unique internal object. (Node equality can checked by pointer comparison.)

28 FEBRJARY 2013 3

LIBCGRAPH(3) LibraryFunctions Manual LIBCGRAPH(3)

agnodesearches in a graph or subgraph for a node with thea game, and returns it if foundagidnode
allows a programmer to specify the node by a unique integea¢gidubnodeperforms a similar operation
on an existing node and a subgraph.

agfstnode and agnxtnode scan node listsagprvnode and aglstnodeare symmetric but scan backi.
The default sequence is order of creation (object timestaaguglnoderemores a rode from a graph or
subgraph.

EDGES
An abstract edge hasdvendpoint nodes called tail and head where all outedges of the same wedeaba
the tail value and similarly all inedgesvieait as he head. In an undirected graph, head and tail are inter
changeable. & gaph has multi-edges between the same pair of nodes, the ddgg' name behaes &
a econdary ky.

agedgesearches in a graph or subgraph for an edge betweervéneagipoints (with an optional multi-
edge selector name) and returns it if found or credite that, in undirected graphs, a search tries both
orderings of the tail and head nodes. If tlaeneis NULL, then an anonymous internal value is generated.
agidedgeallows a programmer to create an edge by giving its unique integeadBubedgeperforms a
similar operation on an existing edge and a subgragistin, agnxtin, agfstout, and agnxtout visit
directed in- and out- edge lists, and ordinarily apply only in directed grapiistedgeandagnxtedgevisit

all edges incident to a nodagtail andagheadget the endpoint of an edgagdeledgeremoves an elge
from a graph or subgraph.

Note that an abstract edge ha® wlistinct concrete representations: as an in-edge and as an out-edge. In
particular the pointer as an out-edge is different from the pointer as an in-edge. The fagstedge
canonicalizes the pointers before doing a comparison and so can be used to test edgdkeqsditge of

an edge can be flipped usiagopp

INTERNAL ATTRIBUTES
Programmedefined values may be dynamically attached to graphs, subgraphs, nodes, andSadges.
values are either character string data (for 1/0) or uninterpreted binary records (for implementing algo-
rithms efficiently).

STRING ATTRIBUTES
String attributes are handled automatically in reading and writing graphAilssing attribute is identified
by name and by an internal symbol table enkgsiym_1) created by LibcgraphAttributes of nodes,
edges, and graphs (with their subgraphseteparate namespaces. The contents oigsym_t have a
char* name for the attrilute’s nrame, achar* defval field for the attrilnte’s default value, and annt id
field containing the indeof the attrilute’s ecific value for an object in the objex#ray of attribute al-
ues.

agattr creates or looks up attrites. kind may be AGRAPH, AGNODE, or AGEDGE. If value is
(char*)0), the request is to search for an existing attribute of thandind and name. Otherwise, if the
attribute already exists, its default for creatingvrabjects is set to the gn value; if it does not exist, a
new attribute is created with the\gin default, and the default is applied to all pre-existing objects of the
given kind. If gis NULL, the default is set for all graphs created subsequesgigttrsym is a helper func-
tion that looks up an attribute for a graph objeeegias an egument. agnxtattr permits traersing the list

of attributes of a gien type. If NULL is passed as an argument it gets the first attribute; otherwise it
returns the next one in succession or retidbid L at the end of the listaggetandagsetallow fetching

and updating a string attrite for an object taking the attribute name as garaent. agxgetandagxsetdo

this kut with an attribute symbol table entry as an argumentuiml dhe cost of the string lookupNote
thatagsetwill fail unless the attribute is first defined usagattr. agsafesets a cowenience function that
ensures the geén atribute is declared before setting it locally on an object.

It is sometimes carnient to cop al of the attributes from one object to anoth&his can be done using
agcopyattr. This fails and returns non-zero of argument objects are different kinds, or if all of thetestrib
of the source object kia ot been declared for the target object.

28 FEBRJARY 2013 4

LIBCGRAPH(3) LibraryFunctions Manual LIBCGRAPH(3)

STRINGS
Libcgraph performs its own storage management of strings as reference-counted Shengaller does
not need to dynamically allocate storage.

agstrdup returns a pointer to a reference-countedycofpthe argument string, creating one if necessary
agstrbind returns a pointer to a reference-counted string if it exists, or NULL if not. All uses of cgraph
strings need to be freed usiagstrfree in order to correctly maintain the reference count.

The cgraph parser handles HTMLdilgrings. These should be indistinguishable from other strings for
most purposes.olcreate an HTML-lile gring, useagstrdup_html. The aghtmlstr function can be used to
query if a string is an ordinary string or an HTMLdilring.

agcanonStrreturns a pointer to a version of the input string canonicalized for output for later re-parsing.
This includes quoting special characters aegMords. It uses its own internabffer, so he value will be

lost on the net call toagcanonStr agstrcanonis an unsafe version afgycanonStr, in which the applica-

tion passes in auffer as the second argument. Note that thfeebmay not be used; if the input string is in
canonical form, the function will just return a pointer tokbr both of the functions, the input string must
have keen created usinggstrdup or agstrdup_html. Finally, agcanonStris identical withagcanonStr
except it can be used with yarharacter string. The second argument indicates whether or not the string
should be canonicalized as an HTMLdikring.

RECORDS
Uninterpreted records may be attached to graphs, subgraphs, nodes, and edfieieriblopérations on
values such as marks, weights, counts, and pointers needed by algoAghptisation programmers define
the fields of these records, butyheust be declared with a common header as showmbelo

typedef struct {

Agrec_t header;

[* programmer-defined fields follo*/
}user_data_t;

Records are created and managed by Libcgraph. A programmer must explicitly attach them to the objects in
a gaph, either to individual objects one at a timeaghindrec, or to dl the objects of the same class in a
graph viaaginit. (Note that for graphs, aginit is applied recuelsi to the graph and its subgraphs if
rec_size is rgative (of the actual rec_size.)yhenameargument of a record distinguishes various types of
records, and is programmer defined (Libcgraph resettve prefix ag). If size is 0, the call tagbindrec

is simply a lookup. The functioaggetreccan also be used for lookupgdelrecdeletes a named record

from one object.agcleandoes the same for all objects of the same class in an entire graph.

Internally records are maintained in circular lewk lists attached to graph objeci® dlow referencing
application-dependent data without function calls or search, Libcgrapbsadletting and locking the list
pointer of a graph, node, or edge on a particular record. This pointer can be obtained with the macro
AGDATA(obj). A cast, generally within a macro or inline function, is usually applied teecothe list

pointer to an appropriate programmer-defined type.

To control the setting of this pointehe move_to_front flag may beTRUE or FALSE. If move_to_front
is TRUE, the record will be locked at the head of the list, so it can be accessed dire&®DEA (obj).
The lock can be subsequently released or reset by a ealyj&trec

DISCIPLINES
(This section is not intended for casual userBjogrammedefined disciplines customize certain
resources- ID namespace, memaiyd /O - needed by LibcgraphA discipline struct (or NULL) is
passed at graph creation time.

struct Agdisc_s { [* uses dscipline */
Agmemdisc_t *mem;
Agiddisc_t *id;
Agiodisc_t *jo;

28 FEBRJARY 2013 5

LIBCGRAPH(3) LibraryFunctions Manual LIBCGRAPH(3)

b
A default discipline is supplied when NULL isvgn for ary of these fields.

ID DISCIPLINE

An ID allocator discipline allows a client to control assignment of IDs (uninterpretegeint@lues) to
objects, and possibly fhaothey are mapped to and from strings.

struct Agiddisc_s { /* object ID allocator */
void *(*open) (Agraph_t * g, Agdisc_t*); /* associated with a graph */
long (*map) (void *state, int objtype, char *stnsigned long *id, int createflag);
long (*alloc) (void *state, int objtype, unsigned long id);
void (*free) (void *state, int objtype, unsigned long id);
char *(*print) (void *state, int objtype, unsigned long id);
void (*close) (void *state);
¥
open permits the ID discipline to initialize grdata structures that it maintains per individual grapib.
return value is then passed as the first argument (void *state) to all subsequent ID manager calls.

alloc informs the ID manager that Libcgraph is attempting to create an object with a specific I2aghat w
given by a dient. ThelD manager should return THE (nonzero) if the ID can be allocated, &LSE
(which aborts the operation).

freeis called to inform the ID manager that the object labeled with thea ¢iD is about to go out of xds-
tence.

map is called to create or look-up IDs by string name (if supported by the ID manager). Returhig TR
(nonzero) in all cases means that the request succeeded (with a valid ID stored through result. There are
four cases:

name != NULL and createflag == 1: This requests mapping a string (e.g. a name in a graph file) wto a ne
ID. If the ID manager can complyen it stores the result and returndJER Itis then also responsible for
being able to print the ID again as a string. Otherwise the ID manager may return FALBEnhst
implement the following (at least for graph file reading and writing to work):

name == NULL and createflag == 1: The ID manager creates a uniguéDnef its own choosing.
Although it may return ALSE if it does not support anonymous objects, but this is strongly discouraged
(to support "local names" in graph files.)

name != NULL and createflag == 0: This is a hamespace probe. If the name was previously mapped into
an allocated ID by the ID managéren the manager must return this ID. Otherwise, the ID manager may
either return FALSE, or may storeyamnallocated ID into result. (This is ceenient, for example, if names

are known to be digit strings that are directlyvasted into integer values.)

name == NULL and createflag == 0: forbidden.

print is allowed to return a pointer to a statidfer; a caller must cgpits value if needed past subsequent
calls. NULL should be returned by ID managers that do not map names.

The map and alloc calls do not pass a pointer to the newly allocated object. If a client needs to install
object pointers in a handle table, it can obtain them waahgect callbacks.

IO DISCIPLINE

The I/O discipline provides an abstraction for the reading and writing of graphs.
struct Agiodisc_s {

int (*fread)(woid *chan, char *buf, int bufsize);

int (*putstr)(wid *chan, char *str);

int (*flush)(void *chan); /* sync */
H

Normally, the FILE structure and its related functions are used for 1/0. At times, though, an application

28 FEBRJARY 2013 6

LIBCGRAPH(3) LibraryFunctions Manual LIBCGRAPH(3)

may need to use a totally different type of character source. The associated state or stream information is
provided by thechan amgument toagread or agwrite. The discipline functioriread andputstr provide the
corresponding functions for read and writing.

MEMORY DISCIPLINE
Memory management in Libcgraph is handled on a per graph basis using the memory discipline.
struct Agmemdisc_s { /* memory allocator */
void *(*open)(Agdisc_t*); /* independent of other resources */
void *(*alloc)(void *state, size_treq);
void *(*resize)(wid *state, void *ptrgze_t old, size_t req);
void (*free)(void *state, void *ptr);
void (*close)(wid *state);
b
The openfunction is used to initialize the memory subsystem, returning state information that is passed to
the calls taalloc, resize and free. The semantics of these should be comparable to the standard C library
functions malloc, realloc, and free, except that ne space created bggalloc and agrealloc should be
zeroed out. The closefunction is used to terminate the memory subsystem, freey@ddlitional open
resources. &r actual allocation, the library uses the functiagalloc agrealloc and agfree, which pro-
vide simple wrappers for the underlying discipline functialisc, resize and free.

When Libcgraph is compiled with Vmalloc (which is not the default), each graph has its ownFreap.
grammers may allocate application-dependent data within the same heap as the rest of th€hgraph.
adwantage is that a graph can be deleted by atomically freeing its entire heap without scanningvééch indi
ual node and edge.

CALLB ACKS
An Agcbdisc_t defines callbacks to bevioked by Libcgraph when initializing, modifying, or finalizing
graph objects. Disciplines arejt on a stack. Libcgraph automatically calls the methods on the stack, top-
down. Callbacksare installed withagpushdis¢ uninstalled withagpopdisc and can be held pending or
released viagcallbacks

GENERIC OBJECTS
agroot takes a graph object (graph, subgraph, node, edge) and returns the root graph in whigh it li
agraphof does the same, except it is the identity function on graphs and subgraphs. Note that there is no
function to return the least subgraph containing an object, in part because this is not well-defined as nodes
and edges may be in incomparable subgraphs.

agcontaingg,obj) returns non-zero ibbj is a member of (sub)graph agdeletdg,obj) is equivalent to
agclose agdelnode and agdeledgefor obj being a graph, node or edge, respelti It returns -1 ifobj
does not belong tg.

AGDATA, AGID, and AGTYPE are macros returning the specified fields of tigeiaent object. The first
is described in thRECORDS section abee. The second returns the unique geelD associated with the
object. The last returrSGRAPH, AGNODE, and AGEDGE depending on the type of the object.

agnameofreturns a string descriptor for the object. It returns the name of the node or graph, @yddhe k
an edge.agobjkind is a synonym foAGTYPE.

ERROR REPORTING
The library provides aariety of mechanisms to control the reporting of errors and warnings. At present,
there are basically wtypes of messages: warnings and errors. A message is only written if its type has
higher priority than a programmer-controlled minimum, whicA&@WARN by defwult. The programmer
can set this value usirggseterr, which returns the previous value. Callingseterr(AGMAX) turns of
the writing of messages.

The functionagerr if the main entry point for reporting an anomale first argument indicates the type
of message. Usuallythe first argument ilPAGWARN or AGERR to indicate warnings and errors,

28 FEBRJARY 2013 7

LIBCGRAPH(3) LibraryFunctions Manual

LIBCGRAPH(3)

respectiely. Sometimes additional conteinformation is only aailable in functions calling the function
where the error is actually caught. In this case, the calling function can indicate that it is continuing the cur
rent error by usind\GPREYV as the first argument. The remainingwanents tagerr are the same as the
arguments t@rintf .

The functionsagwarningf and agerrorf are shorthand foagerr(AGERR,...) and agerr(AGWARN,...),
respectiely.

Some applications desire to directly control the writing of messages. Such an application can use the func-
tion agseterrfto register the function that the library should call to actually write the mesSageprevi-
ous error function is returned. By default, the message is writsdeaor.

Errors not written are stored in a log file. The last recorded error can beetkbyicalling aglasterr.

The functionagerrors returns non-zero if errors ¥ been reported.

EXAMPLE PROGRAM
#include <stdio.h>
#include <cgraph.h>

typedef struct {Agrec_t hdr; int x,y,z;} mydata;

void main(int argc, char **argv)

{

Agraph_t *g,*h;
Agnode_t *v;
Agedge t *e;
Agsym_t *attr;
Dict t *d;

int cnt;
mydata *p;

if (g = agread(stdin,NIL(Agdisc_t*))) {
cnt = 0; attr = 0;
while (attr = agnxtattr(g, AGNODE, attr)) cnt++;
printf("The graph %s has %d attributes\n",agnameof(g),cnt);

/* make the graph hae a rode color attribute, default is blue */
attr = agattr(g,AGNODE,"color","blue");

[* create a n& graph of the same kind as g */
h = ggopen("tmp",g->desc, NULL);

/* this is a way of counting all the edges of the graph */
cnt =0;
for (v = agfstnode(g); v; v = agnxtnode(g,v))
for (e = agfstout(g,v); e; e = agnxtout(g,e))
cnt++;

[* attach records to edges */
for (v = agfstnode(g); v; v = agnxtnode(g,v))
for (e = agfstout(g,v); e; e = agnxtout(g,e)) {
p = (mydata*) agbindrec(e,"mydata”,sizeof(mydata), TRUE);
p->x = 27; /* meaningless data access example */
((mydata*)(AGDATA(e)))->y = 999; /* another example */

28 FEBRJARY 2013

LIBCGRAPH(3) LibraryFunctions Manual LIBCGRAPH(3)

EXAMPLE GRAPH FILES
digraph G {
a->h
¢ [shape=box];
a -> ¢ jweight=29,label="some text"];
subgraph anything {
/* the following affects only x,y,z */
node [shape=circle];
a; x;y->z;y->z; I*multiple edges */
}
}

strict graph H {
no -- n1 -- n2 -- nO; /* a cycle */
n0--{abcd};, [*astar*

no -- n3;
n0 -- n3 [weight=1]; /* same edge because graph is strict */
}
SEE ALSO
Libcdt(3)

BUGS

It is difficult to change endpoints of edges, delete string attributes or modify eggeThework-around is
to create a ne object and cop the contents of an old one (butwnebject obviously has a different ID,
internal address, and object creation timestamp).

The API lacks covenient functions to substitute programmer-defined ordering of nodes and eddes b
principle this can be supported.

The library is not thread safe.

AUTHOR
Stephen North, north@research.att.com, AT&T Research.

28 FEBRJARY 2013 9

