ERLANG

wxErlang

Copyright © 2009-2020 Ericsson AB. All Rights Reserved.
wxErlang 1.9.1
September 22, 2020

Copyright © 2009-2020 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 22, 2020

Ericsson AB. All Rights Reserved.: wxErlang | 1

1.1 wx the erlang binding of wxWidgets

1 wxErlang User's Guide

The wxErlang applicationis an api for writing graphical user interfaces with wxWidgets.

1.1 wx the erlang binding of wxWidgets

The wx application is an erlang binding of wxWidgets. This document describes the erlang mapping to wxWidgets
and it's implementation. It is not a complete users guide to wxWidgets. If you need that, you will have to read the
wxWidgets documentation instead. wx tries to keep a one-to-one mapping with the original APl so that the original
documentation and examples shall be as easy as possible to use.

wxErlang examples and test suite can be found in the erlang src release. They can also provide some help on how
to usethe API.

Thisiscurrently avery brief introduction to wx. The application is still under development, which means the interface
may change, and the test suite currently have a poor coverage ratio.

1.1.1 Contents

e Introduction

» Multiple processes and memory handling
e Event Handling

» Acknowledgments

1.1.2 Introduction

The original wxWidgets is an object-oriented (C++) APl and that is reflected in the erlang mapping. In most cases
each classin wxWidgets is represented as a module in erlang. This gives the wx application a huge interface, spread
over several modules, and it al starts with the wx module. The wx module contains functions to create and destroy
the GUI, i.e. wx: new 0, wx: dest r oy/ 0, and some other useful functions.

Objects or object references in wx should be seen as erlang processes rather than erlang terms. When you operate on
them they can change state, e.g. they are not functional objects as erlang terms are. Each object has a type or rather
aclass, which is manipulated with the corresponding module or by sub-classes of that object. Type checking is done
so that a module only operates on it's objects or inherited classes.

An object is created with new and destroyed with destroy. Most functions in the classes are named the same as their
C++ counterpart, except that for convenience, in erlang they start with alowercase letter and the first argument isthe
object reference. Optional arguments are last and expressed as tagged tuplesin any order.

For example the wxWindow C++ class is implemented in the wxWindow erlang module and the member
wxWindow:: Center OnPar ent is thus wxWindow: center OnPar ent. The following C++ code:

wxWindow MyWin = new wxWindow();
MyWin.CenterOnParent (wxVERTICAL);
delete MyWin;

would in erlang look like:

2 | Ericsson AB. All Rights Reserved.: wxErlang

1.1 wx the erlang binding of wxWidgets

MyWin = wxWindow:new(),
wxWindow: centerOnParent (MyWin, [{dir,?wxVERTICAL}]),

wxWindow:destroy(MyWin),

When you are reading wxWidgets documentation or the examples, you will notice that some of the most basic classes
are missing in wx, they are directly mapped to corresponding erlang terms:

wxPoint is represented by { Xcoord,Y coord}

wxSizeis represented by { Width,Height}

wxRect is represented by { Xcoord,Y coord,Width,Height}
wxColour isrepresented by { Red,Green,Blue[,Alpha]}
wxPoint is represented by { Xcoord,Y coord}

wxString is represented by unicode:charlist()
wxGBPosition is represented by { Row,Column}
wxGBSpan is represented by { RowSpan,ColumnSPan}
wxGridCellCoordsis represented by { Row,Column}

In the places where the erlang API differs from the original one it should be obvious from the erlang documentation
which representation has been used. E.g. the C++ arrays and/or lists are sometimes represented as erlang lists and
sometimes as tuples.

Colours are represented with { Red,Green,Blue[,Alpha]}, the Alpha value is optional when used as an argument to
functions, but it will always be returned from wx functions.

Defines, enumerations and global variables existsinwx. hr | as defines. Most of these defines are constants but not
all. Some are platform dependent and therefore the global variables must be instantiated during runtime. These will be
acquired from the driver with a call, so not al defines can be used in matching statements. Class local enumerations
will be prefixed with the class name and a underscore asin Cl assNanme_Enum

Additionally some global functions, i.e. non-class functions, exist in thewx_m sc module.

wxErlang isimplemented as a (threaded) driver and arather direct interface to the C++ API, with the drawback that
if the erlang programmer does an error, it might crash the emulator.

Since the driver is threaded it requires a smp enabled emulator, that provides a thread safe interface to the driver.

1.1.3 Multiple processes and memory handling

Theintention isthat each erlang application callswx:new() once to setup it's GUI which creates an environment and a
memory mapping. To be able to use wx from several processes in your application, you must share the environment.
You can get the active environment with wx: get _env/ 0 and set it in the new processes with wx: set _env/ 1.
Two processes or applications which have both called wx:new() will not be able use each others objects.

wx:new(),
MyWin = wxFrame:new(wx:null(), 42, "Example", [1),
Env = wx:get env(),
spawn(fun() ->
wx:set env(Env),
%% Here you can do wx calls from your helper process.

end),

When wx: dest r oy/ 0 isinvoked or when all processes in the application have died, the memory is deleted and all
windows created by that application are closed.

Ericsson AB. All Rights Reserved.: wxErlang | 3

1.1 wx the erlang binding of wxWidgets

Thewx application never cleansor garbage collects memory aslong asthe user applicationisaive. Most of the objects
are deleted when awindow is closed, or at least all the objects which have a parent argument that is non null. By using
WX CLASS: dest r oy/ 1 when possibleyou can avoid an increasing memory usage. Thisisespecially important when
wxWidgets assumes or recommends that you (or rather the C++ programmer) have allocated the object on the stack
since that will never be done in the erlang binding. For example wx DC class or its sub-classes or wxSi zer Fl ags.

Currently the dialogs show modal function freezes wxWidgets until the dialog is closed. That isintended but in erlang
where you can have several GUI applications running at the same time it causes trouble. Thiswill hopefully be fixed
in future wxWidgets releases.

1.1.4 Event Handling

Event handling in wx differs most from the original API. You must specify every event you want to handle in
wxWidgets, that is the same in the erlang binding but you can choose to receive the events as messages or handle
them with callback funs.

Otherwisethe event subscription is handled aswxWidgets dynamic event-handler connection. Y ou subscribeto events
of a certain type from objects with an 1D or within a range of 1Ds. The callback fun is optional, if not supplied the
event will be sent to the processthat called connect/2. Thus, ahandler isacallback fun or a process which will receive
an event message.

Eventsare handled in order from bottom to top, in thewidgets hierarchy, by thelast subscribed handler first. Depending
onif wxEvent : ski p() iscalled the event will be handled by the other handler(s) afterwards. Most of the events
have default event handler(s) installed.

Message events looks like #wx{id=integer(), obj=wx:wxObject(), userData=term(), event=Rec }. The id is the
identifier of the object that received the event. The obj field containsthe object that you used connect on. Theuser Data
field contains a user supplied term, thisis an option to connect. And the event field contains arecord with event type
dependent information. The first element in the event record is always the type you subscribed to. For exampleif you
subscribed to key _up eventsyou will receive the#wx{ event =Event } where Event will be awxK ey event record
where Event #wxKey. t ype = key_up.

In wxWidgets the developer hasto call wxEvent : ski p() if hewantsthe event to be processed by other handlers.
Y ou can do the same in wx if you use callbacks. If you want the event as messages you just don't supply a callback
and you can set the skip option in connect call to true or false, the default it is false. True means that you get the
message but let the subsequent handlers also handle the event. If you want to change this behavior dynamically you
must use callbacks and call wxEvent : ski p() .

Callback event handling is done by using the optional callback fun/2 when attaching the handler. The
fun(#wx{},wxObject() must take two arguments where the first is the same as with message events described above
and the second is an object reference to the actual event object. With the event object you can call wxEvent : ski p()
and access all the data. When using callbacks you must call wxEvent : ski p() by yourself if you want any of the
events to be forwarded to the following handlers. The actual event objects are deleted after the fun returns.

The callbacks are always invoked by another process and have exclusive usage of the GUI when invoked. This means
that a callback fun cannot use the process dictionary and should not make calls to other processes. Calls to another
processinside acallback fun may cause adeadlock if the other processiswaiting on completion of hiscall to the GUI.

1.1.5 Acknowledgments

Mats-Ola Persson wrote the initial wxWidgets binding as part of his master thesis. The current version is atota re-
write but many ideas have been reused. The reason for the re-write was mostly due to the limited requirements he
had been given by us.

Also thanks to the wxWidgets team that develops and supports it so we have something to use.

4 | Ericsson AB. All Rights Reserved.: wxErlang

1.1 wx the erlang binding of wxWidgets

2 Reference Manual

The wxErlang applicationis an api for writing graphical user interfaces with wxWidgets.

Ericsson AB. All Rights Reserved.: wxErlang | 5

WX

WX

Erlang module

A port of wxWidgets.

Thisis the base api of wxWidgets. This module contains functions for starting and stopping the wx-server, as well
as other utility functions.

wxWidgetsisobject oriented, and not functional. Thus, in wxErlang amodule represents aclass, and the object created
by this class has an own type, wxCLASS(). This module represents the base class, and all other wxMODULE's are
sub-classes of this class.

Objectsof aclass are created with wxCLASS:new(...) and destroyed with wxCLASS:destroy(). Member functions are
called with wxCLASS:member(Object, ...) instead of asin C++ Object.member(...).

Sub class modules inherit (non static) functions from their parents. The inherited functions are not documented in
the sub-classes.

This erlang port of wxWidgets tries to be a one-to-one mapping with the original wxWidgets library. Some things are
different though, as the optional arguments use property lists and can be in any order. The main differenceisthe event
handling which is different from the original library. See wxEvtHandler.

The following classes are implemented directly as erlang types:
wxPoint={ x,y} ,wxSize={ w,h} wxRect={ x,y,w,h} wxColour={r,g,b [,a}, wxString=unicode:chardata(),
wxGBPosition={r,c} ,wxGBSpan={ rs,cs} ,wxGridCellCoords={r,c} .

wxWidgets uses a process specific environment, which is created by wx:new/0. To be able to use the environment from
other processes, call get_env/0to retrievethe environment and set_env/1 to assign the environment in the other process.

Global (classless) functions are located in the wx_misc module.
DATA TYPES

wx_colour() = {R::byte(), G::byte(), B::byte()} | wx_colourd()
wx_colour4d() = {R::byte(), G::byte(), B::byte(), A::byte()}

wx_datetime() = {{ Y ear::integer(), Month::integer(), Day::integer()}, { Hour::integer(), Minute::integer(),
Second::integer()} }

In Local Timezone

wx_enum() = integer()

Constant defined in wx.hrl

wx_env() = #wx_env{}

Opague process environment
wx_memory() = binary() | #wx_mem{}

Opague memory reference
wx_object() = #wx_ref{}

Opaque object reference
wx_wxHtmILinkInfo() = #wxHtmlLinkInfo{ href=unicode:chardata(), target=unicode:chardata()}

6 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

WX

wx_wxMouseState() = #wxM ouseState{ x=integer(), y=integer(), leftDown=boolean(), middleDown=boolean(),
rightDown=boolean(), control Down=boolean(), shiftDown=boolean(), altDown=boolean(), metaDown=boolean(),
cmdDown=boolean()}

See #wxMouseState{} defined in wx.hrl

Exports
parent class(X1l) -> term()

new() -> wx object()
Startsawx server.

new(Options::[Option]) -> wx object()
Types:
Option = {debug, list() | atom()} | {silent_start, boolean()}

Starts awx server. Option may be {debug, Level}, see debug/1. Or {silent_start, Bool}, which causes error messages
at startup to be suppressed. The latter can be used as a silent test of whether wx is properly installed or not.

destroy() -> ok

Stops awx server.

get env() -> wx env()

Gets this process's current wx environment. Can be sent to other processes to allow them use this process wx
environment.

See also: set_env/1.

set _env(Wx env::wx env()) -> ok
Sets the process wx environment, allows this process to use another process wx environment.

null() -> wx_object()
Returns the null object

is null(Wx_ref::wx object()) -> boolean()
Returnstrueif object is null, false otherwise

equal (Wx ref::wx object(), X2::wx object()) -> boolean()
Returnstrueif both arguments references the same object, fal se otherwise

getObjectType(Wx ref::wx object()) -> atom()
Returns the object type

Ericsson AB. All Rights Reserved.: wxErlang | 7

WX

typeCast(0ld::wx object(), NewType::atom()) -> wx object()

Casts the object to class NewType. It is needed when using functions like wxWindow:findwWindow/2, which returns
ageneric wxObject type.

batch(Fun::function()) -> term()

Batches all wx commands used in the fun. Improves performance of the command processing by grabbing the
wxWidgets thread so that no event processing will be done before the complete batch of commands is invoked.

See also: foldl/3, foldr/3, foreach/2, map/2.

foreach(Fun::function(), List::list()) -> ok
Behaves like lists:foreach/2 but batches wx commands. See batch/1.

map(Fun::function(), List::list()) -> list()
Behaves like lists:map/2 but batches wx commands. See batch/1.

foldl(Fun::function(), Acc::term(), List::list()) -> term()
Behaves like lists:foldl/3 but batches wx commands. See batch/1.

foldr(Fun::function(), Acc::term(), List::list()) -> term()
Behaves like lists:foldr/3 but batches wx commands. See batch/1.

create memory(Size::integer()) -> wx _memory()

Createsamemory area (of Sizein bytes) which can be used by an external library (i.e. opengl). It isup to the client to
keep areference to this object so it does not get garbage collected by erlang while still in use by the external library.

Thisisfar from erlang's intentional usage and can crash the erlang emulator. Use it carefully.

get memory bin(Wx mem::wx memory()) -> binary()

Returns the memory area as abinary.

retain_memory(Wx_mem::wx_memory()) -> ok

Saves the memory from deletion until release_memory/1iscalled. If release_memory/1is not called the memory will
not be garbage collected.

release memory(Wx mem::wx memory()) -> ok

debug(Debug::Level | [Level]) -> ok
Types.
Level = none | verbose | trace | driver | integer()

Sets debug level. If debug level is'verbose' or 'trace’ each call is printed on console. If Level is'driver' each allocated
object and deletion is printed on the console.

demo() -> ok | {error, atom()}
Starts awxErlang demo if examples directory exists and is compiled

8 | Ericsson AB. All Rights Reserved.: wxErlang

wx_object

wX_object

Erlang module

wx_object - Generic wx object behaviour

Thisis abehaviour module that can be used for "sub classing” wx objects. It works like aregular gen_server module
and creates a server per object.

NOTE: Currently no form of inheritance isimplemented.
The user module should export:

init(Args) should return

{wxObject, State} | { wxObject, State, Timeout} | ignore | { stop, Reason}
Asynchronous window event handling:

handle_event(#wx{}, State) should return

{noreply, State} | { noreply, State, Timeout} |{stop, Reason, State}

The user module can export the following callback functions:

handle_call(Msg, { From, Tag}, State) should return

{reply, Reply, State} | {reply, Reply, State, Timeout} | {noreply, State} | { noreply, State, Timeout} | { stop, Reason,
Reply, State}

handle_cast(Msg, State) should return

{noreply, State} | { noreply, State, Timeout} |{stop, Reason, State}

If the above are not exported but called, the wx_object process will crash. The user module can also export:

Infois message e.g. {'EXIT', P, R}, { nodedown, N}, ...
handle_info(Info, State) should return, ...
{noreply, State} | { noreply, State, Timeout} |{stop, Reason, State}

If a message is sent to the wx_object process when handle info is not exported, the message will be dropped and
ignored.

When stop is returned in one of the functions above with Reason = normal | shutdown | Term, terminate(State) is
caled. It lets the user module clean up, it is always called when server terminates or when wx_object() in the driver
is deleted. If the Parent process terminates the Moduleiterminate/2 function is called.

terminate(Reason, State)

Example:

Ericsson AB. All Rights Reserved.: wxErlang | 9

wx_object

-module(myDialog).
-export([new/2, show/1, destroy/1]). %% API
-export([init/1, handle call/3, handle event/2,
handle info/2, code change/3, terminate/2]).
new/2, showModal/1l, destroy/1]). %% Callbacks

%% Client API
new(Parent, Msg) ->
wx_object:start(?MODULE, [Parent,Id], [1]).

show(Dialog) ->
wx_object:call(Dialog, show modal).

destroy(Dialog) ->
wx_object:call(Dialog, destroy).

%% Server Implementation ala gen server
init([Parent, Str]) ->
Dialog = wxDialog:new(Parent, 42, "Testing", []),

wxDialog:connect(Dialog, command button clicked),
{Dialog, MyState}.

handle call(show, From, State) ->
wxDialog:show(State#state.win),
{reply, ok, State};

handle event (#wx{}, State) ->

io:format("Users clicked button~n",[1),
{noreply, State};

DATA TYPES
request_id() = term()

server_ref() = wx:wx_abject() | atom() | pid()
Exports

start(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}

Types:
Name = {local, atom()}
Mod = atom()

Args = term)
Flag = trace | log | {logfile, string()} | statistics | debug
Options = [{tineout, timeout()} | {debug, [Flag]}]

Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

start _link(Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}
Types:

Mod = atom()

Args = term)

Flag = trace | log | {logfile, string()} | statistics | debug

10 | Ericsson AB. All Rights Reserved.: wxErlang

wx_object

Options = [{tineout, tinmeout()} | {debug, [Flag]}]

Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

start link(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}

Types:
Name = {local, atom()}
Mod = atom()

Args = term)
Flag = trace | log | {logfile, string()} | statistics | debug
Options = [{tineout, timeout()} | {debug, [Flag]}]

Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

stop(0bj) -> ok
Types.
bj = wx:wx_object() | atom() | pid()

Stops a generic wx_aobject server with reason 'normal’. Invokes terminate(Reason,State) in the server. The call waits
until the process is terminated. If the process does not exist, an exception is raised.

stop(0Obj, Reason, Timeout) -> ok

Types:
] = wx:wx_object() | atonm() | pid()
Reason = term()
Ti meout = timeout ()

Stops a generic wx_object server with the given Reason. Invokes terminate(Reason,State) in the server. The call waits
until the process is terminated. If the call times out, or if the process does not exist, an exception is raised.

call(0Obj, Request) -> term()

Types:
] = wx:wx_object() | atonm() | pid()
Request = term))

Make a call to awx_object server. The call waits until it gets a result. Invokes handle_call(Reguest, From, State) in
the server

call(Obj, Request, Timeout) -> term()
Types.
bj = wx:wx_object() | atom() | pid()
Request = term)
Ti meout = integer()
Make acall to awx_object server with atimeout. Invokes handle_call(Request, From, State) in server

send request(0Obj, Request::term()) -> request id()

Types:
bj = wx:wx_object() | atom() | pid()

Ericsson AB. All Rights Reserved.: wxErlang | 11

wx_object

Make an send_request to a generic server. and return a Requestld which can/should be used with wait_response/[1]
2]. Invokes handle_call(Request, From, State) in server.

wait response(RequestId::request id()) -> {reply, Reply::term()} | {error,
{term(), server ref()}}

Wait infinitely for areply from a generic server.

wait response(Key::request id(), Timeout::timeout()) -> {reply,
Reply::term()} | timeout | {error, {term(), server ref()}}

Wait 'timeout’ for areply from a generic server.

check response(Msg::term(), Key::request id()) -> {reply, Reply::term()} |
false | {error, {term(), server ref()}}

Check if areceived message was areply to a Requestid

cast(0Obj, Request) -> ok
Types:
hj = wx:wx_object() | atom() | pid()
Request = term))
Make a cast to awx_object server. Invokes handle_cast(Request, State) in the server

get pid(0bj) -> pid()
Types:

bj = wx:wx_object() | atom() | pid()
Get the pid of the object handle.

set pid(Obj, Pid::pid()) -> wx:wx object()
Types:

bj = wx:wx_object() | atom() | pid()
Sets the controlling process of the object handle.

reply(X1::{pid(), Tag::term()}, Reply::term()) -> pid()
Get the pid of the object handle.

12 | Ericsson AB. All Rights Reserved.: wxErlang

wxAcceleratorEntry

wxAcceleratorEntry

Erlang module

See external documentation: wxAccelerator Entry.

DATA TYPES

wxAcceleratorEntry()

An object reference, The representation is internal and can be changed without notice. It can't be used for
comparsion stored on disc or distributed for use on other nodes.

Exports

new() -> wxAcceleratorEntry()
Equivalent to new([]).

new(Options::[Option]) -> wxAcceleratorEntry()

new(Entry) -> wxAcceleratorEntry()

Types:
Option = {flags, integer()} | {keyCode, integer()} | {cnd, integer()} |
{item wxMenultem wxMenulten()}
Entry = wxAccel eratorEntry()

See external documentation.

Also:

new(Entry) -> wxAcceleratorEntry() when
Entry::wxAcceleratorEntry().

getCommand(This) -> integer()
Types.

This = wxAccel eratorEntry()
See exter nal documentation.

getFlags(This) -> integer()
Types.

This = wxAccel eratorEntry()
See external documentation.

getKeyCode(This) -> integer()
Types.
This = wxAccel eratorEntry()

See exter nal documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 13

href
href
href
href
href

wxAcceleratorEntry

set(This, Flags, KeyCode, Cmd) -> ok
Types.

This = wxAccel eratorEntry()

Flags = integer()

KeyCode = integer()

Cnd = integer()
Equivalent to set(This, Flags, KeyCode, Cmd, []).

set(This, Flags, KeyCode, Cmd, Options::[Option]) -> ok
Types:

This = wxAccel eratorEntry()

Fl ags = integer()

KeyCode = integer()

Cmd = integer()

Option = {item wMenultem wxMenulten()}
See external documentation.

destroy(This::wxAcceleratorEntry()) -> ok
Destroys this object, do not use object again

14 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxAcceleratorTable

wxAcceleratorTable

Erlang module

See external documentation: wxAcceler ator Table.

DATA TYPES
wxA cceleratorTable()

An object reference, The representation is internal and can be changed without notice. It can't be used for
comparsion stored on disc or distributed for use on other nodes.

Exports

new() -> wxAcceleratorTable()
See exter nal documentation.

new(N, Entries) -> wxAcceleratorTable()
Types.

N = integer()

Entries = [wxAccel eratorEntry: wxAccel eratorEntry()]
See external documentation.

ok(This) -> boolean()
Types:

This = wxAccel erat or Tabl e()
See external documentation.

destroy(This: :wxAcceleratorTable()) -> ok
Destroys this object, do not use object again

Ericsson AB. All Rights Reserved.: wxErlang | 15

href
href
href
href

wxActivateEvent

wxActivateEvent

Erlang module

See external documentation: wxActivateEvent.
Use wxEvtHandler:connect/3 with EventType:
activate, activate app, hibernate
See also the message variant #wxActivate{} event record type.

This classis derived (and can use functions) from:
WxEvent

DATA TYPES
wxActivateEvent()

An object reference, The representation is internal and can be changed without notice. It can't be used for
comparsion stored on disc or distributed for use on other nodes.

Exports

getActive(This) -> boolean()
Types:

This = wxActivat eEvent ()
See exter nal documentation.

16 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxArtProvider

wxArtProvider

Erlang module

See external documentation: wxArtProvider.

DATA TYPES
wxArtProvider()

An object reference, The representation is internal and can be changed without notice. It can't be used for

comparsion stored on disc or distributed for use on other nodes.

Exports

getBitmap(Id) -> wxBitmap:wxBitmap()
Types:

Id = uni code: chardat a()
Equivalent to getBitmap(ld, []).

getBitmap(Id, Options::[Option]) -> wxBitmap:wxBitmap()

Types:
Id = uni code: chardat a()
Option = {client, unicode:chardata()} | {size, {W:integer(),
H: :integer()}}

See external documentation.

getIcon(Id) -> wxIcon:wxIcon()
Types:

Id = uni code: chardat a()
Equivalent to getlcon(ld, []).

getIcon(Id, Options::[Option]) -> wxIcon:wxIcon()

Types:
Id = uni code: chardat a()
Option = {client, unicode:chardata()} | {size, {W:integer(),
H: :integer()}}

See external documentation.

Ericsson AB. All Rights Reserved

.» wxErlang | 17

href
href
href

wxAuiDockArt

wxAuiDockArt

Erlang module

See external documentation: wxAuiDockArt.

DATA TYPES
wxAuUiDockATrt()

An object reference, The representation is internal and can be changed without notice. It can't be used for
comparsion stored on disc or distributed for use on other nodes.

Exports

getColour(This, Id) -> wx:wx colour4()
Types:

This = wxAui DockArt ()

Id = integer()
See external documentation.

getFont(This, Id) -> wxFont:wxFont()
Types.

This = wxAui DockArt ()

Id = integer()
See external documentation.

getMetric(This, Id) -> integer()
Types:

Thi s = wxAui DockArt ()

Id = integer()
See external documentation.

setColour(This, Id, Colour) -> ok
Types:

This = wxAui DockArt ()

Id = integer()

Col our = wx: wx_col our ()
See external documentation.

setFont(This, Id, Font) -> ok
Types:

This = wxAui DockArt ()

Id = integer()

Font = wxFont: wxFont ()

18 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href

wxAuiDockArt

See external documentation.

setMetric(This, Id, New val) -> ok
Types:

This = wxAui DockArt ()

Id = integer()

New val = integer()
See external documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 19

href
href

wxAuiManager

wxAuiManager

Erlang module

See external documentation: wxAuiM anager .

This classis derived (and can use functions) from:
wxEvtHandler

DATA TYPES
wxAuiManager()

An object reference, The representation is internal and can be changed without notice. It can't be used for
comparsion stored on disc or distributed for use on other nodes.

Exports

new() -> wxAuiManager()
Equivalent to new([]).

new(Options::[Option]) -> wxAuiManager()
Types:

Option = {nmanaged_wnd, wxW ndow. wxW ndow()} | {flags, integer()}
See exter nal documentation.

addPane(This, Window) -> boolean()
Types:

Thi s = wxAui Manager ()

W ndow = wxW ndow: wxW ndow()
Equivalent to addPane(This, Window, []).

addPane(This, Window, Options::[Option]) -> boolean()
addPane(This, Window, Pane info) -> boolean()
Types:
Thi s = wxAui Manager ()
W ndow = wxW ndow: wxW ndow()
Option = {direction, integer()} | {caption, unicode:chardata()}
Thi s = wxAui Manager ()
W ndow = wxW ndow. wxW ndow()
Pane_i nfo = wxAui Panel nf o: wxAui Panel nf o()

See external documentation.

Also:

addPane(This, Window, Pane_info) -> boolean() when

This::wxAuiManager(), Window::wxWindow:wxWindow(), Pane_info::wxAuiPanel nfo:wxA uiPanelnfo().

20 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href

wxAuiManager

addPane(This, Window, Pane info, Drop pos) -> boolean()
Types.

Thi s = wxAui Manager ()

W ndow = wxW ndow. wxW ndow()

Pane_i nfo = wxAui Panel nf o: wxAui Panel nf o()

Drop _pos = {X: :integer(), Y::integer()}
See external documentation.

detachPane(This, Window) -> boolean()
Types:

Thi s = wxAui Manager ()

W ndow = wxW ndow. wxW ndow()
See exter nal documentation.

getAllPanes(This) -> [wxAuiPaneInfo:wxAuiPaneInfo()]
Types:

Thi s = wxAui Manager ()
See external documentation.

getArtProvider(This) -> wxAuiDockArt:wxAuiDockArt()
Types.
This = wxAui Manager ()

See exter nal documentation.

getDockSizeConstraint(This) -> {Width pct::number(), Height pct::number()}
Types:

This = wxAui Manager ()
See external documentation.

getFlags(This) -> integer()
Types:

Thi s = wxAui Manager ()
See external documentation.

getManagedWindow(This) -> wxWindow:wxWindow()
Types:

Thi s = wxAui Manager ()
See external documentation.

getManager(Window) -> wxAuiManager()
Types:

W ndow = wxW ndow. wxW ndow()
See external documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 21

href
href
href
href
href
href
href
href

wxAuiManager

getPane(This, Name) -> wxAuiPaneInfo:wxAuiPaneInfo()
getPane(This, Window) -> wxAuiPaneInfo:wxAuiPaneInfo()
Types:

Thi s = wxAui Manager ()

Name = uni code: chardat a()

This = wxAui Manager ()

W ndow = wxW ndow. wxW ndow()
See exter nal documentation.
Also:

getPane(This, Window) -> wxAuiPanel nfo:wxAuiPanel nfo() when
This::wxAuiManager(), Window::wxWindow:wxWindow().

hideHint(This) -> ok
Types:

Thi s = wxAui Manager ()
See exter nal documentation.

insertPane(This, Window, Insert location) -> boolean()
Types.

Thi s = wxAui Manager ()

W ndow = wxW ndow. wxW ndow()

Insert _location = wxAui Panel nf o: wxAui Panel nf o()

Equivalent to insertPane(This, Window, Insert_location, []).

insertPane(This, Window, Insert location, Options::[Option]) -> boolean()
Types.

Thi s = wxAui Manager ()

W ndow = wxW ndow. wxW ndow()

Insert Il ocation = wxAui Panel nf o: wxAui Panel nf o()

Option = {insert_level, integer()}
See external documentation.

loadPaneInfo(This, Pane part, Pane) -> ok
Types:

Thi s = wxAui Manager ()

Pane_part = uni code: chardat a()

Pane = wxAui Panel nf o: wxAui Panel nf o()

See external documentation.

loadPerspective(This, Perspective) -> boolean()
Types:

Thi s = wxAui Manager ()

Per spective = uni code: chardata()

22 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href

wxAuiManager

Equivalent to loadPerspective(This, Perspective, []).

loadPerspective(This, Perspective, Options::[Option]) -> boolean()
Types:

Thi s = wxAui Manager ()

Per spective = uni code: chardata()

Option = {update, bool ean()}

See external documentation.

savePaneInfo(This, Pane) -> unicode:charlist()
Types:

Thi s = wxAui Manager ()

Pane = wxAui Panel nf o: wxAui Panel nf o()
See exter nal documentation.

savePerspective(This) -> unicode:charlist()
Types.

Thi s = wxAui Manager ()
See external documentation.

setArtProvider(This, Art provider) -> ok
Types:

Thi s = wxAui Manager ()

Art _provider = wxAui DockArt : wxAui DockArt ()
See external documentation.

setDockSizeConstraint(This, Width pct, Height pct) -> ok
Types:

Thi s = wxAui Manager ()

W dth_pct = nunber ()

Hei ght _pct = nunber ()

See external documentation.

setFlags(This, Flags) -> ok
Types.

Thi s = wxAui Manager ()

Fl ags = integer()
See external documentation.

setManagedWindow(This, Managed wnd) -> ok
Types:

Thi s = wxAui Manager ()

Managed_wnd = wxW ndow. wxW ndow()

Ericsson AB. All Rights Reserved.: wxErlang | 23

href
href
href
href
href
href

wxAuiManager

See external documentation.

showHint(This, Rect) -> ok

Types:
Thi s = wxAui Manager ()
Rect = {X :integer(), Y::integer(), W:integer(), H:integer()}

See exter nal documentation.

unInit(This) -> ok
Types.

Thi s = wxAui Manager ()
See external documentation.

update(This) -> ok
Types:

This = wxAui Manager ()
See external documentation.

destroy(This: :wxAuiManager()) -> ok
Destroys this object, do not use object again

24 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href

wxAuiManagerEvent

wxAuiManagerEvent

Erlang module

See external documentation: wxAuiM anager Event.
Use wxEvtHandler:connect/3 with EventType:

aui_pane button, aui_pane close, aui_pane maximize,
aui_render, aui_find_manager

See also the message variant #wxAuiManager{} event record type.

This classis derived (and can use functions) from:
WxEvent

DATA TYPES

wxAuiManagerEvent()

aui_pane restore,

aui_pane_activated,

An object reference, The representation is internal and can be changed without notice. It can't be used for

comparsion stored on disc or distributed for use on other nodes.

Exports

setManager(This, Mgr) -> ok
Types.

Thi s = wxAui Manager Event ()

Mgr = wxAui Manager : wxAui Manager ()
See external documentation.

getManager(This) -> wxAuiManager:wxAuiManager()
Types:

Thi s = wxAui Manager Event ()
See external documentation.

setPane(This, P) -> ok
Types:
Thi s = wxAui Manager Event ()
P = wxAui Panel nf o: wxAui Panel nf o()

See exter nal documentation.

getPane(This) -> wxAuiPaneInfo:wxAuiPanelInfo()
Types:
This = wxAui Manager Event ()

See exter nal documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 25

href
href
href
href
href

wxAuiManagerEvent

setButton(This, B) -> ok
Types.
Thi s = wxAui Manager Event ()
B = integer()
See external documentation.

getButton(This) -> integer()
Types:

Thi s = wxAui Manager Event ()
See extern