
Siddharth Gopal
Carnegie Mellon University

sgopal1@andrew.cmu.
edu

Yiming Yang
Carnegie Mellon University

yiming@cs.cmu.edu

Konstantin Salomatin
Carnegie Mellon University

ksalomat@cs.cmu.edu

Jaime Carbonell
Carnegie Mellon University

jgc@cs.cmu.edu

ABSTRACT
File-type Identification (FTI) is an important problem in digital

forensics, intrusion detection, and other related fields. Using state-

of-the-art classification techniques to solve FTI problems has

begun to receive research attention; however, general conclusions

have not been reached due to the lack of thorough evaluations for

method comparison. This paper presents a systematic

investigation of the problem, algorithmic solutions and an

evaluation methodology. Our focus is on performance comparison

of statistical classifiers (e.g., SVM and kNN) and knowledge-

based approaches, especially COTS (Commercial Off-The-Shelf)

solutions which currently dominate FTI applications. We analyze

the robustness of different methods in handling damaged files and

file segments. We propose two alternative criteria in measuring

performance: 1) treating file-name extensions as the true labels,

and 2) treating the predictions by knowledge based approaches on

intact files; these rely on signature bytes as the true labels (and

removing these signature bytes before testing each method). In

our experiments with simulated damages in files, SVM and kNN

substantially outperform all the COTS solutions we tested,

improving classification accuracy very substantially – some COTS

methods cannot identify damaged files at all. Our experiments

also show the scalability of SVM and kNN to large applications

after adequate feature selection.

Categories and Subject Descriptors
E.5 [Data]: Files – Recovery/Backup. I.5.2 [Pattern

Recognition]: Design Methodology – Classifier Design and

Evaluation. H.1.0 [Information Systems]: General

General Terms
Algorithms, Experimentation, Performance.

Keywords

Digital Forensics, File-type Identification, Classification,

Scalability, Comparative Evaluation

1. INTRODUCTION
File-type Identification (FTI) is the task of assigning a pre-defined

label (the file type) to each instance (each file) based on observed

data in the file. The conventional application of FTI is in

operating systems where computers need to choose different

programs to process the information based on the type of each

file. Algorithmic solutions are needed for automated

identification because systems cannot always rely on human-

assigned extension in file names; users occasionally choose a

wrong extension when creating a file name, or simply forget to

specify it. A variety of Commercial Off-The-Shelf (COTS)

software has been developed for automated FTI. For example,

Libmagic [8] is open-source software in Linux for FTI (the ‘file’

command). Other popular COTS software includes TrID [22],

Outside-In [21], DROID [20], and so on.

In the past decade, FTI has become an increasingly important

area in digital forensics research where the focus is on extracting

and analyzing useful information from digital devices such as

mobile phones, computer hard disks and CD-ROMs. Forensic

practitioners often encounter broken CD-ROMs, damaged hard-

disks, or partially deleted files. They are frustrated with the

limitations of COTS solutions whose predictions are essentially

based on the detection of signature bytes in each file, and the

detection relies on a manually created database of mappings

(rules) from signature bytes to file-types. For example, a

Microsoft Windows bitmap file is typically matched with the

signature string ‘BM’; a JPEG file is matched with the two-byte

signature ‘0xFF, 0xD8’. If the signature bytes or the allocation

information of the file segments are missing or garbled, COTS

solutions will work poorly if at all (see Section 5 for empirical

evidence).

Other application areas where automated FTI has become

important include intrusion detection [9] , virus removal, firewall

protection [30], etc. For example, in intrusion detection,

individual packets are monitored; if any offending file-type of

data is detected, those data will be filtered out. In another

example, firewalls are often setup to detect executable files from

unknown sources; if such files are detected, they will be blocked.

In such scenarios, the location of signature bytes and the

allocation information about file segments are often not available.

COTS solutions or similar knowledge-engineering approaches to

FTI would perform poorly.

Several statistical classification methods have been studied to

address the limitations of COTS solutions or knowledge-

engineering based approaches. Those methods treat each file type

as a category (class), and use supervised learning techniques to

predict the category label for each test instance (a file) based on

its content and a training set of labeled instances. Such

approaches are referred to as content-based, in distinction from

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

 File-type Identifification with Incomplete Information

those relying on file-name extensions or file-header information

alone. Each file is represented using a vector of feature weights

where the features are typically n-gram bytes, and the weights are

typically the within-file frequency of the features [18] or some

kind of TF-IDF (term frequency multiplied to Inverted Document

Frequency) weight (see Section 2). Just like in text categorization

where word order is typically ignored by statistical classifiers, the

order of n-gram bytes is also often ignored by the classifiers in

FTI. Of course by tuning the value of n for n-gram features, local

context can be partially captured. Once we have files represented

as feature vectors, any statistical classification method can in

principle be applied. Approaches examined so far include

centroid-based methods [12],[15],[16], [17], [18], [19] where

each category is represented using the centroid of its member

instances in the training set, and the category centroids are

compared to each test instance for inference. Other methods

include 1-Nearest Neighbor (1-NN) [17], k-Nearest Neighbor

(kNN) [1],[2], 3-layer neural networks (with PCA-induced

features) [4] Support Vector Machines (SVM), etc. [1],[2].

Although good progress has been made in statistical

approaches to FTI, general conclusions are difficult to obtain with

respect to the strengths and weaknesses of different methods, and

it is not clear which ones are representative for the current state of

the art. The reasons are:

• The lack of evaluation results on shared benchmark

datasets: All the published results so far were obtained

on unshared datasets, making it impossible to directly

compare methods across studies or to replicate

published results. A realistic data collection, called

Realistic Data Corpus (RealisticDC) [10], has been

recently made publicly available; however, no

evaluation result of any method has yet been reported

on that collection.

• The lack of well-established evaluation methodology:

To our knowledge, no evaluation result was published

for performance comparison against and among COTS

solutions. Although COTS predictions are all based on

signature bytes which can be found in a manually

created external data base, different software may

produce different labels for the same file type, or they

may divide file types into sub-types inconsistently 1 .

Comparing COTS solutions has been difficult due to the

lack of standardization of file-type (category) labels. On

the other hand, the evaluations of statistical classifiers

for FTI often use file-name extensions as the true labels,

which is contradictory to the common belief that user-

assigned extensions in file names are highly unreliable

[12]. This contradiction makes it difficult to interpret

the reported evaluation results for statistical classifiers

in FTI.

• No cross-method comparative evaluation has been

reported on damaged files. This is the most crucial

1 For example, a ‘C++ program’ can be considered to belong to

the following types – C++ program text, Program Source code,

Text, in increasing order of generality. The desirable level of

generality is a subjective choice.

issue for the security and forensic applications

mentioned above. The claimed advantage of statistical

classification approaches over COTS or knowledge-

based solutions has not been empirically examined

using any quantitative measure. As a result, software

developers and forensic examiners cannot tell which

tools would be best for their problems, and researchers

in FTI-related fields also face difficulties in reaching

conclusions regarding the state of the art.

This paper addresses the above key issues by conducting a

thorough investigation with several representative statistical

classifiers and COTS solutions, as follows:

a) We report the first comparative evaluation using controlled

experiments with statistical classification methods (Support

Vector Machines and k-Nearest Neighbor classifiers) and

popular COTS solutions (Libmagic, TrID, Outside-In and

DROID) on a shared and publicly available ReasliticDC

dataset.

b) We propose two strategies for cross-method evaluation. The

first is to use the labels assigned by a COTS solution (e.g.,

Libmagic) on the intact files as the true labels of test

instances, and to measure the accuracy of statistical

classifiers in predicting file types accordingly. The second is

to use file name extensions as the true labels, and to measure

the consistency in label assignment by each COTS solution

accordingly. The former (accuracy) allows us to compare

statistical classifiers conditioned on the choice of software

for information extraction (as the next step after file type

identification). The latter (consistence) allows us to compare

different COTS solutions without subjective unification of

software-specific labels.

c) We use the Realistic Data Corpus (RealisticDC) as the test

bed, which is recently made publicly available by Garfinkel

et al [10] for digital forensics research, and we provide the

first set of empirical results on this corpus. By making our

detailed documentation and data preparation toolkit together

accessible, we ensure that future results on this dataset can be

compared with ours.

d) Our experiments focus on performance analysis of different

methods over incomplete files (using files with simulated

damages and file segments) as well as complete files; the

latter has been the setting in all previous evaluations.

Incomplete files are particularly prevalent in forensics. We

found SVM and kNN outperforming Libmagic (among the

best of COTS solutions) by a factor of 10 in micro-

averaged 1F , and by a factor of 7.3 to 8.0 in macro-averaged

1F (Sections 3.2 and 5) .

e) Our experiments also show that with adequate choice of n in

n-gram feature generation and statistical feature selection,

SVM (and kNN) can scale very well to large applications

without any (significant) sacrifice in accuracy.

The rest of the paper is organized as follows. Section 2 outlines

our statistical learning framework for classification and the feature

generation process. Section 3 discusses our evaluation

methodology. Section 4 describes the experiments and data.

Section 5 reports our results. Section 6 addresses scalability issue

with statistical feature selection, and analyzes the effectiveness-

efficiency trade-off. Section 7 concludes by summarizing our

findings.

2. THE STATISTICAL APPROACH

In order to apply statistical classification methods to FTI, we need

a set of features to represent files and to discriminate different

types from each other. N-gram bytes have been found highly

useful for FTI in previous work [1][15][19] hence we follow the

same choice of features. Given a collection of files, the feature

space is defined as the union of all the unique n-gram bytes in the

files. Each file is represented as a vector of feature weights.

Within-file frequency of n-gram bytes is a common choice of

feature weighting scheme. It is analogous to the term frequency

(TF) in document retrieval and text categorization; hence we call

it TF weight for convenience. Other popular term-weighting

schemes are also possible, such as TF-IDF weights where IDF

stands for the Inverted Document Frequency of a term in a

collection of documents. Applied to FTI, a “document” means a

file, and a “term” means an n-gram byte.

Notice that the value of “n” need to be carefully chosen for

both classification accuracy and for classifier training and run-

time efficiency. Generally, the larger the value of ‘n’, the more

byte order information is captured by the features. That is, the

features could be more discriminative for classification. However,

a higher value of ‘n’ also means a larger size of the feature space

(growing exponentially in n), which will cause an increased time

to train the model and a risk of overfitting the training data.

Adequate choice of n can found empirically through cross-

validation, i.e., using some held-out data (not a part of the test set)

to tune the value of n and then fix the value in the testing phase.

Having the vector representation of files and discriminative

features, any classification method could be in principle applied.

We use two of the most popular methods in this study: Support

Vector Machines (SVM) and k-Nearest Neighbors (kNN). Both

methods have been highly successful in a broad range of

classification applications [14][25][5][27]. SVM is formulated as

a large-margin method for a geometric classification problem: the

objective is to find the decision surface that best separates two

classes of data points (vectors) with the maximal margin in

between. SVM has been found robust in high-dimensional feature

spaces and with skewed class distributions where many classes

have a relative small number of labeled instances for training.

kNN is radically different: it is typical among instance-based

(“lazy”) learning methods. It finds the nearest neighbors for each

test instance in the training set on the fly, and makes inference

based on the class labels in the local neighborhood. Specifically,

our kNN uses the cosine similarity as the metric to select the top-k

training instances for each test instance, and to weigh the class

label of each nearest neighbor; the weights of labels are summed

over for each class, and the class receives the highest score is

assigned to the test instance. This kind of kNN is called multi-

class kNN [5],[27], meaning that the unique class labels in each

local neighborhood may be more than two. Multi-class kNN

typically outperforms two-class kNN in multi-class or multi-label

classification problems; the latter converts multi-class labels of

training instances into binary labels for each class before training

a two-way classifier for the class. SVM as an eager learner is

computationally intensive in its training phase, whereas kNN is

computationally intensive in on-line testing phase. This

dichotomy allows us to investigate the scalability of both types of

classifiers.

3. EVALUATION METHODOLOGY

3.1 Alternative settings for the ground truth
It has been more difficult to obtain the true labels of files for FTI

evaluations, compared to some other domains such as text

categorization or image pattern recognition where human-

assigned labels to documents or objects can be directly used as the

true labels for evaluation. In FTI, extensions in file names are

potentially incorrect or even missing -- that is why COTS

solutions have been developed for automated FTI. This leads to

two open questions regarding the evaluation methodology in FTI:

1) How can we get the true labels for evaluation, especially for

comparing different statistical classifiers in FTI?

2) File-name extensions are imperfect, but are they still useful

for cross-method comparison, especially among different

COTS solutions and between COTS and statistical

classifiers?

Our answer for the first question is to use the output of a

COTS solution on intact files as the true labels, and to compare

the performance of different statistical classifiers on damaged or

fragmentary files based on those true labels. By using an

application-specific choice of COTS solution to produce the true

labels, we avoid the need for manual and subjective unification of

inconsistent labels from different COTS solutions for the same

file. For example, given an excel file (possibly incomplete or

damaged) as the input, some COTS solution would label it as

“Microsoft Excel 2000” and others would label it as “Microsoft

Office Document” or “Microsoft Excel File”. These labels follow

different naming conventions, and/or provide different levels of

detail about the file type. We cannot subjectively decide that one

convention is better than the others, or a certain level of detail is

most appropriate in general. What level of detail is appropriate

depends on the next-step application, e.g., on the choice of

program to be used for information extraction or execution after

Figure 1: File-types in the RealisticDC dataset have a skewed

distribution

FTI. Hence, if the output labels of a COTS solution are suitable

for the next-step application, it is sensible to use those labels as

the ground truth for evaluating statistical classifiers in file-type

identification.

Our answer for the second question is yes. We believe that

using file extensions as the true labels to evaluate COTS solutions

is informative. It is reasonable to assume that file extensions are

more often to be correct than incorrect. If the predicted labels by

one method agree with file extensions in a large test set more

often than another method does, then the chance for the former

method to outperform the latter method is higher. Using noisy

labels to evaluate the relative performance of FTI methods to each

other is still informative, as long as the test set is sufficiently large

for statistical significance.

3.2 Metrics
We choose to use micro-averaged 1F and macro-averaged

1F as the primary metrics. Both are standard and common in

benchmark evaluations [26][27][28] for text categorization,

information filtering, information extraction, and so on. Let

Cc∈ be a class, cN be the number of test instances in the class,

and cTP , cFP , cTN and cFN be the counts of the true positives,

false positives, true negatives and false negatives among the

system-made predictions with respect to class c, respectively. The

performance metrics are defined as:

 Local (per category) precision
cc

c
c

FPTP

TP
P

+
= ;

Local (per category) recall
cc

c
c

FNTP

TP
R

+
= ;

Local (per category)
cc

cc
c

RP

RP
F

+
=

2
,1 ;

Global precision
∑∑

∑

∈∈

∈

+
=

Cc cCc c

Cc c

FPTP

TP
P ;

Global recall
∑∑

∑

∈∈

∈

+
=

Cc cCc c

Cc c

FNTP

TP
R ;

Micro-averaged
RP

PR
F

+
=

2
1 ;

 Macro-averaged
||

,1

1
C

F
F Cc c∑ ∈= .

Micro-averaged 1F and macro-averaged 1F provide

complementary insights into performance analysis. If the classes

have a skewed distribution, which is quite common in practical

applications, the former is dominated by the system performance

on large categories and the latter is dominated by the average

performance on small categories.

4. EXPERIMENTS

4.1 Data
The RealisticDC dataset was introduced by Garfinkel et al [10] to

alleviate the problem of lack of a standardized dataset for FTC

research. The dataset was created under realistic situations that

mimic the kind of data commonly encountered by forensics

investigators. An experimenter was hired to play the role of a

normal computer user, exchanging messages, browsing the web,

performing office related work, reading news etc. The images of

the experimenter’s computer disk then were processed and made

available as the dataset. By hiring individuals to mimic realistic

users instead of directly collecting data from true users, privacy

issues were avoided, making the data sharable to the research

community.

After performing our own filtering, such as removing empty files

and files without extensions, we obtained a total of 31,644 files

and 316 unique file-type extensions, among which 213 are binary

file-types and 103 are ASCII text file-types. The category

distribution is shown in Figure 1. This filtered dataset has the size

of 7.2 GB in total. Further details of the filtering process can be

found at http://nyc.lti.cs.cmu.edu/clair/datasets.htm.

4.2 Methods for Comparison
For cross-method comparison we include both state-of-the-art

classifiers and popular COTS solutions. We list these methods

with a corresponding brief description.

SVM is a state-of-the-art classification method we described in

Section 2. Specifically, we used the large-scale linear SVM

implementation by Hsieh et al [13] in our experiments.

kNN is another state-of-the-art classification method we described

in Section 2. We used our own implementation of kNN [27] in the

experiments.

Libmagic [8] is one of the most popular COTS solutions for FTI,

which has been implemented as a UNIX command line tool. It

uses the information about the UNIX/Linux system to recognize

certain file types (such as device files) as the first step; if the first

attempt fails, then it analyzes the signature bytes of the input file

to identify the file-type as the second step; if the second attempt

also fails, then the ASCII content within the file is used to identify

the file-type. If all the above attempts fail, the file-type will be

labeled as not recognized.

TrID [22] is another popular COTS solution designed for

identifying file-types from their signature bytes. TrID uses a

database of signature patterns. Currently TrID supports the

identification of 4093 different file-types.

Outside-In [21] is a part of the suite of algorithms distributed by

Oracle for dealing with unstructured files. It uses a proprietary

algorithm to identify the file-types without entirely relying on the

file-extensions. It can identify more than 500 file-types.

DROID (Digital Record Object Identification) [20] is an open-

source file-type identification tool developed by the National

Archives. Rather than relying on signature bytes only, DROID

uses regular expressions to allow flexible match in signature-

based file-type identification.

For comparing the methods on intact files, we used file-name

extensions as the true labels of the test instances. For comparing

the methods on damaged files or segments of files, we used the

output of Libmagic on the undamaged and un-segmented version

of the files as the true labels of the test instances. For these

experiments, we used the subset of the dataset (30,254 files) on

which libmagic was able to predict the file-types. We also

investigated other signature-based COTS methods on intact files

as the gold-standard, but we omit these variations for brevity,

since they provide the same basic insight.

4.3 Simulated Damages and Segments
We simulate file damage in our experiments as follows:

Type-0 corresponds to the case where there is no damage. It

reflects an ideal situation where the files are intact without any

missing bytes. Also, complete information about file segment

allocation is available so that we can treat each file as a

contiguous string of bytes after preprocessing.

Type-1 corresponds to the case where the signature bytes in the

file are missing. Generally a hard disk is arranged in the form of

blocks (clusters) where each block is a contiguous sequence of

512 bytes, and each file is stored across different blocks. The

signature bytes of a file are typically stored in the first block

assigned to the file. Thus, if the first block is damaged, the

signature bytes of the file are lost. In order the mimic such a

situation, we removed the first block from each file, that is, the

first 512 bytes of the file.

Type-2 corresponds to the case where additional bytes (after the

removal of signature bytes) are missing at random locations, i.e.,

the missing bytes are randomly allocated. We conducted

experiments with the random removal of bytes at 10%, 20%, …,

90% of each file in the test set.

Type3 corresponds to the case where files are stored as isolated

segments instead of a contiguous segment. In order to mimic such

a scenario, we divided the files into shorter segments of specific

sizes and conducted experiments using the segments for training

as well as testing. Sometimes, in practice it might not be easy to

know the distribution of segments nor their labels, so it would be

difficult to generate a labeled training dataset. In such cases, the

alternative strategy would be use systems which are trained on

complete (un-segmented) files. In our experiments for evaluating

performance on file segment classification, we perform both the

types of training, i.e., training on segments and training on

complete files, respectively.

4.4 Detailed Experimental Setting
Our results for SVM and kNN are obtained through a five-fold

cross validation process. We divided the full data into five

subsets: four out of the five subsets were used for training and

validation (parameter tuning), and the remaining subset was used

for testing. We repeated this process five times, with a different

non-overlapping subset for testing each time; the results were

averaged over the five subsets. In SVM we tuned the

regularization parameter and in kNN we tuned the number (k) of

the nearest neighbors. We tried 5 different values for the SVM

regularization parameter, from .01 to 100; and, we tried 10

different values for k in kNN, from 1 to 50. As for feature

weighting in both SVM and kNN, we used a conventional TF-IDF

weighting scheme named ‘ltc’ in information retrieval and text

categorization [28]. We also varied the value of n in the

generation of n-gram features, with n = 1, 2 and 3. COTS methods

have neither a training phase, nor any parameter tuning, since they

are not based on statistical learning.

5. RESULTS

Figure 2 shows the performance of all the methods on intact files,

including both COTS solutions and the statistical classifiers on

complete undamaged files. File extensions were used as the true

labels. During validation, we found kNN with 1-gram features

worked better than kNN with 2-gram features, and SVM with 2-

gram features worked better than SVM with 1-gram in terms of

classification performance, thus we included the better versions of

kNN and SVM in the graph. In micro-averaged 1F , Libmagic is

the best method among the COTS solutions; however, in macro-

averaged 1F , TrID is the best among COTS solutions. In both

Figure 3: Performance of FTI methods on files with

type-1 damages (missing signature bytes): File

extensions were used as the true labels in the evaluation.

Figure 2: Performance of FTI methods on intact files: File

extensions were used as the true labels in the evaluations

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Micro-F1 Macro-F1

FTI Methods on intact files

(evaluated using file extensions as true labels)

DROID TrID Outside-In Libmagic kNN-1-gram Svm-2-gram

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Micro-F1 Macro-F1

FTI Methods on damaged files

(evaluated using file extensions as true labels)

DROID TrID Outside-In Libmagic kNN-1-gram Svm-2-gram

Figure 5: Performance of FTI methods on files with type-1

damage (signature bytes are missing): The output of

Libmagic was used as the true labels
measures, SVM and kNN are substantially better than all the

COTS solutions being tested. This means that statistical classifiers

are more discriminative with respect to user-specified file types in

file-name extensions. The larger performance improvements in

macro-averaged 1F by the statistical classifiers over COTS,

compared to the smaller improvements in micro-averaged 1F ,

indicates that COTS predictions tend to agree more with file

extensions for common file types, and agree less with file

extensions for rare file types.

Figure 3 shows the performance of all the methods on

files with type-1 damages, i.e., when the signature bytes of each

test instance are missing. Again, file extensions were used as the

true labels in this evaluation. Comparing the performance in this

graph to that in Figure 2, we can see that most COTS solutions

failed miserably (with the zero or near-zero value in both micro-

averaged and macro-averaged 1F) when the signature bytes are

missing, while the statistical classifiers suffer much less. The

statistical classifiers are much more robust in FTI with respect to

this kind of damage.

Figure 4 compares the results of our statistical classifiers on

intact files; the output of Libmagic for each test file was used as

the true label of that file. We include the performance of

Libmagic for reference, which has the perfect score (1F =1), of

course. We include the results of SVM and kNN with 1-gram and

2-gram features, respectively.

Figure 5 compared the results of these methods on files with

type-1 damages, i.e., when the first 512 bytes (including the

signature bytes) of each test file is missing. Libmagic failed

dramatically in this case, while SVM and kNN are highly robust.

SVM using 2-gram features works better than SVM using 1-gram

features, but the former is more computationally costly than the

latter. We analyze the efficiency and effectiveness trade-off in

Section 6. On the other hand, kNN using 1-gram features had

better results than kNN using 2-gram features. SVM and kNN

have a comparable performance. In general, the statistical learning

methods perform better in micro-averaged 1F (vs micro-averaged

1F) because the common classes have more training instances.

SVM (2-gram) outperforms Libmagic by a factor of 10.3 (0.900

vs. 0.088) in micro-averaged 1F and a factor of 8.0 (0.540 vs.

0.068) in macro-averaged 1F .KNN (1-gram) outperforms

Libmagic by a factor of 10.0 (0.874 vs. 0.088) in micro-averaged

1F and a factor of 7.3 (0.496 vs. 0.068) in macro-averaged 1F .

Figure 6 compares the performance curves for SVM (using

2-gram features) and kNN (using 1-gram features) on files with

type-2 damages. A certain percentage of each file was removed at

random, as well as the first 512 bytes from each file. Again, the

two methods have similar curves: until the damaged proportion

reaches 50% or higher, there is no significant degradation in

classification performance for both methods, but kNN is

somewhat more robust when most of the file is missing.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Micro-F1 Macro-F1

FTI Methods on files with type-1 damage:

Libmagic output was used as true labels

Libmagic knn-1-gram knn-2-gram svm-2-gram

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Statistical classifiers on files with type-2 damage

kNN-1-gram Micro-F1 kNN-1-gram Macro-F1

SVM-2-gram Micro-F1 SVM-2-gram Macro-F1

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Micro-F1 Macro-F1

FTI Methods on intact files:

Libmagic output was used as the true labels

Libmagic knn-1-gram knn-2-gram svm-2-gram

Figure 4: Performance of FTI methods on intact files: The

output of Libmagic was used as the true labels.

Figure 6: Performance curves of statistical classifiers on

files with type-2 damages: The output of Libmagic was used

as true labels

Figure 7 compares the performance curves for SVM (using

2-gram features) on segments of files (type-3 damage). We

evaluated the methods with two settings: training SVM on

segments (of the same size as the test segments), and training

SVM on the full files. The former setting yielded a better

performance but it had an unrealistic assumption, i.e., the size of

the segments in the test set must be known or estimated in

advance. The latter setting is more realistic. All the curves show

that the smaller the segments, and harder the prediction task.

6. SCALABILITY ANALYSIS

In order for our approach to scale, we need to carefully balance

the trade-off between effectiveness (better models) and efficiency

(time required to train the models). As the value of ‘n’ in the n-

gram feature space increases, the individual features capture more

information about byte order which may lead to more accurate

predictions about file-types; but on the other hand, the time

required for computation (in training SVM or in searching kNN

given a test instance) also increases. It is therefore crucial to select

the value of ‘n’ that offers a desirable effectiveness/efficiency

trade-off.

We conduct a systematic analysis on how the

performance of classifiers changes and how the time in

training/testing increases as the value of n increases. Note that the

dimensionality of the feature space increases exponentially with n;

for n=1, the potential size of the feature space is 256, for n=2 the

size is 65,536, for n=3 the size is 1,6777,216. For n=3, it is

impractical to train SVM models with all the features because it

will take over several weeks on a single machine. We therefore

use statistical feature selection to control the size of the feature

space, i.e. we select the most informative features.

In our experiments we used the Information Gain (IG)

as the feature selection criterion. IG measures the average

information associated with the absence or presence of a feature

for file-type identification. Mathematically, the IG for a particular

feature measures the change in entropy of the file-types given the

presence or absence of that particular feature. IG has been

commonly used for feature selection in text categorization [29], in

decision tree induction [24], dimensionality reduction [11], etc.

Given multiple file types (316 in our case), each n-gram feature

has multiple IG scores, one per file type. We used the maximum

of these multiple IG scores of each feature as the final score of the

feature, and we obtained a ranked list of all the features based on

their final scores. We measured the 1F scores as well as the

training times for SVM with 1-gram features, 2-gram features, and

for SVM 3-gram using the top-m features in the IG-ranked list of

features. Since kNN does not need any offline training, we just

Figure 7: Performance curves of SVM (2-gram) in fragment-

based FTI: the output of Libmagic was used as the labels.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

256 512 1024 2048 4096 8192 16384 Full file

Fragment Size

SVM (2-gram) in Fragment-based FTI

Train on Fragments-MicroF1 Train on Fragments-Macro-F1

Train on Full Files-Micro-F1 Train on Full Files-Macro-F1

Figure 8: Performance of SVM (on intact files) for

different values of n and feature selection: The output of

Libmagic was used as the true labels.

Figure 9: Average training time per fold for SVM (on

intact files) for different values of n and feature selection:

The output of Libmagic was used as the true labels.

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Features

SVM-Performance

Micro-F1 Macro-F1

0

2000

4000

6000

8000

10000

12000

14000

Features

SVM-Time (CPU secs)

measured the 1F scores and the testing times according to

increasing values of m. We only examined feature selection for

kNN 1-gram because we found it works better than kNN 2-gram

when using all the features without selection. kNN 2-gram

required the usage of distributed computing techniques (Hadoop

based Map-reduce) to calculate the nearest neighbors, as using a

single machine took more than a week. The heavy computational

cost is partly due to the relatively large number of non-zero

features per file in FTI. For example, when using 2-gram bytes as

the features, the average number of non-zero unique features per

file is nearly 10000, which is much higher than the typical number

(300 or less) of unique words in news-story categorization.

Figure 8 and Figure 9 show the performance and the

training times (CPU seconds) for SVM with different feature sets.

Figures 10 and Figure 11 show the performance and the test time

of kNN using 1-gram features.

 Based on the observations on the SVM figures, we see

that using 2-gram features (without feature selection) exhibits a

desirable balance between effectiveness and efficiency (3-grams

with 160K features is another reasonable tradeoff). On the

contrary, SVM 1-gram is significantly worse in 1F measure while

SVM 3-gram with additional features only had negligible

improvements in 1F but significantly increased computation time.

In 5 fold cross validation across 30524 examples in the RDC

dataset, the average training time per fold for SVM 2-gram (using

24203 training examples per fold) without feature selection is 7.3

hours on a single core of Intel Xeon 3.16 Ghz processor. The

testing time per fold (6051 test examples per fold) for all the

SVM-based methods was about 1second.

Based on the observations on the kNN figures, we see that

using the full set of 1-gram features yielded the best 1F score for

kNN. The average computational time per fold is 8.8 CPU

minutes on 6051 test examples (and 24203 training example), or

0.09 CPU second per test example. We used single core of Intel

Xeon 3.16 Ghz processor for all the nearest neighbor

computations. The similarity score calculation between two

instances was cached so as to avoid redundant computations.

7. CONCLUSION

We conducted the first thorough comparative analysis of FTI

methods on damaged or fragmentary files, contrasting COTS

methods and statistical learning ones (SVM and kNN). The study

found statistical learning methods to be far more robust than

COTS in all the measures. SVM and kNN outperform COTS

when the gold standard is set of available file extension for intact

files. More importantly, SVM and kNN far outperform COTS on

different types of simulated file damages: files with missing

signature bytes, files with randomly deleted sections, and isolated

file segments. These tests were conducted on a new realistic

publicly available data set, encouraging future research and

rigorous comparative evaluations. We also thoroughly analyzed

the scalability of our statistical classification approaches to FTI. .

REFERENCES
[1] Ahmed, I., Lhee, K., Shin,H. and Hong, M.P 2009. On

Improving the Accuracy and Performance of Content-based

File Type Identification. In Proceedings of the 14th

Australasian Conference on Information Security and

Privacy (ACISP), 44-59.

[2] Ahmed, I. and Lhee, K. and Shin, H. and Hong, M.P. 2010.

Fast file-type identification.In Proceedings of the 2010 ACM

Symposium on Applied Computing, 1601-1602.

[3] Ahmed, I., Lhee, K., Shin,H. and Hong, M.P. 2010. Fast

Content-based File-type Identification. In the proceedings of

Seventh Annual IFIP WG 11.9 International Conference on

Digital Forensics.

[4] Amirani, M.C , Toorani, M., and Beheshti Shirazi, A.A.B.

2008. A New Approach to Content-based File Type

Figure 10: Performance of kNN 1-gram (on intact files)

with feature selection: The output of Libmagic was used as

the true labels.

Figure 11: Average Testing time per fold for kNN 1-gram

(on intact files) with feature selection: The output of

Libmagic was used as the true labels.

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Features

kNN-Performance

Micro-F1 Macro-F1

0

100

200

300

400

500

600

Features

kNN-Time (secs)

identification. In Proceedings of the 13th IEEE Symposium

on Computers and Communications (ISCC), 1103-1108.

[5] Belur, V. D. 1991. Nearest Neighbor (NN) Norms: NN

Pattern Classification Techniques. McGraw-Hill Computer

Science Series. IEEE Computer Society Press.

[6] Calhoun, W.C. and Coles, D. 2008. Predicting types of file

fragments. Digital Investigation, S14-S20.

[7] Cheng, W. and Hüllermeier, E. 2009. Combining instance-

based learning and logistic regression for multilabel

classification, Machine Learnig,211-225.

[8] Darwin, I.F. 2008. Libmagic. ftp://ftp.astron.com/pub/file/

[9] Dreger, H. , Feldmann, A., Mai, M. ,Paxson, V. and

Sommer, R. 2006. Dynamic application-layer protocol

analysis for network intrusion detection. USENIX Security

Symposium.

[10] Garfinkel, S., Farrell, P., Roussev, V. and Dinolt, G. 2009.

Bringing science to digital forensics with standardized

forensic corpora. DFRWS , S2-S11.

[11] Guyon, I. and Elisseeff, A. 2003. An introduction to variable

and feature selection. The Journal of Machine Learning

Research, 1157-1182.

[12] Hall A.G and Davis W.P, Sliding Window Measurement

for File Type Identification.

[13] Hsieh, C.J., Chang, K.W., Lin, C.J., Keerthi, S.S. and

Sundararajan, S. 2008. A dual coordinate descent method for

large-scale linear SVM. In the Proceedings of the 25th

International Conference on Machine learning, 408-415.

[14] Joachims, T. 1998. Text categorization with support vector

machines: Learning with many relevant features. European

Conference in Machine Learning, 137-142.

[15] Karresand, M. and Shahmehri, N. 2006. Oscar—file type

identification of binary data in disk clusters and RAM pages.

Security and Privacy in Dynamic Environments, 413-424.

[16] Karresand, M. and Shahmehri, N. 2006. File type

identification of data fragments by their binary structure. In

Proceedings of the IEEE workshop on information

assurance; 140–147.

[17] Li, W.J.,Wang, K. and Stolfo, S.J. and Herzog, B. 2005

Fileprints: identifying filetypes by n-gram analysis. In:

Proceeding of the 2005 IEEE workshop on information

assurance,64-71.

[18] McDaniel, M. 2001. Automatic File Type Detection

Algorithm, Masters Thesis, James Madison University.

[19] McDaniel, M. and Heydari, M.H. 2003. Content based file

type detection algorithms. In Proceedings of the 36th Hawaii

international conference on system sciences, Track 9.

Washington, D.C.: IEEE Computer Society, 332a.

[20] National Archives of United Kingdom. 2003. DROID -

http://droid.sourceforge.net/

[21] Oracle Outside In Technology.

http://www.oracle.com/us/products/middleware/content-

management/outside-in-tech/index.html

[22] Pontello, M. 2008. TrID – File Identifier.

http://mark0.net/soft-trid-e.html

[23] Roussev, V. and Garfinkel, S.L. 2009. File Fragment

Classification-The Case for Specialized Approaches. Fourth

International IEEE Workshop on Systematic Approaches to

Digital Forensic Engineering (SADFE), 3-14.

[24] Mitchell, T. 1997. Machine Learning, McGraw Hill.

[25] V. Vapnik, 2005. The nature of statistical learning theory,

Springer verlag, New York,

[26] Van Rijsbergen, C. 1979. Information

Retrieval..Butterworths, London.

[27] Yang, Y. 1994. Expert Network: Effective and Efficient

Learning from Human Decisions in Text Categorization and

Retrieval. ACM SIGIR, pages 13-22.

[28] Yang, Y. 1999. An Evaluation of Statistical Approaches to

Text categorization. Information Retrieval, 1386-4564.

[29] Yang, Y. and Pedersen, J.O. 1997. A comparative study on

feature selection in text categorization, International

Conference in Machine Learning, 412-420.

[30] Yoo, I.S. and Ultes-Nitsche, U. 2003. Adaptive detection of

worms/viruses in firewalls. In the proceeding of the

International conference on Communication, Network, and

Information Security.

