Oracle Berkeley DB

Getting Started with
Berkeley DB

for Java

11g Release 2
Library Version 11.2.5.3

ORACLE
BERKELEY DB

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at: http://
www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

Java™ and all Java-based marks are a trademark or registered trademark of Sun Microsystems, Inc, in the United States and other
countries.

Other names may be trademarks of their respective owners.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forum|D=271

Published 5/11/2012

http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

Table of Contents

o] (=3 = Lo vi
Conventions Used in this BOOKcctiriretiiiieiiiieiiiiiiiaerereraeaeerenaeerenneranneens vi
FOr More Informationeeieeiirei ittt e et eeneeeeeeerennrenanaesannnanans vi

00 31 t- Tt v 0 vii

1. Introduction t0 Berkeley DBcceiiiiiiieiiiiiiiieeeeeeeiineeeeeeesneeeeesessnnesessesnnnnneens 1
ADBOUL This MANUAL ...eeeeiiiiiiii ittt et re et e s eeeeeaeerenaeerannenannees 2
Berkeley DB CONCEPES tevtiiiiinetteeeeiieeeeeeeenraeeeeeeesneseeeessnnaseseesssnnssseessnnnnnneens 2

o YT 0T] 0 0 = 2
KeY-Data Pails .iiiiiineeeiiiieiiettteeeiiieeeeeeeenneeeeeesssrnaseseessnassssesssnassssesanns 3
SEOMING DAtA uvviiiiiiiiitttieiiiiteteeeeiieeeeeeeeinaeeeeessnnaseseessnnnssssesennnnsaseenen 4
Storing Data in the DPL ..ciiiiiiiiiiiiii it e eiiie e eeeiieeeeeaannnas 4

Storing Data using the Base APleiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeennnnneeens 4

D]U]o] N (at- 1 (=3 D | - L TP PPN 5
Replacing and Deleting ENTriEs .ovveerreeiiiiiiiieteeieeiiieeeeeeeineeeesesennaneeeaenns 5
SECONAANY KBS tunurretiiieiiiietttteeeineteeeeeenneeeeeeesnsaseeesssnnsssesssnnnnessssannnes 6
Using Secondaries With the DPLc.cciiiiiiiiiiiiiiiiiieieiiiieeeeeennnneeens 6

Using Secondaries with the Base APL.c.iviiiiiiiiiiiiiiiiiiiiiiiiieeiineeeeenns 6

Which APl Should YOU USE? ..ecnneiiiiiiiii it e eea e et reneeeeeneerenneenanes 7

Yool <3 T o g oY L 7
Selecting ACCess MEthOdsuuueiiiiiiiiiiiii it ettt eeeeieeeeeeeanneseesanns 8
Choosing between BTree and Hashcciviiiiiiiiiiiiiiiiiiiiiiiiiii i eeenns 8
Choosing between Queue and RECNOvvviiiiiiiieeeiiieiiieeeereenieeeeeeennnneeeenns 9
Database Limits and Portability ...cceeeeeiiiiieeiiiiiiiiiiiiiiiieeeeeeiineeeeeeennneeeeanns 9
(S Cel=] oY (o] T o - T Ta |1 1 = S PPN 9
o N 0 T= U 10
Getting and USING DB ...uviiiiiiiiiiietitieiiieteeeeeiineeeeeeenrnseeeesessnnsseessesnnnsssseanns 10

2. Database ENVIrONMENTSeiittieiiiiei it reateeeaterenatereneerenaeeranneesannasennneranns 11
Opening Database ENVIFONMENTS ..uviiiiiiieieiiiiiiietiieniieeeereseinneeeeessnnneeseesnnnnes 11
Closing Database ENVIrONMENTS ..cviiiiieeiiiiiiiiettereiiineeeeeeenrneeeeeeesnnneesesennnnnnes 12
ENVIrONmMeNnt Properties ...ttt iieiieeneeneneeeneeneeeeeeeeeeeesessenneees 13

The EnvironmentConfig Class tiveueeeeiiiiiietteiiiiiieeeereeeiineeeeeesnrneseesesennnnes 13
EnvironmentMutableContfig ...uviiiiiiiiiiiiiiiiiiiiiiiiiireiiieeeeeeennnaneeeaaanns 14

I. Programming with the Direct Persistence Layerceiiiiiiieieiieiiiineeeeeeiineeeeenannnnes 16

3. Direct Persistence Layer First SEEPS .uveiiiiiiiitieiiiiiittieeiireeeeeeenneeeesennnnnnes 17

o 1 1V] < PP 17
Opening and Closing Environments and StOresccoevvveeeiieiinneneeeennnns 18
Persistent ODJECES .uvviiiiiiietitiiiiiietereeiieeeeeeeeinaeeeeessrnneesssessnnnsessennnns 19
Saving and RetrieVing Datacciiiiiieeiiiriiiieeeeeeeiineeeeeeennneeeeesesnnneaeenns 20
4. Working With INAiCES «uiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeteiieeeeerenreeeeesessnnseeeesennnnes 22
ACCESSING INAEXES uvveeiiiiiiitttteeeiiieeeteeeireeeeeeeensnseeeesessnnsseeesennnessesenns 22
Accessing Primary INAIiCES covvuuieiiiiiiiiietiiiiiieeeeeeiineeeeeesennaneesennns 22
Accessing Secondary INAICES .ivvviuueiiiiiiiiietieeiiiieeeeeeeirneeeeeeennnseeens 22
Creating INAEXES .uviiiiiiiiii ittt eeeiieeeetenineeeeeeesnneseeesennnsessssesnnnanes 23
Declaring @ Primary INAEXES ..ccvvviueiiiiiiiiieteeieiiiieeeeeeeeinneeeeeesnnnnneees 23
Declaring Secondary INAEXESeeiiieiieeiiireiiieeeeeeeeireeeeeeensnneeeeeeannns 24
Foreign Key ConsStraints ...ueeeeeiiieeeeeieriiieeeeeeenineeeeeeennnnneseesennnneaeens 25

5/11/2012 Getting Started with DB Page iii

5. Saving and Retrieving ObJECESciiiuiiiiieiiiiiiiiiiiiiiieiieeeeneeenneeeenneenaneeees 27
A SIMple ENtity Class c.ueeiereeiriietieieeieieeernieeeeneeereneeeesneeecnasessnecesnneeeens 27
STIMPLEDA.CLASS +eirttiiittieittieiteeieerenneereraeeesneeresneeesneesesnessennseesneeeaes 28
Placing Objects in an Entity STOreceviiiiiiiiiiiiiiiiiiiiiiiiniieeeneeeeneeeaans 29
Retrieving Objects from an Entity Storeccvvviiiiiiiiiiiiiiiiiiiniiiennneeeenne. 32
Retrieving Multiple ObJECES .iuviiiiiiiiiiiiiiiiiiiii it ieiieeieeeenaeeenneeeannee. 34

Cursor INTtializationceeeviiiiiiiiiiiiiiiiiiiiiiiiii i ittt eeieeeneeenees 3D
Working with Duplicate Keys ...ccvuiiiiiiiiiiiiiiieiieiieerenneeesneeeanneeeenaeees 39
KEY RANGES .uenniiiiiiiiiiittiiiiiiieeeeeianeeeseeessneessssassansesssassnnssasses 30
o) [T O o NG ¥ 4
Deleting Entity ObJeCtS .uviiiieiiiiiiiiiiiiiiiiiiiieiiiieeeeieeeneerenaeensneeeanneess 39
Replacing Entity ObJeCtS .uviiireiiiieiiiiiiiiieiniieereitereneerenneeeenaesssnecesnness 39

6. A DPL EXAmMPLe uuutiiiitiiiiiiiiitieeieteeeneeeeneeeenneeesneesesnseesnnesesnaesssnasesnneess 41
VENAOL JAVA 1ttiintiiiietieieeieineeeaneeeesneeresaeeesneesesnessonaesssnecesnnssssnaeesnness 41
10N 0 o YA - 17 L PPN X
DataACCESSOr.JAVA tiviennreerreeiinnterreernnresseeesanneessessnnsessesssnnsessecssanneess 47
ExampleDatabasePut.java ...ceeeeiieieiiiiiiiiiiiiiiiiiiiiiiieeriieeeeneeeeneeennne.. 48
ExamplelnventoryRead.javaeeeeeeieiieiiiietiniieeieneereneeeesneeeenasessneceanneeses D2

[I. Programming with the Base APlccciuiiiiiiiiiiiiiiiieiieeieeeeieeeaaneeessneeesnaesaanaes D7

R - L L0 T PP 1
Opening Databasesceeeeieiieiiiieiiiiieiieitereieteeneereretersneeeesneesennseesnaess D8
CloSiNg Databasesceeueiiereiiriieiieieiieieteenieerenneerereeeesneesennssssnassesnessaes D9
Database Propertiesceeeeeeieeieiieiieieieenieeienneerenneeesseeresnsessneeeesneesanness 00
Administrative Methodscciveiiiiiiiiiiiiiiiiiiiiiiii e eeeee. 61
Error Reporting FUNCLIONSueiiiiiiiiiiiiiiiiiiii i eieiieeereennanneeses. 02
Managing Databases in Environmentsccceeveieiiiiiiiiieiieiieeieneereneeeanneeea. 03
Database EXampPle ...ciiieiiiiiiiiiiiiiiiiiiiieiieeieieeeeneerenneeeeneceennecssnnseaes 0D

8. Database RECOIScciieniiiniiiiiiiiiiiiteiieiiteiiteeiteeateeatreatrensissesnecsneesses 08
Using Database RECOISuiiiieiiiieiiiiitiiiiiiiiieeieieeerineeeenneeesneeennneeeanes 08
Reading and Writing Database Recordsc.cceeieiiiiiiiiiniiieniieiennneeeenneea.. 69

Writing Records to the Databasecccvvveviiiiiiiiiiiieiieienieeeenneeeennes. 70
Getting Records from the Databasecccccevvveiiiiiiiiiiiiiiieiniineennnne.. 71
Deleting RECOIAS ..viirueiiiitiiiitieiietieitereneeeenneereneeeesneeeanneseonaeennns 12
Data PersisStenCeovvveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e iaeeees 13
Using the BIND APIS ...eniiniitieiitiiiiteiteeteeteeeeeeereeneeneeeeeneeneennennsaeeenees 14
Numerical and String ObJeCtS ..vvveiiiiieiiiiiiiiiiiiiiiiiieeneieeeanneeeannes. 14
Serializable Complex ObJeCtS ..uivvreiiiiiiriieiiiiiiiiitieeieerenneeeeneeeannes. 16
USage CaVvealts t.uuuereiiiieiineerireninneerreeasnaneesssessnneeesscesnnesssaaes 17
Serializing ObJECtS ..viverriirieiriitieeieeeeaieeeenneeeeneeeenneeeanneeenneees 17
Deserializing ObjJeCtS ..civveiiriieiieiieereieieenieereneeeenneeenneeeenneeeanes 80

Custom Tuple BindiNgs ...ceeeieiiiiiiriietieiieeeriieeeeieeeesneeessneeesnaeeeonaees 81
Database Usage EXamMPLeciveueiiiiiiiiieiieiietieieereneeeenneerenneesseesenneeeenes 84

9. USING CUISOIS teiiiintttieeianeeeteeanraneeessessnnsessseessansssssessansssssesssansssssassas 90
Opening and ClOSING CUMSOIS ..uiiivetierneerenneereneeeesneerenneeeenseeesnsesesnsesanaeees 90
Getting Records Using the CUrSOr ...ccviiiieiiriieeieiieereneeeenieerenneersnaeeenneeeaes 97

Searching for RECOIAS ...evuviieretiiiietieiieiieieeeeneeeeneerenneeeseesanneeeanes 99
Working with Duplicate Recordsccevvviiiiieiiiiieiieieinnieeeenneenannea.. 101
Putting Records UsiNg CUISOIScieeueerereeienneerenneeeeneeeesneeeenneeesneesanneeeens 104

5/11/2012 Getting Started with DB Page iv

Deleting Records USING CUMSOIS ...uuieeuetierueereeeeenneeeenaeeeaneeessneeesnnsesnneens 106

Replacing Records UsSiNG CUMSOIS ..uuieeeeerereeerneerenneereneeeesneeeenneesoneceenneens 107
CUISOT EXAMPLE teinnttieintteeiteeeieteeeneeeanneeeenaeeeseeeesneeessneeesnaesssneeesnnees 108
10. Secondary Databasescveeieeieiiiieiieietiiiieeieiteeeneeeenneerenaeessneeeesaeeeonaees 113
Opening and Closing Secondary Databasescceveveeieieireneeereneeeenneeeannens 113
Implementing KeY Creators .iiueiieieeeeereeieieeeeneteesneerenneeeenneeesnseeenneeenns 116
Working with MULLIPLle KeYS ...uviiiiiiiiiiiiiiiiiiiieiieeieeeneeeeneeaanas 119
Secondary Database Propertiesieveeeeeieiieieireieeernneeeeneeeeenecesnneeeonnens 120
Reading Secondary Databases ..ccuveeeeeeereeerineeeeiueeeeneeeeneeeenaeeesnaeeanneens 120
Deleting Secondary Database RECOrdScceviiiuiiiiieiieiieiienneeenneeeenneeeannns 121
UsiNG SECONAArY CUIMSOIS tuuutiiiuetienneerenneeeaneeeenneesenneeesneeesnnsssonneesnneens 122
D L= o= T I [0 13 LN 123
USING JOTN CUMSOTS uueneeiiiieeiitttieeeniteeteeenraneeessessnnneesssessansesssanes 124
JOINCUISOr Propertieseeiiiiiiiietiiiiiitiieeiiteereeannnreesseasnnneenses 126
Secondary Database EXamPpPle ..o.ueieiieeiiiieiiriiiiiiieieiieeeeaneeeanneeeenaeeaonaens 127
Opening Secondary Databases with MyDDbScccccviiiiiiiiiiiiniininnnnnnnn. 128
Using Secondary Databases with ExampleDatabaseReadc......... 132
11. Database Configurationc.eeeeieieeieiieiieeeeneeeeiueeeeieeeesneeesnneeesnaeeanneens 135
Setting the Page Sizeciiiiiiiiiiiiiiiiiiiii it e i et eeeneeeaneeeanneens 135
OVEITlOW PagES tuuviiiittiiitiiiiteeeieteeeteeennteeaneeeasneeeenneeesnaesenneeens 135
LOCKING . uttiiinttiiitieeittieeitteeinteeeneeeeaeeeanneeeenaeeesnesessnesessnssesnnnen 136
(O = i Tel =] Ty YA P PP 136
Page SiZiNg AdVICE .iuuiiiiiiiiiiit i iiieeiteetteeenneeeeneeeennneesnneennn 137
Selecting the Cache SizZeiiviuiiiiiiiiiiiiiiiii ittt eeeerereeeenaeeanns 138
BTree Configurationicieeieieiirreeieinteeeieeeenneerenneeesneeeesneerennseesneesanns 138
Allowing Duplicate RECOrdSeivueiiiieiiiieiiniietieieereieeeeaneerenneeennes 138
Sorted DUPLICAES .vviieneiiiitiiiitieiieereneeeeeeerenneeaeneeeenneeeennens 139
Unsorted DUPlICATES .uveireneiiiiiiieiiieiieeeiieeeieeeeieeeenneeeannees 139
Configuring a Database to Support Duplicatescceeveeenvneeennnnnn. 140
Setting Comparison FUNCLIONS ..iuuuueeeiiiiiiiiiteeiiieiiaeerranineeeeseennanns 141
Creating Java Comparatorsceeeeeeeeeeerreernnneerreeennnneeseeannnns 141

5/11/2012

Getting Started with DB Page v

Preface

Welcome to Berkeley DB (DB). This document introduces Berkeley DB 11¢g Release 2, which
provides DB library version 11.2.5.3.

This document is intended to provide a rapid introduction to the DB API set and related
concepts. The goal of this document is to provide you with an efficient mechanism with which
you can evaluate DB against your project's technical requirements. As such, this document is
intended for Java developers and senior software architects who are looking for an in-process
data management solution. No prior experience with Berkeley DB is expected or required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example: "The
Database() constructor returns a Database class object.”

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory.”

Program examples are displayed in a monospaced font on a shaded background. For example:
import com.sleepycat.db.DatabaseConfig;

// Allow the database to be created.
DatabaseConfig myDbConfig = new DatabaseConfig();
myDbConfig.setAllowCreate(true);

In some situations, programming examples are updated from one chapter to the next. When
this occurs, the new code is presented in monospaced bold font. For example:

import com.sleepycat.db.Database;

import com.sleepycat.db.DatabaseConfig;

// Allow the database to be created.

DatabaseConfig myDbConfig = new DatabaseConfig();
myDbConfig.setAllowCreate(true);

Database myDb = new Database("mydb.db", null, myDbConfig);

Note

Finally, notes of interest are represented using a note block such as this.

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a DB application:

5/11/2012

Getting Started with DB Page vi

Contact Us

To download the latest Berkeley DB documentation along with white papers and other

Getting Started with Transaction Processing for Java

Berkeley DB Getting Started with Replicated Applications for Java
Berkeley DB Programmer's Reference Guide

Berkeley DB Installation and Build Guide

Berkeley DB Getting Started with the SQL APIs

Berkeley DB Javadoc

Berkeley DB Collections Tutorial

collateral, visit http://www.oracle.com/technetwork/indexes/documentation/index.html.

For the latest version of the Oracle Berkeley DB downloads, visit http://www.oracle.com/
technetwork/database/berkeleydb/downloads/index.html.

You can post your comments and questions at the Oracle Technology (OTN) forum for Oracle
Berkeley DB at: http://forums.oracle.com/forums/forum.jspa?forumiD=271, or for Oracle
Berkeley DB High Availability at: http://forums.oracle.com/forums/forum.jspa?forumiD=272.

For sales or support information, email to: berkeleydb-info_us®@oracle.com You can subscribe
to a low-volume email announcement list for the Berkeley DB product family by sending email
to: bdb-join@oss.oracle.com

5/11/2012

Getting Started with DB

Page vii

http://download.oracle.com/docs/cd/E17076_02/html/gsg_txn/JAVA/BerkeleyDB-Core-JAVA-Txn.pdf
http://download.oracle.com/docs/cd/E17076_02/html/gsg_db_rep/JAVA/Replication_JAVA_GSG.pdf
http://download.oracle.com/docs/cd/E17076_02/html/programmer_reference/BDB_Prog_Reference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/installation/BDB_Installation.pdf
http://download.oracle.com/docs/cd/E17076_02/html/bdb-sql/BDB-SQL-Guide.pdf
http://download.oracle.com/docs/cd/E17076_02/html/java/index.html
http://download.oracle.com/docs/cd/E17076_02/html/collections/tutorial/BerkeleyDB-Java-Collections.pdf
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://forums.oracle.com/forums/forum.jspa?forumID=271
http://forums.oracle.com/forums/forum.jspa?forumID=272
mailto:berkeleydb-info_us@oracle.com
mailto:bdb-join@oss.oracle.com

Chapter 1. Introduction to Berkeley DB

Welcome to Berkeley DB (DB). DB is a general-purpose embedded database engine that is
capable of providing a wealth of data management services. It is designed from the ground up
for high-throughput applications requiring in-process, bullet-proof management of mission-
critical data. DB can gracefully scale from managing a few bytes to terabytes of data. For the
most part, DB is limited only by your system's available physical resources.

You use DB through a series of programming APIs which give you the ability to read and write
your data, manage your database(s), and perform other more advanced activities such as
managing transactions. The Java APIs that you use to interact with DB come in two basic
flavors. The first is a high-level API that allows you to make Java classes persistent. The
second is a lower-level API which provides additional flexibility when interacting with DB
databases.

Note

For long-time users of DB, the lower-level API is the traditional API that you are
probably accustomed to using.

Because DB is an embedded database engine, it is extremely fast. You compile and link it into
your application in the same way as you would any third-party library. This means that DB
runs in the same process space as does your application, allowing you to avoid the high cost of
interprocess communications incurred by stand-alone database servers.

To further improve performance, DB offers an in-memory cache designed to provide rapid
access to your most frequently used data. Once configured, cache usage is transparent. It
requires very little attention on the part of the application developer.

Beyond raw speed, DB is also extremely configurable. It provides several different ways of
organizing your data in its databases. Known as access methods, each such data organization
mechanism provides different characteristics that are appropriate for different data
management profiles. (Note that this manual focuses almost entirely on the BTree access
method as this is the access method used by the vast majority of DB applications).

To further improve its configurability, DB offers many different subsystems, each of which can
be used to extend DB's capabilities. For example, many applications require write-protection
of their data so as to ensure that data is never left in an inconsistent state for any reason
(such as software bugs or hardware failures). For those applications, a transaction subsystem
can be enabled and used to transactional-protect database writes.

The list of operating systems on which DB is available is too long to detail here. Suffice to say
that it is available on all major commercial operating systems, as well as on many embedded
platforms.

Finally, DB is available in a wealth of programming languages. DB is officially supported in C,
C++, and Java, but the library is also available in many other languages, especially scripting
languages such as Perl and Python.

5/11/2012

Getting Started with DB Page 1

Library Version 11.2.5.3 Introduction to Berkeley DB

Note

Before going any further, it is important to mention that DB is not a relational
database (although you could use it to build a relational database). Out of the box,
DB does not provide higher-level features such as triggers, or a high-level query
language such as SQL. Instead, DB provides just those minimal APIs required to store
and retrieve your data as efficiently as possible.

About This Manual

This manual introduces DB. As such, this book does not examine intermediate or advanced
features such as threaded library usage or transactional usage. Instead, this manual provides a
step-by-step introduction to DB's basic concepts and library usage.

Specifically, this manual introduces the high-level Java API (the DPL), as well as the "base"
Java API that the DPL relies upon. Regardless of the API set that you choose to use, there
are a series of concepts and APIs that are common across the product. This manual starts by
providing a high-level examination of DB. It then describes the APIs you use regardless of the
API set that you choose to use. It then provides information on using the Direct Persistence
Layer (DPL) API, followed by information on using the more extensive "base” API.

Examples are given throughout this book that are designed to illustrate API usage. At the

end of each chapter or section in this book, a complete example is given that is designed to
reinforce the concepts covered in that chapter or section. In addition to being presented in
this book, these final programs are also available in the DB software distribution. You can find
them in

DB_INSTALL/examples_java/db/GettingStarted
where DB_INSTALL is the location where you placed your DB distribution.

This book uses the Java programming languages for its examples. Note that versions of this
book exist for the C and C++ languages as well.

Berkeley DB Concepts

Before continuing, it is useful to describe some of the concepts you will encounter when
building a DB application.

The concepts that you will encounter depend upon the actual API that you are using. Some
of these concepts are common to both APIs, and so we present those first. Others are only
interesting if you use the DPL, while others apply only to the base API. We present each of
these in turn.

Environments

Environments are required for applications built using the DPL. They are optional, but very
commonly used, for applications built using the base API. Therefore, it is worthwhile to begin
with them.

5/11/2012

Getting Started with DB Page 2

Library Version 11.2.5.3 Introduction to Berkeley DB

An environment is essentially an encapsulation of one or more databases. You open an
environment and then you open databases in that environment. When you do so, the
databases are created/located in a location relative to the environment's home directory.

Environments offer a great many features that a stand-alone DB database cannot offer:

Multi-database files.

It is possible in DB to contain multiple databases in a single physical file on disk. This is
desirable for those application that open more than a few handful of databases. However,
in order to have more than one database contained in a single physical file, your application
must use an environment.

Multi-thread and multi-process support

When you use an environment, resources such as the in-memory cache and locks can be
shared by all of the databases opened in the environment. The environment allows you to
enable subsystems that are designed to allow multiple threads and/or processes to access
DB databases. For example, you use an environment to enable the concurrent data store
(CDS), the locking subsystem, and/or the shared memory buffer pool.

Transactional processing

DB offers a transactional subsystem that allows for full ACID-protection of your database
writes. You use environments to enable the transactional subsystem, and then subsequently
to obtain transaction IDs.

High availability (replication) support

DB offers a replication subsystem that enables single-master database replication with
multiple read-only copies of the replicated data. You use environments to enable and then
manage this subsystem.

Logging subsystem

DB offers write-ahead logging for applications that want to obtain a high-degree of
recoverability in the face of an application or system crash. Once enabled, the logging
subsystem allows the application to perform two kinds of recovery ("normal” and
"catastrophic”) through the use of the information contained in the log files.

For more information on these topics, see the Berkeley DB Getting Started with Transaction
Processing guide and the Berkeley DB Getting Started with Replicated Applications guide.

Key-Data Pairs

DB stores and retrieves data using key-data pairs. The data portion of this is the data that you
have decided to store in DB for future retrieval. The key is the information that you want to
use to look up your stored data once it has been placed inside a DB database.

For example, if you were building a database that contained employee information, then
the data portion is all of the information that you want to store about the employees: name,
address, phone numbers, physical location, their manager, and so forth.

5/11/2012

Getting Started with DB Page 3

Library Version 11.2.5.3 Introduction to Berkeley DB

The key, however, is the way that you look up any given employee. You can have more than
one key if you wish, but every record in your database must have a primary key. If you are
using the DPL, then this key must be unique; that is, it must not be used multiple times in
the database. However, if you are using the base API, then this requirement is relaxed. See
Duplicate Data (page 5) for more information.

For example, in the case of an employee database, you would probably use something like
the employee identification number as the primary key as this uniquely identifies a given
employee.

You can optionally also have secondary keys that represent indexes into your database. These
keys do not have to be unique to a given record; in fact, they often are not. For example, you
might set up the employee's manager's name as a secondary key so that it is easy to locate all
the employee's that work for a given manager.

Storing Data

How you manage your stored information differs significantly, depending on which API you are
using. Both APIs ultimately are doing the same thing, but the DPL hides a lot of the details
from you.

Storing Data in the DPL

The DPL is used to store Java objects in an underlying series of databases. These databases
are accessed using an EntityStore class object.

To use the DPL, you must decorate the classes you want to store with Java annotations that
identify them as either an entity class or a persistent class.

Entity classes are classes that have a primary key, and optionally one or more secondary
keys. That is, these are the classes that you will save and retrieve directly using the DPL. You
identify an entity class using the @Entity java annotation.

Persistent classes are classes used by entity classes. They do not have primary or secondary
indices used for object retrieval. Rather, they are stored or retrieved when an entity class
makes direct use of them. You identify an persistent class using the @Persistent java
annotation.

The primary key for an object is obtained from one of the class' data members. You identify
which data member to use as the primary key using the @PrimaryKey java annotation.

Note that all non-transient instance fields of a persistent class, as well as its superclasses and
subclasses, are persistent. Static and transient fields are not persistent. The persistent fields
of a class may be private, package-private (default access), protected or public.

Also, simple Java types, such as java.lang.String and java.util.Date, are automatically
handled as a persistent class when you use them in an entity class; you do not have to do
anything special to cause these simple Java objects to be stored in the EntityStore.

Storing Data using the Base API

When you are not using the DPL, both record keys and record data must be byte arrays and
are passed to and returned from DB using DatabaseEntry instances. DatabaseEntry only

5/11/2012

Getting Started with DB Page 4

Library Version 11.2.5.3 Introduction to Berkeley DB

supports storage of Java byte arrays. Complex objects must be marshaled using either Java
serialization, or more efficiently with the bind APIs provided with DB

Database records and byte array conversion are described in Database Records (page 68).

You store records in a Database by calling one of the put methods on a Database handle.
DB automatically determines the record's proper placement in the database's internal B-Tree
using whatever key and data comparison functions that are available to it.

You can also retrieve, or get, records using the Database handle. Gets are performed by
providing the key (and sometimes also the data) of the record that you want to retrieve.

You can also use cursors for database puts and gets. Cursors are essentially a mechanism
by which you can iterate over the records in the database. Like databases and database
environments, cursors must be opened and closed. Cursors are managed using the Cursor
class.

Databases are described in Databases (page 58). Cursors are described in Using
Cursors (page 96).

Duplicate Data

If you are using the base API, then at creation time databases can be configured to allow
duplicate data. Remember that DB database records consist of a key/data pair. Duplicate
data, then, occurs when two or more records have identical keys, but different data. By

default, a Database does not allow duplicate data.

If your Database contains duplicate data, then a simple database get based only on a key
returns just the first record that uses that key. To access all duplicate records for that key, you
must use a cursor.

If you are using the DPL, then you can duplicate date using secondary keys, but not by using
the primary key. For more information, see Retrieving Multiple Objects (page 34).

Replacing and Deleting Entries

If you are using the DPL, then replacing a stored entity object simply consists of retrieving
it, updating it, then storing it again. To delete the object, use the delete() method that is
available on either its primary or secondary keys. If you use the delete() method available
on the secondary key, then all objects referenced by that key are also deleted. See Deleting
Entity Objects (page 39) for more information.

If you are using the base API, then how you replace database records depends on whether
duplicate data is allowed in the database.

If duplicate data is not allowed in the database, then simply calling Database.put() with the
appropriate key will cause any existing record to be updated with the new data. Similarly, you
can delete a record by providing the appropriate key to the Database.delete() method.

If duplicate data is allowed in the database, then you must position a cursor to the record that
you want to update, and then perform the put operation using the cursor.

5/11/2012

Getting Started with DB Page 5

Library Version 11.2.5.3 Introduction to Berkeley DB

To delete records using the base API, you can use either Database.delete() or
Cursor.delete(). If duplicate data is not allowed in your database, then these two

method behave identically. However, if duplicates are allowed in the database, then
Database.delete() deletes every record that uses the provided key, while Cursor.delete()
deletes just the record at which the cursor is currently positioned.

Secondary Keys

Secondary keys provide an alternative way to locate information stored in DB, beyond that
which is provided by the primary key. Frequently secondary keys refer to more than one
record in the database. In this way, you can find all the cars that are green (if you are
maintaining an automotive database) or all the people with brown eyes (if you are maintaining
a database about people). In other words, secondary keys represent a index into your data.

How you create and maintain secondary keys differs significantly, depending on whether you
are using the DPL or the base API.

Using Secondaries with the DPL

Under the DPL, you declare a particular field to be a secondary key by using the
@SecondaryKey annotation. When you do this, you must declare what kind of an index you are
creating. For example, you can declare a secondary key to be part of a ONE_TO_ONE index, in
which case the key is unique to the object. Or you could declare the key to be MANY_TO_ONE,
in which case the key can be used for multiple objects in the data store.

Once you have identified secondary keys for a class, you can access those keys by using the
EntityStore.getSecondaryIndex() method.

For more information, see Declaring Secondary Indexes (page 24).

Using Secondaries with the Base API.

When you are using the base API, you create and maintain secondary keys using a special type
of a database, called a secondary database. When you are using secondary databases, the
database that holds the data you are indexing is called the primary database.

You create a secondary database by opening it and associating it with an existing primary
database. You must also provide a class that generates the secondary's keys (that is, the index)
from primary records. Whenever a record in the primary database is added or changed, DB
uses this class to determine what the secondary key should be.

When a primary record is created, modified, or deleted, DB automatically updates the
secondary database(s) for you as is appropriate for the operation performed on the primary.

You manage secondary databases using the SecondaryDatabase class. You identify how to
create keys for your secondary databases by supplying an instance of a class that implements
the SecondaryKeyCreator interface.

Secondary databases are described in Secondary Databases (page 113).

5/11/2012

Getting Started with DB Page 6

Library Version 11.2.5.3 Introduction to Berkeley DB

Which API Should You Use?

Of the two APIs that DB makes available to you, we recommend that you use the DPL if all you
want to do is make classes with a relatively static schema to be persistent. However, the DPL
requires Java 1.5, so if you want to use Java 1.4 then you cannot use the DPL.

Further, if you are porting an application between the C or C++ versions of DB and the Java
version of this API, then you should not use the DPL as the base APl is a much closer match to
the other languages available for use with DB.

Additionally, if your application uses a highly dynamic schema, then the DPL is probably a poor
choice for your application, although the use of Java annotations can make the DPL work a
little better for you in this situation.

Access Methods

While this manual will focus primarily on the BTree access method, it is still useful to briefly
describe all of the access methods that DB makes available.

Note

If you are using the DPL, be aware that it only supports the BTree access method. For
that reason, you can skip this section.

Note that an access method can be selected only when the database is created. Once
selected, actual API usage is generally identical across all access methods. That is, while some
exceptions exist, mechanically you interact with the library in the same way regardless of
which access method you have selected.

The access method that you should choose is gated first by what you want to use as a key, and
then secondly by the performance that you see for a given access method.

The following are the available access methods:

Access Method Description

BTree Data is stored in a sorted, balanced tree structure. Both the key
and the data for BTree records can be arbitrarily complex. That
is, they can contain single values such as an integer or a string, or
complex types such as a structure. Also, although not the default
behavior, it is possible for two records to use keys that compare
as equals. When this occurs, the records are considered to be
duplicates of one another.

Hash Data is stored in an extended linear hash table. Like BTree, the
key and the data used for Hash records can be of arbitrarily
complex data. Also, like BTree, duplicate records are optionally
supported.

Queue Data is stored in a queue as fixed-length records. Each record
uses a logical record number as its key. This access method is

5/11/2012

Getting Started with DB Page 7

Library Version 11.2.5.3 Introduction to Berkeley DB

Access Method Description

designed for fast inserts at the tail of the queue, and it has a
special operation that deletes and returns a record from the head
of the queue.

This access method is unusual in that it provides record level
locking. This can provide beneficial performance improvements in
applications requiring concurrent access to the queue.

Recno Data is stored in either fixed or variable-length records. Like
Queue, Recno records use logical record numbers as keys.

Selecting Access Methods

To select an access method, you should first consider what you want to use as a key for you
database records. If you want to use arbitrary data (even strings), then you should use either
BTree or Hash. If you want to use logical record numbers (essentially integers) then you should
use Queue or Recno.

Once you have made this decision, you must choose between either BTree or Hash, or Queue
or Recno. This decision is described next.

Choosing between BTree and Hash

For small working datasets that fit entirely in memory, there is no difference between BTree
and Hash. Both will perform just as well as the other. In this situation, you might just as well
use BTree, if for no other reason than the majority of DB applications use BTree.

Note that the main concern here is your working dataset, not your entire dataset. Many
applications maintain large amounts of information but only need to access some small
portion of that data with any frequency. So what you want to consider is the data that you will
routinely use, not the sum total of all the data managed by your application.

However, as your working dataset grows to the point where you cannot fit it all into memory,
then you need to take more care when choosing your access method. Specifically, choose:

» BTree if your keys have some locality of reference. That is, if they sort well and you
can expect that a query for a given key will likely be followed by a query for one of its
neighbors.

« Hash if your dataset is extremely large. For any given access method, DB must maintain a
certain amount of internal information. However, the amount of information that DB must
maintain for BTree is much greater than for Hash. The result is that as your dataset grows,
this internal information can dominate the cache to the point where there is relatively little
space left for application data. As a result, BTree can be forced to perform disk /0 much
more frequently than would Hash given the same amount of data.

Moreover, if your dataset becomes so large that DB will almost certainly have to perform
disk 1/0 to satisfy a random request, then Hash will definitely out perform BTree because it
has fewer internal records to search through than does BTree.

5/11/2012

Getting Started with DB Page 8

Library Version 11.2.5.3 Introduction to Berkeley DB

Choosing between Queue and Recno

Queue or Recno are used when the application wants to use logical record numbers for the
primary database key. Logical record numbers are essentially integers that uniquely identify
the database record. They can be either mutable or fixed, where a mutable record number
is one that might change as database records are stored or deleted. Fixed logical record
numbers never change regardless of what database operations are performed.

When deciding between Queue and Recno, choose:

» Queue if your application requires high degrees of concurrency. Queue provides record-level
locking (as opposed to the page-level locking that the other access methods use), and this
can result in significantly faster throughput for highly concurrent applications.

Note, however, that Queue provides support only for fixed length records. So if the size of
the data that you want to store varies widely from record to record, you should probably
choose an access method other than Queue.

» Recno if you want mutable record numbers. Queue is only capable of providing fixed record
numbers. Also, Recno provides support for databases whose permanent storage is a flat
text file. This is useful for applications looking for fast, temporary storage while the data is
being read or modified.

Database Limits and Portability

Exception

Berkeley DB provides support for managing everything from very small databases that fit
entirely in memory, to extremely large databases holding millions of records and terabytes
of data. DB databases can store up to 256 terabytes of data. Individual record keys or record
data can store up to 4 gigabytes of data.

DB's databases store data in a binary format that is portable across platforms, even of
differing endian-ness. Be aware, however, that portability aside, some performance issues
can crop up in the event that you are using little endian architecture. See Setting Comparison
Functions (page 141) for more information.

Also, DB's databases and data structures are designed for concurrent access — they are thread-
safe, and they share well across multiple processes. That said, in order to allow multiple
processes to share databases and the cache, DB makes use of mechanisms that do not work
well on network-shared drives (NFS or Windows networks shares, for example). For this
reason, you cannot place your DB databases and environments on network-mounted drives.

Handling

Before continuing, it is useful to spend a few moments on exception handling in DB with the
java.

Most DB methods throw DatabaseException in the event of a serious error. So your
DB code must either catch this exception or declare it to be throwable. Be aware that
DatabaseException extends java.lang.Exception. For example:

import com.sleepycat.db.DatabaseException;

5/11/2012

Getting Started with DB Page 9

Library Version 11.2.5.3 Introduction to Berkeley DB

try

{
// DB and other code goes here
}
catch(DatabaseException e)
{
// DB error handling goes here
}

You can obtain the DB error number for a DatabaseException by using
DatabaseException.getErrno(). You can also obtain any error message associated with that
error using DatabaseException.getMessage().

Error Returns

In addition to exceptions, the DB interfaces always return a value of 0 on success. If the
operation does not succeed for any reason, the return value will be non-zero.

If a system error occurred (for example, DB ran out of disk space, or permission to access a
file was denied, or an illegal argument was specified to one of the interfaces), DB returns an
errno value. All of the possible values of errno are greater than 0.

If the operation did not fail due to a system error, but was not successful either, DB returns

a special error value. For example, if you tried to retrieve data from the database and the
record for which you are searching does not exist, DB would return DB_NOTFOUND, a special
error value that means the requested key does not appear in the database. All of the possible
special error values are less than 0.

Getting and Using DB

You can obtain DB by visiting the Berkeley DB download page: http://www.oracle.com/
technetwork/database/berkeleydb/downloads/index.html.

To install DB, untar or unzip the distribution to the directory of your choice. You will then
need to build the product binaries. For information on building DB, see DB_INSTALL/docs/
index.html, where DB_INSTALL is the directory where you unpacked DB. On that page, you
will find links to platform-specific build instructions.

That page also contains links to more documentation for DB. In particular, you will find
links for the Berkeley DB Programmer's Reference Guide as well as the API reference
documentation.

5/11/2012 Getting Started with DB Page 10

http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html

Chapter 2. Database Environments

Environments are optional, but very commonly used, for Berkeley DB applications built using
the base API. If you are using the DPL, then environments are required.

Database environments encapsulate one or more databases. This encapsulation provides your
threads with efficient access to your databases by allowing a single in-memory cache to be
used for each of the databases contained in the environment. This encapsulation also allows
you to group operations performed against multiple databases inside a single transactions (see
the Berkeley DB, Java Edition Getting Started with Transaction Processing guide for more
information).

Most commonly you use database environments to create and open databases (you close
individual databases using the individual database handles). You can also use environments
to delete and rename databases. For transactional applications, you use the environment to
start transactions. For non-transactional applications, you use the environment to sync your
in-memory cache to disk.

Opening Database Environments

You open a database environment by instantiating an Environment object. You must provide
to the constructor the name of the on-disk directory where the environment is to reside. This
directory location must exist or the open will fail.

By default, the environment is not created for you if it does not exist. Set the creation
property to true if you want the environment to be created. For example:

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;

// Open the environment. Allow it to be created if it does not already
// exist.
Environment myDbEnvironment = null;

try {
EnvironmentConfig envConfig = new EnvironmentConfig();

envConfig.setAllowCreate(true);
myDbEnvironment = new Environment(new File("/export/dbEnv"),
envConfig);
} catch (DatabaseException dbe) {
// Exception handling goes here

}

5/11/2012

Getting Started with DB Page 11

Library Version 11.2.5.3 Database Environments

package db.gettingStarted;

import com.sleepycat.db.DatabaseException;
import com.sleepycat.db.Environment;
import com.sleepycat.db.EnvironmentConfig;

import java.io.File;
import java.io.FileNotFoundException;

// Open the environment. Allow it to be created if it does not already
// exist.
Environment myDbEnvironment = null;

try {
EnvironmentConfig envConfig = new EnvironmentConfig();

envConfig.setAllowCreate(true);
myDbEnvironment = new Environment(new File("/export/dbEnv"),
envConfig);
} catch (DatabaseException dbe) {
// Exception handling goes here
} catch (FileNotFoundException fnfe) {
// Exception handling goes here

}

Your application can open and use as many environments as you have disk and memory to
manage, although most applications will use just one environment. Also, you can instantiate
multiple Environment objects for the same physical environment.

Closing Database Environments

You close your environment by calling the Environment.close() method. This method

performs a checkpoint, so it is not necessary to perform a sync or a checkpoint explicitly
before calling it. For information on checkpoints, see the Berkeley DB, Java Edition Getting
Started with Transaction Processing guide. For information on syncs, see the Getting Started
with Transaction Processing for Java guide.

import com.sleepycat.db.DatabaseException;

import com.sleepycat.db.Environment;

try {
if (myDbEnvironment != null) {

myDbEnvironment.close();
}
} catch (DatabaseException dbe) {
// Exception handling goes here

5/11/2012

Getting Started with DB Page 12

Library Version 11.2.5.3 Database Environments

}

You should close your environment(s) only after all other database activities have completed.
It is recommended that you close any databases currently open in the environment prior to
closing the environment.

Closing the last environment handle in your application causes all internal data structures to
be released. If there are any opened databases or stores, then DB will complain before closing
them as well. At this time, any open cursors are also closed, and any on-going transactions are
aborted. However, it is recommended that you always close all cursor handles immediately
after their use to ensure concurrency and to release resources such as page locks.

Environment Properties

You set properties for the Environment using the EnvironmentConfig class. You can also set
properties for a specific Environment instance using EnvironmentMutableConfig.

The EnvironmentConfig Class

The EnvironmentConfig class makes a large number of fields and methods available to you.
Describing all of these tuning parameters is beyond the scope of this manual. However, there
are a few properties that you are likely to want to set. They are described here.

Note that for each of the properties that you can commonly set, there is a corresponding
getter method. Also, you can always retrieve the EnvironmentConfig object used by your
environment using the Environment.getConfig() method.

You set environment configuration parameters using the following methods on the
EnvironmentConfig class:

e EnvironmentConfig.setAllowCreate()
If true, the database environment is created when it is opened. If false, environment
open fails if the environment does not exist. This property has no meaning if the database
environment already exists. Default is false.

e EnvironmentConfig.setReadOnly()
If true, then all databases opened in this environment must be opened as read-only. If you
are writing a multi-process application, then all but one of your processes must set this
value to true. Default is false.

e EnvironmentConfig.setTransactional()

If true, configures the database environment to support transactions. Default is false.

For example:

package db.gettingStarted;

5/11/2012

Getting Started with DB Page 13

Library Version 11.2.5.3 Database Environments

import com.sleepycat.db.DatabaseException;
import com.sleepycat.db.Environment;
import com.sleepycat.db.EnvironmentConfig;

import java.io.File;
import java.io.FileNotFoundException;

Environment myDatabaseEnvironment = null;
try {

EnvironmentConfig envConfig = new EnvironmentConfig();

envConfig.setAllowCreate(true);

envConfig.setTransactional(true);

myDatabaseEnvironment =

new Environment(new File("/export/dbEnv"), envConfig);

} catch (DatabaseException dbe) {

System.err.println(dbe.toString());

System.exit(1);
} catch (FileNotFoundException fnfe) {

System.err.println(fnfe.toString());

System.exit(-1);
}

EnvironmentMutableConfig

EnvironmentMutableConfig manages properties that can be reset after the
Environment object has been constructed. In addition, EnvironmentConfig extends
EnvironmentMutableConfig, so you can set these mutable properties at Environment
construction time if necessary.

The EnvironmentMutableConfig class allows you to set the following properties:

setCachePercent()

Determines the percentage of JVM memory available to the DB cache. See Selecting the
Cache Size (page 138) for more information.

setCacheSize()

Determines the total amount of memory available to the database cache. See Selecting the
Cache Size (page 138) for more information.

setTxnNoSync()

Determines whether change records created due to a transaction commit are written to the
backing log files on disk. A value of true causes the data to not be flushed to disk. See the
Getting Started with Transaction Processing for Java guide for more information.

setTxnWriteNoSync()

5/11/2012

Getting Started with DB Page 14

Library Version 11.2.5.3

Database Environments

Determines whether logs are flushed on transaction commit (the logs are still written,

however). By setting this value to true, you potentially gain better performance than if
you flush the logs on commit, but you do so by losing some of your transaction durability
guarantees. See the Getting Started with Transaction Processing for Java guide for more

information.

There is also a corresponding getter method (getTxnNoSync()). Moreover, you can

always retrieve your environment's EnvironmentMutableConfig object by using the

Environment.getMutableConfig() method.

For example:

package db.gettingStarted;

import com.sleepycat.db.DatabaseException;
import com.sleepycat.db.Environment;
import com.sleepycat.db.EnvironmentMutableConfig;

import java.io.File;
import java.io.FileNotFoundException;

try {
Environment myEnv = new Environment(new File("/export/dbEnv"),
EnvironmentMutableConfig envMutableConfig =

new EnvironmentMutableConfig();

envMutableConfig.setTxnNoSync(true);
myEnv.setMutableConfig(envMutableConfig);

} catch (DatabaseException dbe) {
// Exception handling goes here

} catch (FileNotFoundException fnfe) {
// Exception handling goes here

}

null);

5/11/2012

Getting Started with DB

Page 15

Part I. Programming with
the Direct Persistence Layer

This section discusses how to build an application using the DPL. The DPL is ideally suited for those
applications that want a mechanism for storing and managing Java class objects in a DB database. Note
that the DPL is best suited for applications that work with classes with a relatively static schema.

Also, the DPL requires Java 1.5.

If you want to use Java 1.4 for your DB application, or if you are porting an application from the Berkeley
DB API, then you probably want to use the base API instead of the DPL. For information on using the base
API, see Programming with the Base API (page 57).

Chapter 3. Direct Persistence Layer First Steps

This chapter guides you through the first few steps required to use the DPL with your
application. These steps include:

1. Opening your environment as was described in Opening Database Environments (page 11).
2. Opening your entity store.

3. Identifying the classes that you want to store in DB as either a persistent class or an
entity.

Once you have done these things, you can write your classes to the DB databases, read them
back from the databases, delete them from the databases, and so forth. These activities are
described in the chapters that follow in this part of this manual.

Entity Stores

Entity stores are the basic unit of storage that you use with the DPL. That is, it is a unit of
encapsulation for the classes that you want to store in DB. Under the hood it actually interacts
with DB databases, but the DPL provides a layer of abstraction from the underlying DB APIs.
The store, therefore, provides a simplified mechanism by which you read and write your
stored classes. By using a store, you have access to your classes that is more simplified than if
you were interacting with databases directly, but this simplified access comes at the cost of
reduced flexibility.

Entity stores have configurations in the same way that environments have configurations. You
can use a StoreConfig object to identify store properties. Among these are methods that
allow you to declare whether:

« the store can be created if it does not exist at the time it is opened. Use the
StoreConfig.setAllowCreate() method to set this.

« the store is read-only. Use the StoreConfig.setReadOnly() method to set this.

« the store supports transactions. Use the StoreConfig.setTransactional() method to set
this.

Writing DB transactional applications is described in the Berkeley DB, Java Edition Getting
Started with Transaction Processing guide.

EntityStore objects also provide methods for retrieving information about the store, such
as:

« the store's name. Use the EntityStore.getStoreName() method to retrieve this.

« a handle to the environment in which the store is opened. Use the
EntityStore.getEnvironment method to retrieve this handle.

You can also use the EntityStore to retrieve all the primary and secondary indexes related to
a given type of entity object contained in the store. See Working with Indices (page 22) for
more information.

5/11/2012

Getting Started with DB Page 17

Library Version 11.2.5.3

Direct Persistence Layer First Steps

Opening and Closing Environments and Stores

As described in Database Environments (page 11), an environment is a unit of encapsulation
for DB databases. It also provides a handle by which activities common across the databases
can be managed.

To use an entity store, you must first open an environment and then provide that environment
handle to the EntityStore constructor.

For example, the following code fragment configures both the environment and the entity
store such that they can be created if they do not exist. Both the environment and the entity
store are then opened.

package persist.gettingStarted;

import
import

import
import
import

import
import

java.io.File;
java.io.FileNotFoundException;

com.
.sleepycat.db.Environment;
com.

com

com.
com.

sleepycat.db.DatabaseException;
sleepycat.db.EnvironmentConfig;

sleepycat.persist.EntityStore;
sleepycat.persist.StoreConfig;

private Environment myEnv;
private EntityStore store;

try {

EnvironmentConfig myEnvConfig = new EnvironmentConfig();
StoreConfig storeConfig = new StoreConfig();

myEnvConfig.setAllowCreate(!readOnly);
storeConfig.setAllowCreate(!readOnly);

try {
// Open the environment and entity store

myEnv = new Environment(envHome, myEnvConfig);

store = new EntityStore(myEnv, "EntityStore", storeConfig);
} catch (FileNotFoundException fnfe) {
System.err.println(fnfe.toString());

System.exit(-1);

}

} catch(DatabaseException dbe) {
System.err.println("Error opening environment and store: +

dbe.toString());

System.exit(-1);

5/11/2012

Getting Started with DB

Page 18

Library Version 11.2.5.3

Direct Persistence Layer First Steps

As always, before you exit your program you should close both your store and your
environment. It is recommended that you close your store before you close your environment.
if (store != null) {

try {

store.close();

} catch(DatabaseException dbe) {
System.err.println("Error closing store:

+

dbe.toString());

System.exit(-1);

}

if (myEnv != null) {

try {

// Finally, close environment.

myEnv.close();

} catch(DatabaseException dbe) {
System.err.println("Error closing MyDbEnv:

+

dbe.toString());

System.exit(-1);

}

Persistent Objects

When using the DPL, you store data in the underlying DB databases by making objects
persistent. You do this using Java annotations that both identify the type of persistent object
you are declaring, as well as the primary and secondary indices.

The following are the annotations you will use with your DPL persistent classes:

Annotation Description

@Entity Declares an entity class; that is, a class with
a primary index and optionally one or more
indices.

@Persistent Declares a persistent class; that is, a class

used by an entity class. They do not have
indices but instead are are stored or retrieved
when an entity class makes direct use of
them.

@PrimaryKey

Declares a specific data member in an entity
class to be the primary key for that object.
This annotation must be used one and only
one time for every entity class.

@SecondaryKey

Declares a specific data member in an entity
class to be a secondary key for that object.
This annotation is optional, and can be used
multiple times for an entity class.

5/11/2012

Getting Started with DB

Page 19

Library Version 11.2.5.3 Direct Persistence Layer First Steps

For example, the following is declared to be an entity class:
package persist.gettingStarted;

import com.sleepycat.persist.model.Entity;
import com.sleepycat.persist.model.PrimaryKey;

@Entity
public class ExampleEntity {

// The primary key must be unique in the database.
@PrimaryKey
private String aPrimaryKey;

@SecondaryKey(relate=MANY_TO_ONE)
private String aSecondaryKey;

// The remainder of the class' implementation is purposefully
// omitted in the interest of brevity.

}

We discuss primary and secondary keys in more detail in Working with Indices (page 22).
Saving and Retrieving Data

All data stored using the DPL has one primary index and zero or more secondary indices
associated with it. (Sometimes these are referred to as the primary and secondary keys.) So to
store data under the DPL, you must:

1. Declare a class to be an entity class.
2. Identify the features on the class which represent indexed material.

3. Retrieve the store's primary index for a given class using the
EntityStore.getPrimaryIndex() method.

4. Put class objects to the store using the PrimaryIndex.put() method.

In order to retrieve an object from the store, you use the index that is most convenient for
your purpose. This may be the primary index, or it may be some other secondary index that
you declared on your entity class.

You obtain a primary index in the same was as when you put the object to the store: using
EntityStore.getPrimaryIndex(). You can get a secondary index for the store using the
EntityStore.getSecondaryIndex() method. Note that getSecondaryIndex() requires you
to provide a PrimaryIndex class instance when you call it, so a class's primary index is always
required when retrieving objects from an entity store.

5/11/2012 Getting Started with DB Page 20

Library Version 11.2.5.3 Direct Persistence Layer First Steps

Usually all of the activity surrounding saving and retrieving data is organized within a class
or classes specialized to that purpose. We describe the construction of these data accessor
classes in SimpleDA.class (page 28). But before you perform any entity store activity, you
need to understand indexes. We therefore describe them in the next chapter.

5/11/2012 Getting Started with DB Page 21

Chapter 4. Working with Indices

All entity classes stored in DB using the DPL must have a primary index, or key, identified
for them. All such classes may also have one or more secondary keys declared for them. This
chapter describes primary and secondary indexes in detail, and shows how to access the
indexes created for a given entity class.

One way to organize access to your primary and secondary indexes is to create a data accessor
class. We show an implementation of a data accessor class in SimpleDA.class (page 28).

Accessing Indexes

In order to retrieve any object from an entity store, you must access at least the primary
index for that object. Different entity classes stored in an entity store can have different
primary indexes, but all entity classes must have a primary index declared for it. The primary
index is just the default index used for the class. (That is, it is the data's primary key for the
underlying database.)

Entity classes can optionally have secondary indexes declared for them. In order to access
these secondary indexes, you must first access the primary index.

Accessing Primary Indices

You retrieve a primary index using the EntityStore.getPrimaryIndex() method. To do this,
you indicate the index key type (that is, whether it is a String, Integer, and so forth) and the
class of the entities stored in the index.

For example, the following retrieves the primary index for an Inventory class (we provide
an implementation of this class in Inventory.java (page 43)). These index keys are of type
String.
PrimaryIndex<String,Inventory> inventoryBySku =
store.getPrimaryIndex(String.class, Inventory.class);

Accessing Secondary Indices

You retrieve a secondary index using the EntityStore.getSecondaryIndex() method.
Because secondary indices actually refer to a primary index somewhere in your data store, to
access a secondary index you:

1. Provide the primary index as returned by EntityStore.getPrimaryIndex().
2. Identify the key data type used by the secondary index (String, Long, and so forth).

3. Identify the name of the secondary key field. When you declare the SecondaryIndex
object, you identify the entity class to which the secondary index must refer.

For example, the following first retrieves the primary index, and then uses that to retrieve a

secondary index. The secondary key is held by the itemName field of the Inventory class.
PrimaryIndex<String,Inventory> inventoryBySku =
store.getPrimaryIndex(String.class, Inventory.class);

5/11/2012

Getting Started with DB Page 22

Library Version 11.2.5.3 Working with Indices

SecondaryIndex<String,String,Inventory> inventoryByName =
store.getSecondaryIndex(inventoryBySku, String.class, "itemName");

Creating Indexes

To create an index using the DPL, you use Java annotations to declare which feature on the
class is used for the primary index, and which features (if any) are to be used as secondary
indexes.

All entity classes stored in the DPL must have a primary index declared for it.

Entity classes can have zero or more secondary indexes declared for them. There is no limit on
the number of secondary indexes that you can declare.

Declaring a Primary Indexes

You declare a primary key for an entity class by using the @PrimaryKey annotation. This
annotation must appear immediately before the data member which represents the class's
primary key. For example:

package persist.gettingStarted;

import com.sleepycat.persist.model.Entity;
import com.sleepycat.persist.model.PrimaryKey;

@Entity
public class Vendor {

private String address;
private String bizPhoneNumber;
private String city;

private String repName;
private String repPhoneNumber;
private String state;

// Primary key is the vendor's name

// This assumes that the vendor's name is
// unique in the database.

@PrimaryKey

private String vendor;

For this class, the vendor value is set for an individual Vendor class object by the
setVendorName () method. If our example code fails to set this value before storing the
object, the data member used to store the primary key is set to a null value. This would result
in a runtime error.

You can avoid the need to explicitly set a value for a class's primary index by specifying a
sequence to be used for the primary key. This results in an unique integer value being used as
the primary key for each stored object.

5/11/2012

Getting Started with DB Page 23

Library Version 11.2.5.3 Working with Indices

You declare a sequence is to be used by specifying the sequence keyword to the @PrimaryKey
annotation. You must also provide a name for the sequence. For example: For example:

@PrimaryKey(sequence="Sequence_Namespace")
long myPrimaryKey;

Declaring Secondary Indexes

To declare a secondary index, we use the @SecondaryKey annotation. Note that when we do
this, we must declare what sort of an index it is; that is, what is its relationship to other data
in the data store.

The kind of indices that we can declare are:
e ONE_TO_ONE

This relationship indicates that the secondary key is unique to the object. If an object is
stored with a secondary key that already exists in the data store, a run time error is raised.

For example, a person object might be stored with a primary key of a social security
number (in the US), with a secondary key of the person’'s employee number. Both values are
expected to be unique in the data store.

« MANY_TO_ONE

Indicates that the secondary key may be used for multiple objects in the data store. That is,
the key appears more than once, but for each stored object it can be used only once.

Consider a data store that relates managers to employees. A given manager will have
multiple employees, but each employee is assumed to have just one manager. In this case,
the manager's employee number might be a secondary key, so that you can quickly locate all
the objects related to that manager's employees.

+ ONE_TO_MANY

Indicates that the secondary key might be used more than once for a given object. Index
keys themselves are assumed to be unique, but multiple instances of the index can be used
per object.

For example, employees might have multiple unique email addresses. In this case, any given
object can be access by one or more email addresses. Each such address is unique in the
data store, but each such address will relate to a single employee object.

« MANY_TO_MANY

There can be multiple keys for any given object, and for any given key there can be many
related objects.

For example, suppose your organization has a shared resource, such as printers. You might
want to track which printers a given employee can use (there might be more than one).
You might also want to track which employees can use a specific printer. This represents a
many-to-many relationship.

5/11/2012

Getting Started with DB Page 24

Library Version 11.2.5.3 Working with Indices

Note that for ONE_TO_ONE and MANY_TO_ONE relationships, you need a simple data
member (not an array or collection) to hold the key. For ONE_TO_MANY and MANY_TO_MANY
relationships, you need an array or collection to hold the keys:

@SecondaryKey(relate=ONE_TO_ONE)
private String primaryEmailAddress

new String();

@SecondaryKey(relate=ONE_TO_MANY)
private Set<String> emailAddresses

new HashSet<String>();

Foreign Key Constraints

Sometimes a secondary index is related in some way to another entity class that is also
contained in the data store. That is, the secondary key might be the primary key for another
entity class. If this is the case, you can declare the foreign key constraint to make data
integrity easier to accomplish.

For example, you might have one class that is used to represent employees. You might have
another that is used to represent corporate divisions. When you add or modify an employee
record, you might want to ensure that the division to which the employee belongs is known to
the data store. You do this by specifying a foreign key constraint.

When a foreign key constraint is declared:

« When a new secondary key for the object is stored, it is checked to make sure it exists as a
primary key for the related entity object. If it does not, a runtime error occurs.

+ When a related entity is deleted (that is, a corporate division is removed from the data
store), some action is automatically taken for the entities that refer to this object (that is,
the employee objects). Exactly what that action is, is definable by you. See below.

When a related entity is deleted from the data store, one of the following actions are taken:
e ABORT

The delete operation is not allowed. A runtime error is raised as a result of the operation.
This is the default behavior.

e CASCADE

All entities related to this one are deleted as well. For example, if you deleted a Division
object, then all Employee objects that belonged to the division are also deleted.

e NULLIFY

All entities related to the deleted entity are updated so that the pertinent data member
is nullified. That is, if you deleted a division, then all employee objects related to that
division would have their division key automatically set to null.

You declare a foreign key constraint by using the relatedEntity keyword. You declare
the foreign key constraint deletion policy using the onRelatedEntityDelete keyword. For

5/11/2012

Getting Started with DB Page 25

Library Version 11.2.5.3 Working with Indices

example, the following declares a foreign key constraint to Division class objects, and it
causes related objects to be deleted if the Division class is deleted:

@SecondaryKey(relate=ONE_TO _ONE, relatedEntity=Division.class,
onRelatedEntityDelete=CASCADE)
private String division = new String();

5/11/2012 Getting Started with DB Page 26

Chapter 5. Saving and Retrieving Objects

To store an object in an EntityStore you must annotate the class appropriately and then
store it using PrimaryIndex.put().

To retrieve and object from an EntityStore you use the get() method from either the
PrimaryIndex or SecondaryIndex, whichever is most appropriate for your application.

In both cases, it simplifies things greatly if you create a data accessor class to organize your
indexes.

In the next few sections we:

1. Create an entity class that is ready to be stored in an entity store. This class will have
both a primary index (required) declared for it, as well as a secondary index (which is
optional).

See the next section for this implementation.

2. Create a data accessor class which is used to organize our data.

See SimpleDA.class (page 28) for this implementation.

3. Create a simple class that is used to put objects to our entity store.

See Placing Objects in an Entity Store (page 29) for this implementation.

4. Create another class that retrieves objects from our entity store.

See Retrieving Objects from an Entity Store (page 32) for this implementation.

A Simple Entity Class

For clarity's sake, this entity class is a simple a class as we can write. It contains only two data
members, both of which are set and retrieved by simple setter and getter methods. Beyond
that, by design this class does not do anything or particular interest.

Its implementation is as follows:
package persist.gettingStarted;
import com.sleepycat.persist.model.Entity;
import com.sleepycat.persist.model.PrimaryKey;

import static com.sleepycat.persist.model.Relationship.*;
import com.sleepycat.persist.model.SecondaryKey;

@Entity
public class SimpleEntityClass {

// Primary key is pKey

5/11/2012

Getting Started with DB Page 27

Library Version 11.2.5.3 Saving and Retrieving Objects

@PrimaryKey
private String pKey;

// Secondary key is the sKey
@SecondaryKey(relate=MANY_TO_ONE)
private String sKey;

public void setPKey(String data) {
pKey = data;
}

public void setSKey(String data) {
sKey = data;
}

public String getPKey() {
return pKey;

}

public String getSKey() {
return sKey;
}
¥

SimpleDA.class

As mentioned above, we organize our primary and secondary indexes using a specialize data
accessor class. The main reason for this class to exist is to provide convenient access to all the
indexes in use for our entity class (see the previous section, A Simple Entity Class (page 27),
for that implementation).

For a description on retrieving primary and secondary indexes under the DPL, see Working
with Indices (page 22)

package persist.gettingStarted;
import java.io.File;

import com.sleepycat.db.DatabaseException;
import com.sleepycat.persist.EntityStore;
import com.sleepycat.persist.PrimaryIndex;
import com.sleepycat.persist.SecondaryIndex;

public class SimpleDA {
// Open the indices
public SimpleDA(EntityStore store)
throws DatabaseException {

// Primary key for SimpleEntityClass classes
pIdx = store.getPrimaryIndex(

5/11/2012 Getting Started with DB Page 28

Library Version 11.2.5.3

Saving and Retrieving Objects

}

String.class, SimpleEntityClass.class);

// Secondary key for SimpleEntityClass classes

// Last field in the getSecondaryIndex() method must be
// the name of a class member; in this case, an

// SimpleEntityClass.class data member.

sIdx = store.getSecondaryIndex(
pIdx, String.class, "sKey");

// Index Accessors
PrimaryIndex<String,SimpleEntityClass> pIdx;
SecondaryIndex<String,String,SimpleEntityClass> sIdx;

}

Placing Objects in an Entity Store

In order to place an object in a DPL entity store, you must:

1. Open the environment and store.

2. Instantiate the object.

3. Put the object to the store using the put() method for the object's primary index.

The following example uses the SimpleDA class that we show in SimpleDA.class (page 28) to
put a SimpleEntityClass object (see A Simple Entity Class (page 27)) to the entity store.

To begin, we import the Java classes that our example needs. We also instantiate the private
data members that we require.

package persist.gettingStarted;

import
import

import
import
import

import
import

java.io.File;
java.io.FileNotFoundException;

com.
com.
com.

com

sleepycat
sleepycat
sleepycat

.sleepycat
com.

sleepycat

.db.DatabaseException;
.db.Environment;
.db.EnvironmentConfig;

.persist.EntityStore;
.persist.StoreConfig;

public class SimpleStorePut {

private static File envHome = new File('

private Environment envmnt;
private EntityStore store;
private SimpleDA sda;

./JEDB");

5/11/2012

Getting Started with DB

Page 29

Library Version 11.2.5.3 Saving and Retrieving Objects

Next we create a method that simply opens our database environment and entity store for us.

// The setup() method opens the environment and store
// for us.
public void setup()
throws DatabaseException {

EnvironmentConfig envConfig = new EnvironmentConfig();
StoreConfig storeConfig = new StoreConfig();

envConfig.setAllowCreate(true);
storeConfig.setAllowCreate(true);

try {
// Open the environment and entity store

envmnt = new Environment(envHome, envConfig);

store = new EntityStore(envmnt, "EntityStore", storeConfig);
} catch (FileNotFoundException fnfe) {

System.err.println("setup(): " + fnfe.toString());

System.exit(-1);

}

We also need a method to close our environment and store.

// Close our environment and store.
public void shutdown()
throws DatabaseException {

store.close();
envmnt.close();

}

Now we need to create a method to actually write objects to our store. This method creates a
SimpleDA object (see SimpleDA.class (page 28) that we will use to access our indexes. Then
we instantiate a series of SimpleEntityClass (see A Simple Entity Class (page 27)) objects
that we will place in our store. Finally, we use our primary index (obtained from the SimpleDA
class instance) to actually place these objects in our store.

In Retrieving Objects from an Entity Store (page 32) we show a class that is used to retrieve
these objects.

// Populate the entity store
private void run()
throws DatabaseException {

setup();
// Open the data accessor. This is used to store

// persistent objects.
sda = new SimpleDA(store);

5/11/2012 Getting Started with DB Page 30

Library Version 11.2.5.3

Saving and Retrieving Objects

// Instantiate and store some entity classes

SimpleEntityClass secl = new SimpleEntityClass();
SimpleEntityClass sec2 = new SimpleEntityClass();
SimpleEntityClass sec3 = new SimpleEntityClass();
SimpleEntityClass sec4 = new SimpleEntityClass();
SimpleEntityClass sec5 = new SimpleEntityClass();

secl.setPKey("keyone");
secl.setSKey("skeyone");

sec2.setPKey("keytwo");
sec2.setSKey("skeyone");

sec3.setPKey("keythree");
sec3.setSKey("skeytwo");

sec4.setPKey("keyfour");
sec4.setSKey("skeythree");

sec5.setPKey("keyfive");
sec5.setSKey("skeyfour");

sda.pIdx.put(secl);
sda.pIdx.put(sec2);
sda.pIdx.put(sec3);
sda.pIdx.put(secd);
sda.pIdx.put(sec5);

shutdown();
}

Finally, to complete our class, we need a main() method, which simply calls our run()
method.

// main
public static void main(String args[]) {

SimpleStorePut ssp = new SimpleStorePut();

try {
ssp.run();

} catch (DatabaseException dbe) {
System.err.println("SimpleStorePut: " + dbe.toString());
dbe.printStackTrace();

} catch (Exception e) {
System.out.println("Exception:
e.printStackTrace();

+ e.toString());

}
System.out.println("All done.");

5/11/2012

Getting Started with DB Page 31

Library Version 11.2.5.3

Saving and Retrieving Objects

}

Retrieving Objects from an Entity Store

You retrieve objects placed in an entity store by using either the object’s primary index, or the
appropriate secondary index if it exists. The following application illustrates this by retrieving
some of the objects that we placed in an entity store in the previous section.

To begin, we import the Java classes that our example needs. We also instantiate the private
data members that we require.

package persist.gettingStarted;

import
import

import
import

import

import
import

public

java.io.File;
java.io.FileNotFoundException;

com.sleepycat.db.DatabaseException;
com.sleepycat.db.Environment;

com.sleepycat.db.EnvironmentConfig;

com.sleepycat.persist.EntityStore;
com.sleepycat.persist.StoreConfig;

class SimpleStoreGet {

private static File envHome = new File("./JEDB");

private Environment envmnt;
private EntityStore store;
private SimpleDA sda;

Next we create a method that simply opens our database environment and entity store for us.

// The setup() method opens the environment and store
// for us.
public void setup()

throws DatabaseException {

EnvironmentConfig envConfig = new EnvironmentConfig();
StoreConfig storeConfig = new StoreConfig();

envConfig.setAllowCreate(true);
storeConfig.setAllowCreate(true);

try {
// Open the environment and entity store

envmnt = new Environment(envHome, envConfig);

store = new EntityStore(envmnt, "EntityStore", storeConfig);
} catch (FileNotFoundException fnfe) {

System.err.println("setup(): " + fnfe.toString());

System.exit(-1);

5/11/2012

Getting Started with DB Page 32

Library Version 11.2.5.3 Saving and Retrieving Objects

}

We also need a method to close our environment and store.

// Close our environment and store.
public void shutdown()
throws DatabaseException {

store.close();
envmnt.close();

}

Now we retrieve a few objects. To do this, we instantiate a SimpleDA (see

SimpleDA.class (page 28)) class that we use to access our primary and secondary indexes.
Then we retrieve objects based on a primary or secondary index value. And finally, we display
the retrieved objects.

// Retrieve some SimpleEntityClass objects from the store.
private void run()
throws DatabaseException {

setup();

// Open the data accessor. This is used to store
// persistent objects.
sda = new SimpleDA(store);

// Instantiate and store some entity classes
SimpleEntityClass secl = sda.pIdx.get("keyone");
SimpleEntityClass sec2 = sda.pIdx.get("keytwo");

SimpleEntityClass sec4 = sda.sIdx.get("skeythree");
System.out.println("secl: "
System.out.println("sec2:
System.out.println("sec4:

+ secl.getPKey());
+ sec2.getPKey());
+ secd.getPKey());

shutdown();
}

Finally, to complete our class, we need a main() method, which simply calls our run()
method.

// main
public static void main(String args[]) {
SimpleStoreGet ssg = new SimpleStoreGet();
try {
ssg.run();
} catch (DatabaseException dbe) {
System.err.println("SimpleStoreGet: " + dbe.toString());

5/11/2012 Getting Started with DB Page 33

Library Version 11.2.5.3 Saving and Retrieving Objects

dbe.printStackTrace();

} catch (Exception e) {
System.out.println("Exception:
e.printStackTrace();

+ e.toString());

}
System.out.println("All done.");

}

Retrieving Multiple Objects

It is possible to iterate over every object referenced by a specific index. You may want to
do this if, for example, you want to examine or modify every object accessible by a specific
primary index.

In addition, some indexes result in the retrieval of multiple objects. For example,
MANY_TO_ONE secondary indexes can result in more than one object for any given key (also
known as duplicate keys). When this is the case, you must iterate over the resulting set of
objects in order to examine each object in turn.

There are two ways to iterate over a collection of objects as returned by an index. One is to
use a standard Java Iterator, which you obtain using an EntityCursor, which in turn you
can obtain from a PrimaryIndex:

PrimaryIndex<String,SimpleEntityClass> pi =

store.getPrimaryIndex(String.class, SimpleEntityClass.class);
EntityCursor<SimpleEntityClass> pi_cursor = pi.entities();
try {

Iterator<SimpleEntityClass> i = pi_cursor.iterator();

while (i.hasNext()) {

// Do something here

}
} finally {

// Always close the cursor

pi_cursor.close();

}

Alternatively, you can use a Java "foreach” statement to iterate over object set:

PrimaryIndex<String,SimpleEntityClass> pi =
store.getPrimaryIndex(String.class, SimpleEntityClass.class);
EntityCursor<SimpleEntityClass> pi_cursor = pi.entities();
try {
for (SimpleEntityClass seci : pi_cursor) {
// do something with each object "seci"

}
// Always make sure the cursor is closed when we are done with it.
} finally {

pi_cursor.close();

}

5/11/2012

Getting Started with DB Page 34

Library Version 11.2.5.3 Saving and Retrieving Objects

Cursor Initialization

When a cursor is first opened, it is not positioned to any value; that is, it is not initialized.
Most of the EntityCursor methods that move a cursor will initialize it to either the first or
last object, depending on whether the operation is moving the cursor forward (all next. ..
methods) or backwards (all prev...) methods.

You can also force a cursor, whether it is initialized or not, to return the first object by
calling EntityCursor.first(). Similarly, you can force a return of the last object using
EntityCursor.last().

Operations that do not move the cursor (such as EntityCursor.current() or
EntityCursor.delete() will throw an I1legalStateException when used on an
uninitialized cursor.

Working with Duplicate Keys

If you have duplicate secondary keys, you can return an EntityIndex class object for them
using SecondaryIndex.subIndex() Then, use that object's entities() method to obtain an
EntityCursor instance.

For example:

PrimaryIndex<String,SimpleEntityClass> pi =
store.getPrimaryIndex(String.class, SimpleEntityClass.class);

SecondaryIndex<String,String,SimpleEntityClass> si =
store.getSecondaryIndex(pi, String.class, "sKey");

EntityCursor<SimpleEntityClass> sec_cursor =
si.subIndex("skeyone").entities();

try {
for (SimpleEntityClass seci : sec_cursor) {

// do something with each object "seci"

}

// Always make sure the cursor is closed when we are done with it.
} finally {
sec_cursor.close(); }

Note that if you are working with duplicate keys, you can control how cursor iteration works
by using the following EntityCursor methods:

e nextDup()
Moves the cursor to the next object with the same key as the cursor is currently
referencing. That is, this method returns the next duplicate object. If no such object exists,

this method returns null.

e prevDup()

5/11/2012

Getting Started with DB Page 35

Library Version 11.2.5.3 Saving and Retrieving Objects

Key Ranges

Moves the cursor to the previous object with the same key as the cursor is currently
referencing. That is, this method returns the previous duplicate object in the cursor's set of
objects. If no such object exists, this method returns null.

e nextNoDup()

Moves the cursor to the next object in the cursor's set that has a key which is different than
the key that the cursor is currently referencing. That is, this method skips all duplicate
objects and returns the next non-duplicate object in the cursor's set of objects. If no such
object exists, this method returns null.

e prevNoDup()

Moves the cursor to the previous object in the cursor's set that has a key which is different
than the key that the cursor is currently referencing. That is, this method skips all duplicate
objects and returns the previous non-duplicate object in the cursor's set of objects. If no
such object exists, this method returns null.

For example:

PrimaryIndex<String,SimpleEntityClass> pi =
store.getPrimaryIndex(String.class, SimpleEntityClass.class);

SecondaryIndex<String,String,SimpleEntityClass> si =
store.getSecondaryIndex(pi, String.class, "sKey");

EntityCursor<SimpleEntityClass> sec_cursor =
si.subIndex("skeyone").entities();

try {
SimpleEntityClass sec;

Iterator<SimpleEntityClass> i = sec_cursor.iterator();
while (sec = i.nextNoDup() !'= null) {
// Do something here
}
// Always make sure the cursor is closed when we are done with it.
} finally {
sec_cursor.close(); }

You can restrict the scope of a cursor's movement by specifying a range when you create the
cursor. The cursor can then never be positioned outside of the specified range.

When specifying a range, you indicate whether a range bound is inclusive or exclusive by
providing a boolean value for each range. true indicates that the provided bound is inclusive,
while false indicates that it is exclusive.

You provide this information when you call PrimaryIndex.entities() or
SecondaryIndex.entities(). For example, suppose you had a class indexed by numerical

5/11/2012

Getting Started with DB Page 36

Library Version 11.2.5.3 Saving and Retrieving Objects

information. Suppose further that you wanted to examine only those objects with indexed
values of 100 - 199. Then (assuming the numerical information is the primary index), you can
bound your cursor as follows:

EntityCursor<SomeEntityClass> cursor =
primaryIndex.entities(100, true, 200, false);

try {
for (SomeEntityClass sec : cursor {

// Do something here to objects ranged from 100 to 199

}
// Always make sure the cursor is closed when we are done with it.
} finally {

cursor.close(); }

Join Cursors

If you have two or more secondary indexes set for an entity object, then you can retrieve sets
of objects based on the intersection of multiple secondary index values. You do this using an
EntityJoin class.

For example, suppose you had an entity class that represented automobiles. In that case, you
might be storing information about automobiles such as color, number of doors, fuel mileage,
automobile type, number of passengers, make, model, and year, to name just a few.

If you created a secondary index based this information, then you could use an EntityJoin
to return all those objects representing cars with, say, two doors, that were built in 2002, and
which are green in color.

To create a join cursor, you:

1. Open the primary index for the entity class on which you want to perform the join.
2. Open the secondary indexes that you want to use for the join.

3. Instantiate an EntityJoin object (you use the primary index to do this).

4. Use two or more calls to EntityJoin.addCondition() to identify the secondary indexes
and their values that you want to use for the equality match.

5. Call EntityJoin.entities() to obtain a cursor that you can use to iterate over the join
results.

For example, suppose we had an entity class that included the following features:

package persist.gettingStarted;

import com.sleepycat.persist.model.Entity;

import com.sleepycat.persist.model.PrimaryKey;

import static com.sleepycat.persist.model.Relationship.*;
import com.sleepycat.persist.model.SecondaryKey;

5/11/2012

Getting Started with DB Page 37

Library Version 11.2.5.3 Saving and Retrieving Objects

@Entity
public class Automobiles {

// Primary key is the vehicle identification number
@PrimaryKey
private String vin;

// Secondary key is the vehicle's make
@SecondaryKey(relate=MANY_TO_ONE)
private String make;

// Secondary key is the vehicle's color
@SecondaryKey(relate=MANY_TO_ONE)
private String color;

public String getVIN() {
return vin;

}

public String getMake() {
return make;

}

public String getColor() {
return color;

}

Then we could perform an entity join that searches for all the red automobiles made by
Toyota as follows:

PrimaryIndex<String,Automobiles> vin_pidx;
SecondaryIndex<String,String,Automobiles> make_sidx;
SecondaryIndex<String,String,Automobiles> color_sidx;

EntityJoin<String,Automobiles> join = new EntityJoin(vin_pidx);
join.addCondition(make_sidx, "Toyota");
join.addCondition(color_sidx, "Red");

// Now iterate over the results of the join operation
ForwardCursor<Automobiles> join_cursor = join.entities();
try {
for (Automobiles autoi : join_cursor) {
// do something with each object "autoi"

}

5/11/2012 Getting Started with DB Page 38

Library Version 11.2.5.3 Saving and Retrieving Objects

// Always make sure the cursor is closed when we are done with it.
} finally {
join_cursor.close();

}
Deleting Entity Objects

The simplest way to remove an object from your entity store is to delete it by its primary
index. For example, using the SimpleDA class that we created earlier in this document (see
SimpleDA.class (page 28)), you can delete the SimpleEntityClass object with a primary
key of keyone as follows:

sda.pIdx.delete("keyone");
You can also delete objects by their secondary keys. When you do this, all objects related to
the secondary key are deleted, unless the key is a foreign object.
For example, the following deletes all SimpleEntityClass with a secondary key of skeyone:
sda.sIdx.delete("skeyone");
You can delete any single object by positioning a cursor to that object and then calling the

cursor's delete() method.

PrimaryIndex<String,SimpleEntityClass> pi =
store.getPrimaryIndex(String.class, SimpleEntityClass.class);

SecondaryIndex<String,String,SimpleEntityClass> si =
store.getSecondaryIndex(pi, String.class, "sKey");

EntityCursor<SimpleEntityClass> sec_cursor =
si.subIndex("skeyone").entities();

try {
SimpleEntityClass sec;

Iterator<SimpleEntityClass> i = sec_cursor.iterator();
while (sec = i.nextDup() != null) {

if (sec.getSKey() == "some value") {
i.delete();
}
}
// Always make sure the cursor is closed when we are done with it.
} finally {

sec_cursor.close(); }

Finally, if you are indexing by foreign key, then the results of deleting the key is
determined by the foreign key constraint that you have set for the index. See Foreign Key
Constraints (page 25) for more information.

Replacing Entity Objects

To modify a stored entity object, retrieve it, update it, then put it back to the entity store:

5/11/2012 Getting Started with DB Page 39

Library Version 11.2.5.3 Saving and Retrieving Objects

SimpleEntityClass sec = sda.pIdx.get("keyone");
sec.setSKey("skeyoneupdated");
sda.pIdx.put(sec);

Note that because we updated a field on the object that is a secondary key, this object will
now be accessible by the secondary key of skeyoneupdated instead of the previous value,
which was skeyone

Be aware that if you modify the object's primary key, the behavior is somewhat different.
In this case, you cause a new instance of the object to be created in the store, instead of
replacing an existing instance:

// Results in two objects in the store. One with a

// primary index of "keyfive" and the other with primary index of
// "'keyfivenew'.

SimpleEntityClass sec = sda.pIdx.get("keyfive");
sec.setPKey("keyfivenew");

sda.pIdx.put(sec);

Finally, if you are iterating over a collection of objects using an EntityCursor, you can
update each object in turn using EntityCursor.update(). Note, however, that you
must be iterating using a PrimaryIndex; this operation is not allowed if you are using a
SecondaryIndex.

For example, the following iterates over every SimpleEntityClass object in the entity store,
and it changes them all so that they have a secondary index of updatedskey:

EntityCursor<SimpleEntityClass> sec_pcursor = sda.pldx.entities();
for (SimpleEntityClass sec : sec_pcursor) {
sec.setSKey("updatedskey");
sec_pcursor.update(item);

}

sec_pcursor.close();

5/11/2012

Getting Started with DB Page 40

Chapter 6. A DPL Example

In order to illustrate DPL usage, we provide a complete working example in this chapter.
This example reads and writes inventory and vendor information for a mythical business. The
application consists of the following classes:

 Several classes used to encapsulate our application's data. See Vendor.java (page 41) and
Inventory.java (page 43).

» A convenience class used to open and close our environment and entity store. See
MyDbEnv (page 45).

A class that loads data into the store. See ExampleDatabasePut.java (page 48).

Finally, a class that reads data from the store. See ExamplelnventoryRead.java (page 52).

Vendor.java

The simplest class that our example wants to store contains vendor contact information. This
class contains no secondary indices so all we have to do is identify it as an entity class and
identify the field in the class used for the primary key.

In the following example, we identify the vendor data member as containing the primary key.
This data member is meant to contain a vendor's name. Because of the way we will use our
EntityStore, the value provided for this data member must be unique within the store or
runtime errors will result.

When used with the DPL, our Vendor class appears as follows. Notice that the @Entity
annotation appears immediately before the class declaration, and the @PrimaryKey
annotation appears immediately before the vendor data member declaration.

package persist.gettingStarted;

import com.sleepycat.persist.model.Entity;
import com.sleepycat.persist.model.PrimaryKey;

@Entity
public class Vendor {

private String address;
private String bizPhoneNumber;
private String city;

private String repName;
private String repPhoneNumber;
private String state;

// Primary key is the vendor's name

// This assumes that the vendor's name is
// unique in the database.

@PrimaryKey

private String vendor;

5/11/2012

Getting Started with DB Page 41

Library Version 11.2.5.3 A DPL Example

private String zipcode;

public void setRepName(String data) {
repName = data;

}

public void setAddress(String data) {
address = data;

}

public void setCity(String data) {
city = data;
}

public void setState(String data) {
state = data;

}

public void setZipcode(String data) {
zipcode = data;

}

public void setBusinessPhoneNumber(String data) {
bizPhoneNumber = data;

}

public void setRepPhoneNumber(String data) {
repPhoneNumber = data;

}

public void setVendorName(String data) {
vendor = data;

}

public String getRepName() {
return repName;

}

public String getAddress() {
return address;

}

public String getCity() {
return city;

}

public String getState() {
return state;

5/11/2012 Getting Started with DB Page 42

Library Version 11.2.5.3 A DPL Example

}

public String getZipcode() {
return zipcode;

}

public String getBusinessPhoneNumber() {
return bizPhoneNumber;

}

public String getRepPhoneNumber() {
return repPhoneNumber;
}
}

For this class, the vendor value is set for an individual Vendor class object by the
setVendorName() method. If our example code fails to set this value before storing the
object, the data member used to store the primary key is set to a null value. This would result
in a runtime error.

Inventory.java

Our example's Inventory class is much like our Vendor class in that it is simply used to
encapsulate data. However, in this case we want to be able to access objects two different
ways: by product SKU and by product name.

In our data set, the product SKU is required to be unique, so we use that as the primary key.
The product name, however, is not a unique value so we set this up as a secondary key.

The class appears as follows in our example:
package persist.gettingStarted;

import com.sleepycat.persist.model.Entity;

import com.sleepycat.persist.model.PrimaryKey;

import static com.sleepycat.persist.model.Relationship.*;
import com.sleepycat.persist.model.SecondaryKey;

@Entity
public class Inventory {

// Primary key is sku
@PrimaryKey
private String sku;

// Secondary key is the itemName
@SecondaryKey(relate=MANY_TO_ONE)
private String itemName;

private String category;
private String vendor;

5/11/2012

Getting Started with DB Page 43

Library Version 11.2.5.3 A DPL Example

private int vendorInventory;
private float vendorPrice;

public void setSku(String data) {
sku = data;

}

public void setItemName(String data) {
itemName = data;

}

public void setCategory(String data) {
category = data;

}

public void setVendorInventory(int data) {
vendorInventory = data;

}

public void setVendor(String data) {
vendor = data;

}

public void setVendorPrice(float data) {
vendorPrice = data;

}

public String getSku() {
return sku;

}

public String getItemName() {
return itemName;

}

public String getCategory() {
return category;

}

public int getVendorInventory() {
return vendorInventory;

}

public String getVendor() {
return vendor;

}

public float getVendorPrice() {
return vendorPrice;

5/11/2012 Getting Started with DB Page 44

Library Version 11.2.5.3

A DPL Example

MyDbENnv

The applications that we are building for our example both must open and close environments
and entity stores. One of our applications is writing to the entity store, so this application
needs to open the store as read-write. It also wants to be able to create the store if it does

not exist.

Our second application only reads from the store. In this case, the store should be opened as

read-only.

We perform these activities by creating a single class that is responsible for opening and
closing our store and environment. This class is shared by both our applications. To use it,
callers need to only provide the path to the environment home directory, and to indicate
whether the object is meant to be read-only. The class implementation is as follows:
package persist.gettingStarted;

import
import

import
import
import

import
import

java.io.File;
java.io.FileNotFoundException;

com.
com.
.sleepycat.db.EnvironmentConfig;

com

com

com.

sleepycat.db.DatabaseException;
sleepycat.db.Environment;

.sleepycat.persist.EntityStore;

sleepycat.persist.StoreConfig;

public class MyDbEnv {

private Environment myEnv;
private EntityStore store;

//

Our

public

//
//

The
for

public
throws DatabaseException {

EnvironmentConfig myEnvConfig = new EnvironmentConfig();

constructor does nothing
MyDbEnv() {}

setup() method opens the environment and store
us.
void setup(File envHome, boolean readOnly)

StoreConfig storeConfig = new StoreConfig();

myEnvConfig.setReadOnly(readoOnly);
storeConfig.setReadOnly(readOnly);

// If the environment is opened for write, then we want to be

// able to create the environment and entity store if

5/11/2012

Getting Started with DB

Page 45

Library Version 11.2.5.3

A DPL Example

// they do not exist.
myEnvConfig.setAllowCreate(!readOnly);
storeConfig.setAllowCreate(!readOnly);

try {
// Open the environment and entity store

myEnv = new Environment(envHome, myEnvConfig);

store = new EntityStore(myEnv, "EntityStore", storeConfig);
} catch (FileNotFoundException fnfe) {

System.err.println("setup(): " + fnfe.toString());

System.exit(-1);

}

// Return a handle to the entity store
public EntityStore getEntityStore() {
return store;

}

// Return a handle to the environment
public Environment getEnv() {
return myEnv;

}

// Close the store and environment.
public void close() {
if (store != null) {
try {
store.close();
} catch(DatabaseException dbe) {
System.err.println("Error closing store: " +

dbe.toString());
System.exit(-1);
}
}
if (myEnv != null) {
try {
// Finally, close the environment.
myEnv.close();
} catch(DatabaseException dbe) {
System.err.println("Error closing MyDbEnv: " +
dbe.toString());
System.exit(-1);
}
}

5/11/2012

Getting Started with DB Page 46

Library Version 11.2.5.3

A DPL Example

DataAccessor.java

Now that we have implemented our data classes, we can write a class that will provide
convenient access to our primary and secondary indexes. Note that like our data classes, this
class is shared by both our example programs.

If you compare this class against our Vendor and Inventory class implementations, you will
see that the primary and secondary indices declared there are referenced by this class.

See Vendor.java (page 41) and Inventory.java (page 43) for those implementations.

package persist.gettingStarted;

import

import
import
import
import

public
//

java.io.File;

com.sleepycat.db.DatabaseException;
com.sleepycat.persist.EntityStore;
com.sleepycat.persist.PrimaryIndex;
com.sleepycat.persist.SecondaryIndex;

class DataAccessor {
Open the indices

public DataAccessor(EntityStore store)

}
//

throws DatabaseException {

// Primary key for Inventory classes
inventoryBySku = store.getPrimaryIndex(
String.class, Inventory.class);

// Secondary key for Inventory classes
// Last field in the getSecondaryIndex() method must be
// the name of a class member; in this case, an Inventory.class
// data member.
inventoryByName = store.getSecondaryIndex(
inventoryBySku, String.class, "itemName");

// Primary key for Vendor class

vendorByName = store.getPrimaryIndex(
String.class, Vendor.class);

Inventory Accessors

PrimaryIndex<String,Inventory> inventoryBySku;
SecondaryIndex<String,String,Inventory> inventoryByName;

//

Vendor Accessors

PrimaryIndex<String,Vendor> vendorByName;

5/11/2012

Getting Started with DB Page 47

Library Version 11.2.5.3 A DPL Example

ExampleDatabasePut.java

Our example reads inventory and vendor information from flat text files, encapsulates this
data in objects of the appropriate type, and then writes each object to an EntityStore.

To begin, we import the Java classes that our example needs. Most of the imports are related
to reading the raw data from flat text files and breaking them apart for usage with our data
classes. We also import classes from the DB package, but we do not actually import any
classes from the DPL. The reason why is because we have placed almost all of our DPL work
off into other classes, so there is no need for direct usage of those APIs here.

package persist.gettingStarted;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

import java.io.InputStreamReader;
import java.util.Arraylist;

import java.util.List;

import com.sleepycat.db.DatabaseException;

Now we can begin the class itself. Here we set default paths for the on-disk resources that we
require (the environment home, and the location of the text files containing our sample data).
We also declare DataAccessor and MyDbEnv members. We describe these classes and show
their implementation in DataAccessor.java (page 47) and MyDbEnv (page 45).

public class ExampleDatabasePut {

private static File myDbEnvPath = new File("/tmp/JEDB");
private static File inventoryFile = new File("./inventory.txt");
private static File vendorsFile = new File("./vendors.txt");

private DataAccessor da;

// Encapsulates the environment and data store.
private static MyDbEnv myDbEnv = new MyDbEnv();

Next, we provide our usage() method. The command line options provided there are
necessary only if the default values to the on-disk resources are not sufficient.
private static void usage() {
System.out.println("ExampleDatabasePut [-h <env directory>]");
System.out.println(" [-1i <inventory file>]");
System.out.println(" [-v <vendors file>]");
System.exit(-1);
}

Our main() method is also reasonably self-explanatory. We simply instantiate an
ExampleDatabasePut object there and then call its run() method. We also provide a top-
level try block there for any exceptions that might be thrown during runtime.

5/11/2012

Getting Started with DB Page 48

Library Version 11.2.5.3 A DPL Example

Notice that the finally statement in the top-level try block calls MyDbEnv.close(). This
method closes our EntityStore and Environment objects. By placing it here in the finally
statement, we can make sure that our store and environment are always cleanly closed.

public static void main(String args[]) {

ExampleDatabasePut edp = new ExampleDatabasePut();

try {
edp.run(args);

} catch (DatabaseException dbe) {
System.err.println("ExampleDatabasePut: " + dbe.toString());
dbe.printStackTrace();

} catch (Exception e) {
System.out.println("Exception:
e.printStackTrace();

} finally {
myDbEnv.close();

+ e.toString());

}
System.out.println("All done.");

}

Our run() method does four things. It calls MyDbEnv.setup(), which opens our Environment
and EntityStore. It then instantiates a DataAccessor object, which we will use to write
data to the store. It calls loadvendorsDb() which loads all of the vendor information. And
then it calls loadInventoryDb() which loads all of the inventory information.

Notice that the MyDbEnv object is being setup as read-write. This results in the EntityStore
being opened for transactional support. (See MyDbEnv (page 45) for implementation
details.)

private void run(String args[])
throws DatabaseException {
// Parse the arguments list
parseArgs(args);

myDbEnv.setup(myDbEnvPath, // Path to the environment home
false); // Environment read-only?

// Open the data accessor. This is used to store
// persistent objects.
da = new DataAccessor(myDbEnv.getEntityStore());

System.out.println("loading vendors db....");
loadVendorsDb();

System.out.println("loading inventory db....");
loadInventoryDb();

}

We can now implement the loadVendorsDb() method. This method is responsible for reading
the vendor contact information from the appropriate flat-text file, populating Vendor class
objects with the data and then writing it to the EntityStore. As explained above, each

5/11/2012 Getting Started with DB Page 49

Library Version 11.2.5.3

A DPL Example

individual object is written with transactional support. However, because a transaction handle
is not explicitly used, the write is performed using auto-commit. This happens because the
EntityStore was opened to support transactions.

To actually write each class to the EntityStore, we simply call the PrimaryIndex.put()
method for the Vendor entity instance. We obtain this method from our DataAccessor class.

private void loadVendorsDb()

}

throws DatabaseException {

// loadFile opens a flat-text file that contains our data

// and loads it into a list for us to work with. The integer
// parameter represents the number of fields expected in the
// file.

List vendors = loadFile(vendorsFile, 8);

// Now load the data into the store.

for (int i = @; i < vendors.size(); i++) {
String[] sArray = (String[])vendors.get(i);
Vendor theVendor = new Vendor();
theVendor. setVendorName(sArray[0]);
theVendor.setAddress(sArray[1]);
theVendor.setCity(sArray[2]);
theVendor.setState(sArray[3]);
theVendor.setZipcode(sArray[4]);
theVendor.setBusinessPhoneNumber (sArray[5]);
theVendor.setRepName(sArray[6]);
theVendor. setRepPhoneNumber (sArray[7]);

// Put it in the store.
da.vendorByName.put(theVendor);

Now we can implement our loadInventoryDb() method. This does exactly the same thing as
the loadVendorsDb() method.

private void loadInventoryDb()

throws DatabaseException {

// loadFile opens a flat-text file that contains our data

// and loads it into a list for us to work with. The integer
// parameter represents the number of fields expected in the
// file.

List inventoryArray = loadFile(inventoryFile, 6);

// Now load the data into the store. The item's sku is the
// key, and the data is an Inventory class object.

for (int i = @; i < inventoryArray.size(); i++) {
String[] sArray = (String[])inventoryArray.get(i);

5/11/2012

Getting Started with DB Page 50

Library Version 11.2.5.3 A DPL Example

String sku = sArray[1];

Inventory theInventory = new Inventory();
theInventory.setItemName(sArray[0]);
theInventory.setSku(sArray[1]);
theInventory.setVendorPrice(

(new Float(sArray[2])).floatValue());
theInventory.setVendorInventory(

(new Integer(sArray[3])).intValue());
theInventory.setCategory(sArray[4]);
theInventory.setVendor(sArray[5]);

// Put it in the store. Note that this causes our secondary key
// to be automatically updated for us.
da.inventoryBySku.put(theInventory);

}

The remainder of this example simple parses the command line and loads data from a flat-
text file. There is nothing here that is of specific interest to the DPL, but we show this part of
the example anyway in the interest of completeness.

private static void parseArgs(String args[]) {
for(int i = 0; i < args.length; ++i) {
if (args[i].startsWith("-")) {
switch(args[i].charAt(1)) {
case 'h':
myDbEnvPath = new File(args[++i]);
break;
case 'i':
inventoryFile = new File(args[++i]);
break;
case 'v':
vendorsFile = new File(args[++i]);
break;

default:
usage();

}

private List loadFile(File theFile, int numFields) {
List<String[]> records = new ArraylList<String[]>();
try {
String thelLine = null;
FileInputStream fis = new FileInputStream(theFile);
BufferedReader br =
new BufferedReader(new InputStreamReader(fis));
while((theLine=br.readLine()) != null) {

5/11/2012

Getting Started with DB Page 51

Library Version 11.2.5.3 A DPL Example

String[] thelLineArray = thelLine.split("#");
if (theLineArray.length != numFields) {
System.out.println("Malformed line found in " +
theFile.getPath());
System.out.println("Line was: + theline);
System.out.println("length found was: " +
theLineArray.length);
System.exit(-1);

}

records.add(thelLineArray);
}
// Close the input stream handle
fis.close();

} catch (FileNotFoundException e) {
System.err.println(theFile.getPath() + " does not exist.");
e.printStackTrace();
usage();

} catch (IOException e) {
System.err.println("IO Exception:
e.printStackTrace();
System.exit(-1);

+ e.toString());

}

return records;

}

protected ExampleDatabasePut() {}
}

ExampleInventoryRead.java

ExampleInventoryRead retrieves inventory information from our entity store and displays it.
When i