Mini-XML Programmers Manual
Version 2.7

MICHAEL R. SWEET

Mini-XML Programmers Manual, Version
2.7

Copyright © 2003-2011 by Michael R. Sweet

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Library General Public License, Version 2. A copy of
this license is included in Appendix A - Mini-XML License.

Mini-XML Programmers Manual, Version 2.7

Table of Contents

INtroduction.......coo e 1
Organization of This Document................... 3
Notation Conventions...........ccceveerieeneenneene 4
Abbreviations.........cccoooeii 5
Other References.........ccoeecveveecieeiiieeceieens 6
Legal Stuff.....c.ooniiiieieeee e 6

Building, Installing, and Packaging Mini-XML....... 7
Compiling Mini-XML........ccccoeverniianinnieen. 7

Compiling with Visual C++.....cceeveennnen. 8
Compiling with Command-Line Tools...8
Installing Mini-XML.......ccoooiiiiiiiiiieeeieeee 8
Creating Mini-XML Packages.........ccccceenee. 9

Getting Started with Mini-XML.........ccccoccviinninnnas 11
The BasiCS...cueiiiiiiieieeeiieee e 12
NOAES. e 12

CDATA NOdES....ccvvveeeeeecieeeeee e 14
Custom Nodes........ccooeeveiriienienieee 14
Comment Nodes........ccceeeeeriienenniieens 14
Element Nodes.......ccooiieeiiiiicieneene 15
Integer NOdes......ccoocvvviiieiiiieecieene 15
Opague NOdES.........coeveereririieeieeieenn 15
Text NOdeS.. ..o 15
Processing Instruction Nodes............. 16
Real Number Nodes..........cccccvevrnneenne 16
XML Declaration Nodes............cceennee 17
Creating XML Documents..........cccccceeeuenne 18
Loading XML.......ccoiieerniiieiiee e 20
Saving XMLcooiiiiiiie e 21
Controlling Line Wrapping..........c..... 23
Memory Management..........ccccovveeeeiieennns 23

Finding and Iterating Nodes.............ccccc..... 24

Mini-XML Programmers Manual, Version 2.7

Table of Contents
Getting Started with Mini-XML

Finding Specific Nodes.........cccccevieenennne. 27
More Mini-XML Programming Techniques.......... 29
Load Callbacks.........ceeeeveeeeeiereiieeeesiieeens 29
Save Callbacks.........ccceeecvveeeeiieeeiee e 31
Custom Data TYypes.....cccevveereerieenienieee 34
Changing Node Values..........cccocueenieriuenne 38
Formatted Text......cccoiieiiii e 38
INAEXINGeeieiiieeeiee e 39
SAX (Stream) Loading of Documents........ 4
Using the mxmldoc Utility.......ccceviomniienrniinniinnns 45
The BasiCS...cueiiiiiieie e 45
Creating Man Pages........ccocceveerueens 46

Creating Xcode Documentation
SetS it 47
Commenting Your Code........cccocuveveerinene 47
Titles, Sections, and Introductions............. 49
Mini-XML LiCense........cccerierrammerrrnscmmes e ssmmeeseeaas 51
Release Notes.......cccooiiiiicierr e 71
Library Reference.........ccoueeerivmersssnnnssesssssnsnnsnnns 71
(070101 (T4) - RS 72
Functions.........ooviiii e 73
MXMIAA.......cciiiiiieeeee e, 73
mxmiDelete.......ccooeeiiiiieie 74
mxmlElementDeleteAttr...................... 76
mxmlElementGetAttr............cccveennnnn. 76
mxmlIElementSetAttr..........ccccvveeenenn. 77
mxmlElementSetAttrf...........cccceveneeen. 77

i

Mini-XML Programmers Manual, Version 2.7

Table of Contents

Library Reference

mxmlEntityAddCallback...................... 78
mxmlEntityGetName...........ccccoeeveennee. 79
mxmlEntityGetValue...........ccoceeneenee. 80
mxmlEntityRemoveCallback............... 80
mxmlFindElement...........ccevveveeeeenl 81
mxmlFindPath............ccovivviiiiieeees 81
MXMIGEICDATA. ..., 81
MXMIGetCUSIOM.....veeeeeeeiiieeeeeeeeeeeee, 82
mxmliGetElement.........ovvvveeeeeennnnnn. 83
mxmlGetFirstChild...........oooveveveenennin. 83
mxmlGetinteger........ocovveeneriieeneennne. 83
mxmlGetLastChild...........ccoeveveeeeeenin. 85
mxmIGetNextSibling..........cccoceeveenee. 85
mxmIGetOpaque........cccceereerveeneennne. 88
mxmlGetParent........ccceeeeveveeveeeneennnn. 88
mxmlGetPrevSibling..........ccoceeveennne. 89
mxmiGetReal.........cuveeeeeeieiiiiiieeeeeenn. 89
mxmlGetRefCount..........coooveveeeeennnnen. 90
(000 011G T =) A 90
MXMIGEITYPE ...eeeeiiiieiieeee e 91
mxmlGetUserData..........ccc.cceeuvveeennn. 92
mxmlindexDelete..........ccoovvvveveeeeenn. 92
mxmiindexEnum..........coovvvvvviceeeeenns 93
mxmiindexFind..........cccoovvvvvvviieeeeenns 94
mxmlindexGetCount...........ccoeeeeeeeenen. 94
MXMINAEXNEW........cceevveiiiiiiiiiieeeees 95
mxmlindexReset........cooovvevvviceeeeenns 96
mxmlLoadFd.......cccceeveiiiiiiiiiiiieeeeees 97
mxmlLoadFile.......ccooeeviiiiiiiiiieeeeees 98
MXxmMILoadString.......ccceveerneriveeneenane. 98
MXMINEWCDATA. ..., 99
MXMINeWCUSIOM......cevvveereieieeeeeeeeeee. 99

iii

Mini-XML Programmers Manual, Version 2.7

Table of Contents

Library Reference

mxmINewElement.............cooovvvvennnn. 100
mxmINewlInteger.........cccocoeerienennnen. 101
mxmINewOpaque.......c.cceeeereerieene 101
mxmINewReal........cccccoeeeeviriiiivinnnnnn. 102
MXMINEeWTEeXt.......cveeeeeeieeieiiieeeinn, 103
mxmINewTextf......cccceeeeeiiiiiiiiiiiinn. 103
MXMINEeWXMLcoeeeeeiiiiiiiiiiiiinn, 104
mxmlRelease.......ccoeeeeeeeeeeeeieeevnrnnnnnn. 105
MXMIREMOVE........eeeeeeeeeeeieeieeeiinnn. 105
mxmiRetain.........ccceeeeeeeieeiiiiieiien. 106
mxmISAXLoadFd..........ccevveveveeeneennn. 106
mxmISAXLoadFile.........cccevveveeeeeenen. 107
mxmMISAXLoadString.......ccceevveeieeene 108
mxmlSaveAllocString.........ccoveeeeiene 108
MXMISAVEFd........uvvveeeeieiiiiiieeeeeeeee, 109
mxmiSaveFile.......ccceeeeeeeeeeeeieneneeen. 110
MXMISAVESHIiNG.......ccevieeriieiieeieee 111
MXMISEtCDATA ..., 112
MxmISetCustoM.......ceeeveeeeeeeveeeneeenn. 113
mxmlSetCustomHandlers................. 114
mxmliSetElement..........ooovvvveeeninnnin. 115
mxmlSetErrorCallback...................... 115
mxmlSetinteger........cccvvvvieeiienneene 116
mxmiSetOpaque........cccoeerveereeeieene 117
mxmliSetReal.......cccceeeveveeeiiiiienennnnn, 118
MXMISEtTEXt. . uvvvereieiiieieieeeieeeeeeeeeee, 119
MXMISetTextf......covveeeeeeeeiiiiiieeeeeee, 120
mxmliSetUserData...........cccceeuunnnee. 120
mxmiSetWrapMargin..........ccccceeeuene 121
mxmIWalkNext........ccccoeeveviriiievivnnnnn. 122
mxmIWalkPrev........cccoevvviviivivinnnnnnn. 122
Data TYPEeS.....cocveeiieeeeiiee et 124

iv

Mini-XML Programmers Manual, Version 2.7

Table of Contents

Library Reference
mxml_custom_destroy_cb_#t............. 125
mxml_custom_load_cb_t.................. 126
mxml_custom_save_cb_t................. 128
mxml_entity_cb_t.......cooooi 129
mxml_error_cb t
mxml_index_t.....ccoooiiiii
mxml_load cb t
mxml_node_t.................
mxml|_save cb t
mxml_sax_cb_t...........
mxml|_sax_event_t
MXMI_type L.,

Constants
mxml_sax_event_€.......ccccceeeeeinneenn. 136
MXMI_type_€..coovriiiieiiiee e 137

XML Schema......cccccecummmmmmemeeeeeee e reresesesssssssssasnes 138

vi

Mini-XML Programmers Manual, Version 2.7

Introduction

This programmers manual describes Mini-XML
version 2.7, a small XML parsing library that you can
use to read and write XML data files in your C and
C++ applications.

Mini-XML was initially developed for the Gutenprint
project to replace the rather large and unwieldy
1ibxm12 library with something substantially smaller
and easier-to-use. It all began one morning in June of
2003 when Robert posted the following sentence to
the developer's list:

It's bad enough that we require
libxml2, but rolling our own XML
parser is a bit more than we can
handle.

Introduction 1

http://gutenprint.sf.net/

Mini-XML Programmers Manual, Version 2.7

| then replied with:

Given the limited scope of what you
use in XML, it should be trivial to
code a mini-XML APl in a few
hundred lines of code.

| took my own challenge and coded furiously for two
days to produced the initial public release of
Mini-XML, total lines of code: 696. Robert promptly
integrated Mini-XML into Gutenprint and removed
libxml2.

Thanks to lots of feedback and support from various
developers, Mini-XML has evolved since then to
provide a more complete XML implementation and
now stands at a whopping 3,965 lines of code,
compared to 103,893 lines of code for libxml2 version
2.6.9.

Aside from Gutenprint, Mini-XML is used for the
following projects/software applications:

¢ CUPS
e ZynAddSubFX

Please email me (mxml @ easysw . com) if you would
like your project added or removed from this list, or if
you have any comments/quotes you would like me to
publish about your experiences with Mini-XML.

2 Introduction

http://www.cups.org/
http://zynaddsubfx.sourceforge.net

Mini-XML Programmers Manual, Version 2.7

Organization of This Document

This manual is organized into the following chapters
and appendices:

Organization of This Document

e Chapter 1, "Building, Installing, and
Packaging Mini-XML", provides compilation,
installation, and packaging instructions for
Mini-XML.

¢ Chapter 2, "Getting Started with Mini-XML",
shows how to use the Mini-XML library in
your programs.

e Chapter 3, "More Mini-XML Programming
Techniques", shows additional ways to use
the Mini-XML library.

e Chapter 4, "Using the mxmldoc Utility",
describes how to use the mxm1doc (1)
program to generate software
documentation.

e Appendix A, "Mini-XML License", provides
the terms and conditions for using and
distributing Mini-XML.

e Appendix B, "Release Notes", lists the
changes in each release of Mini-XML.

¢ Appendix C, "Library Reference", contains a
complete reference for Mini-XML, generated
by mxmldoc.

¢ Appendix D, "XML Schema", shows the XML
schema used for the XML files produced by

mxmldoc.

Mini-XML Programmers Manual, Version 2.7
Notation Conventions

Various font and syntax conventions are used in this
guide. Examples and their meanings and uses are
explained below:

mxmldoc

mxmldoc (1)
The names of commands; the first mention
of a command or function in a chapter is
followed by a manual page section number.

/var
/etc/hosts
File and directory names.

Request ID is Printer-123
Screen output.

lp -d printer filename ENTER
Literal user input; special keys like ENTER are
in ALL CAPS.

12.3

Numbers in the text are written using the
period (.) to indicate the decimal point.

4 Notation Conventions

Mini-XML Programmers Manual, Version 2.7
Abbreviations

The following abbreviations are used throughout this
manual:

Gb

Gigabytes, or 1073741824 bytes
kb

Kilobytes, or 1024 bytes
Mb

Megabytes, or 1048576 bytes
UTF-8, UTF-16

Unicode Transformation Format, 8-bit or

16-bit
W3C

World Wide Web Consortium
XML

Extensible Markup Language

Abbreviations

Mini-XML Programmers Manual, Version 2.7
Other References

The Unicode Standard, Version 4.0, Addison-Wesley,
ISBN 0-321-18578-1
The definition of the Unicode character set
which is used for XML.

Extensible Markup Language (XML) 1.0 (Third
Edition)
The XML specification from the World Wide
Web Consortium (W3C)

Legal Stuff

The Mini-XML library is copyright 2003-2011 by
Michael Sweet. License terms are described in
Appendix A - Mini-XML License.

6 Other References

http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xml-20040204/

Building,
Installing, and
Packaging
Mini-XML

This chapter describes how to build, install, and
package Mini-XML on your system from the source
archive. You will need an ANSI/ISO-C compatible
compiler to build Mini-XML - GCC works, as do most
vendors' C compilers. If you are building Mini-XML on
Windows, we recommend using the Visual C++
environment with the supplied solution file. For other
operating systems, you'll need a POSIX-compatible
shell and make program in addition to the C compiler.

Compiling Mini-XML

Mini-XML comes with both an autoconf-based
configure script and a Visual C++ solution that can be
used to compile the library and associated tools.

Building, Installing, and Packaging Mini-XML 7

Mini-XML Programmers Manual, Version 2.7

Compiling with Visual C++

Open the mxml.sin solution in the vcnet folder.
Choose the desired build configuration, "Debug"” (the
default) or "Release", and then choose Build Solution
from the Build menu.

Compiling with Command-Line Tools

Type the following command to configure the
Mini-XML source code for your system:

./configure ENTER

The default install prefix is /usr/local, which can be
overridden using the —-prefix option:

./configure --prefix=/foo ENTER

Other configure options can be found using the
—-help Option:

./configure --help ENTER

Once you have configured the software, use the
make (1) program to do the build and run the test
program to verify that things are working, as follows:

make ENTER

Installing Mini-XML

If you are using Visual C++, copy the mxml.lib and
and mxml.h files to the Visual C++ lib and include
directories, respectively.

8 Compiling with Visual C++

Mini-XML Programmers Manual, Version 2.7

Otherwise, use the make command with the install
target to install Mini-XML in the configured directories:

make install ENTER

Creating Mini-XML Packages

Mini-XML includes two files that can be used to create
binary packages. The first file is mxml.spec which is
used by the rpmbuild(s) software to create Red Hat
Package Manager ("RPM") packages which are
commonly used on Linux. Since rpmbuild wants to
compile the software on its own, you can provide it
with the Mini-XML tar file to build the package:

rpmbuild -ta mxml-version.tar.gz ENTER

The second file is mxml.list which is used by the

epm (1) program to create software packages in a
variety of formats. The epm program is available from
the following URL:

http://www.epmhome.org/

Use the make command with the epm target to create
portable and native packages for your system:

make epm ENTER

The packages are stored in a subdirectory named dist
for your convenience. The portable packages utilize
scripts and tar files to install the software on the target
system. After extracting the package archive, use the
mxml.install script to install the software.

Installing Mini-XML 9

http://www.epmhome.org/

Mini-XML Programmers Manual, Version 2.7

The native packages will be in the local OS's native
format: RPM for Red Hat Linux, DPKG for Debian
Linux, PKG for Solaris, and so forth. Use the
corresponding commands to install the native
packages.

10 Creating Mini-XML Packages

Getting Started
with Mini-XML

This chapter describes how to write programs that
use Mini-XML to access data in an XML file. Mini-XML
provides the following functionality:

¢ Functions for creating and managing XML
documents in memory.

¢ Reading of UTF-8 and UTF-16 encoded
XML files and strings.

e Writing of UTF-8 encoded XML files and
strings.

e Support for arbitrary element names,
attributes, and attribute values with no preset
limits, just available memory.

e Support for integer, real, opaque ("CDATA"),
and text data types in "leaf" nodes.

¢ "Find", "index", and "walk" functions for
easily accessing data in an XML document.

Getting Started with Mini-XML 11

Mini-XML Programmers Manual, Version 2.7

Mini-XML doesn't do validation or other types of
processing on the data based upon schema files or
other sources of definition information, nor does it
support character entities other than those required
by the XML specification.

The Basics

Mini-XML provides a single header file which you
include:

#include <mxml.h>

The Mini-XML library is included with your program
using the -1mxm1 option:

gcc —o myprogram myprogram.c —lmxml ENTER

If you have the pkg-config (1) software installed, you
can use it to determine the proper compiler and linker
options for your installation:

pkg-config --cflags mxml ENTER
pkg-config —-libs mxml ENTER

Nodes

Every piece of information in an XML file is stored in
memory in "nodes". Nodes are defined by the
mxml_node_t Structure. Each node has a typed value,
optional user data, a parent node, sibling nodes
(previous and next), and potentially child nodes.

For example, if you have an XML file like the
following:

12 The Basics

Mini-XML Programmers Manual, Version 2.7

<?xml version="1.0" encoding="utf-8"?>
<data>
<node>vall</node>
<node>val2</node>
<node>val3</node>
<group>
<node>val4</node>
<node>val5</node>
<node>val6</node>
</group>
<node>val7</node>
<node>val8</node>
</data>

the node tree for the file would look like the following
in memory:

?xml version="1.0" encoding="utf-8"?

data
I
node - node - node - group - node - node
I | I | | I
vall val2 val3 | val7 vals8

node - node - node

| | |
valéd valb valé

where "-" is a pointer to the sibling node and "|" is a
pointer to the first child or parent node.

The mxmicetType function gets the type of a node, one
OfMXML_CUSTOM,MXML_ELEMENT,MXML_INTEGER,
MXMI,_OPAQUE, MXML_REAL, Of MXML_TEXT. 1he parent
and sibling nodes are accessed using the
mxmlGetParent,mxmlGetNext,andlnxmlGetPrevious
functions. The nxm1GetUserpata function gets any
user data associated with the node.

Nodes 13

Mini-XML Programmers Manual, Version 2.7

CDATA Nodes

CDATA (uxu1_rneMENT) Nodes are created using the
mxm1NewCDATA function. The mxmicetcpata function
retrieves the CDATA string pointer for a node.

Note:

CDATA nodes are currently stored
in memory as special elements.
This will be changed in a future
major release of Mini-XML.

Custom Nodes

Custom (vxm1,_cusTom) nodes are created using the
mxmlNewCustom function or using a custom load
callback specified using the mxmisetcustomtandlers
function. The mxm1Getcustom function retrieves the
custom value pointer for a node.

Comment Nodes

Comment (vxvr,_rreMENT) nodes are created using the
mxmlNewElement function. The mxmlGetElement
function retrieves the comment string pointer for a
node, including the surrounding "I--" and "--"
characters.

Note:
Comment nodes are currently
stored in memory as special

elements. This will be changed in a
future major release of Mini-XML.

14 CDATA Nodes

Mini-XML Programmers Manual, Version 2.7

Element Nodes

Element (vxvi_ereMENT) nodes are created using the
mxmlNewElement function. The mxmlGetElement
function retrieves the element name, the
mxmlElementGetAttr function retrieves the value string
for a named attribute associated with the element,
and the mxmlGetFirstChild and mxmlGetLastChild
functions retrieve the first and last child nodes for the
element, respectively.

Integer Nodes

Integer (vxmML_1NTEGER) Nodes are created using the
mxmlNewInteger function. The mxmlGetInteger
function retrieves the integer value for a node.

Opaque Nodes

Opagque (uxu1._oragQue) nodes are created using the
mxmlNewOpaque function. The mxmlGetopaque function
retrieves the opaque string pointer for a node.
Opaque nodes are like string nodes but preserve all
whitespace between nodes.

Text Nodes

Text (vxvi_tEXT) Nodes are created using the
mxmlNewText and mxmlNewText £ functions. Each text
node consists of a text string and (leading)
whitespace value - the mxm1cetText function retrieves
the text string pointer and whitespace value for a
node.

Element Nodes 15

Mini-XML Programmers Manual, Version 2.7

Processing Instruction Nodes

Processing instruction (uxvr._ereMENT) NOdes are
created using the mxminewE1ement function. The
mxmlGetElement function retrieves the processing
instruction string for a node, including the surrounding
"?" characters.

Note:

Processing instruction nodes are
currently stored in memory as
special elements. This will be
changed in a future major release
of Mini-XML.

Real Number Nodes
Real number (vxv1_rear) nodes are created using the

mxmlNewReal function. The mxmlGetReal function
retrieves the CDATA string pointer for a node.

16 Processing Instruction Nodes

Mini-XML Programmers Manual, Version 2.7

XML Declaration Nodes

XML declaration (vxv1_rreMENT) nodes are created
using the mxminewxMrs function. The mxmlGetElement
function retrieves the XML declaration string for a
node, including the surrounding "?" characters.

Note:

XML declaration nodes are
currently stored in memory as
special elements. This will be
changed in a future major release
of Mini-XML.

XML Declaration Nodes

17

Mini-XML Programmers Manual, Version 2.7
Creating XML Documents

You can create and update XML documents in
memory using the various mxminew functions. The
following code will create the XML document
described in the previous section:

mxml_node_t *xml; /* <?xml ... ?> */
mxml_node_t *data; /* <data> */
mxml_node_t *node; /* <node> */
mxml_node_t *group; /* <group> */

xml = mxmlNewXML ("1.0");
data = mxmlNewElement (xml, "data");

node = mxmlNewElement (data, "node");
mxmlNewText (node, 0, "vall");
node = mxmlNewElement (data, "node");
mxmlNewText (node, 0, "val2");
node = mxmlNewElement (data, "node");
mxmlNewText (node, 0, "val3");

group = mxmlNewElement (data, "group");

node = mxmlNewElement (group, "node");
mxmlNewText (node, 0, "vald");
node = mxmlNewElement (group, "node");
mxmlNewText (node, 0, "val5");
node = mxmlNewElement (group, "node");
mxmlNewText (node, 0, "valée");

node = mxmlNewElement (data, "node");
mxmlNewText (node, 0, "val7");
node = mxmlNewElement (data, "node");
mxmlNewText (node, 0, "val8");

18 Creating XML Documents

Mini-XML Programmers Manual, Version 2.7

We start by creating the declaration node common to
all XML files using the mxm1newxmr function:

xml = mxmlNewXML ("1.0");

We then create the <data> node used for this
document using the mxm1NewElement function. The first
argument specifies the parent node (xm1) while the
second specifies the element name (data):

data = mxmlNewElement (xml, "data");

Each <node>. . .</node> in the file is created using the
mxmlNewElement and mxmlNewText functions. The first
argument of mxm1newText Specifies the parent node
(node). The second argument specifies whether
whitespace appears before the text - 0 or false in this
case. The last argument specifies the actual text to
add:

node = mxmlNewElement (data, "node");
mxmlNewText (node, 0, "vall");

The resulting in-memory XML document can then be

saved or processed just like one loaded from disk or a
string.

Creating XML Documents 19

Mini-XML Programmers Manual, Version 2.7
Loading XML

You load an XML file using the mxm11oadrile function:

FILE *fp;
mxml_node_t *tree;

fp = fopen("filename.xml", "r");

tree = mxmlLoadFile (NULL, fp,
MXML_TEXT_CALLBACK) ;

fclose (fp);

The first argument specifies an existing XML parent
node, if any. Normally you will pass nutw for this
argument unless you are combining multiple XML
sources. The XML file must contain a complete XML
document including the 2xm1 element if the parent
node is NULL.

The second argument specifies the stdio file to read
from, as opened by fopen () Or popen (). You can also
use stdin if you are implementing an XML filter
program.

The third argument specifies a callback function which
returns the value type of the immediate children for a
new element node: MXML_CUSTOM, MXML_IGNORE,
MXML_INTEGER, MXML_OPAQUE, MXML_REAL, OF MXML_TEXT.
Load callbacks are described in detail in Chapter 3.
The example code uses the Mxu1,_TEXT_CALLBACK
constant which specifies that all data nodes in the
document contain whitespace-separated text values.
Other standard callbacks include
MXML_IGNORE_CALLBACK, MXML_INTEGER_CALLBACK,
MXML_OPAQUE_CALLBACK, and MXML_REAL_CALLBACK.

20 Loading XML

Mini-XML Programmers Manual, Version 2.7

The nxmlLoadstring function loads XML node trees
from a string:

char buffer[8192];
mxml_node_t *tree;

tree = mxmlLoadString (NULL, buffer,
MXML_TEXT_CALLBACK) ;

The first and third arguments are the same as used
for mxmizoadrile (). The second argument specifies
the string or character buffer to load and must be a
complete XML document including the 2xm1 element if
the parent node is nuLL.

Saving XML

You save an XML file using the nxmlsaverile
function:

FILE *fp;
mxml_node_t *tree;

fp = fopen("filename.xml", "w");
mxmlSaveFile (tree, fp, MXML_NO_CALLBACK) ;
fclose (fp);

The first argument is the XML node tree to save. It
should normally be a pointer to the top-level 2xm1
node in your XML document.

The second argument is the stdio file to write to, as

opened by fopen () Or popen (). YOU can also use
stdout if you are implementing an XML filter program.

Saving XML 21

Mini-XML Programmers Manual, Version 2.7

The third argument is the whitespace callback to use
when saving the file. Whitespace callbacks are
covered in detail in Chapter 3. The previous example
code uses the mxm1,_no_carreack constant to specify
that no special whitespace handling is required.

ThelnxmlSaveAllocString,and mxmlSaveString
functions save XML node trees to strings:

char buffer[8192];
char *ptr;
mxml_node_t *tree;

mxmlSaveString (tree, buffer, sizeof (buffer),
MXML_NO_CALLBACK) ;

ptr = mxmlSaveAllocString(tree, MXML_NO_CALLBACK) ;

The first and last arguments are the same as used for
mxmlSaveFile().The]nxmlSaveStrianUnCﬁontakeS
pointer and size arguments for saving the XML
document to a fixed-size buffer, while
mxmlSaveAllocString () returns a string buffer that
was allocated using mal1oc ().

22 Saving XML

Mini-XML Programmers Manual, Version 2.7

Controlling Line Wrapping

When saving XML documents, Mini-XML normally
wraps output lines at column 75 so that the text is
readable in terminal windows. The mxmlSetWrapMargin
function overrides the default wrap margin:

/* Set the margin to 132 columns */
mxmlSetWrapMargin (132);

/* Disable wrapping */
mxmlSetWrapMargin (0) ;

Memory Management

Once you are done with the XML data, use the
mxmlDelete function to recursively free the memory
that is used for a particular node or the entire tree:

mxmlDelete (tree);

You can also use reference counting to manage
memory usage. The mxmlRetain and mxmlRelease
functions increment and decrement a node's use
count, respectively. When the use count goes to 0,
mxmlRelease Will automatically call mxmipelete to
actually free the memory used by the node tree. New
nodes automatically start with a use count of 1.

Controlling Line Wrapping 23

Mini-XML Programmers Manual, Version 2.7
Finding and lterating Nodes

The mxmlwalkPrev and mxmlwalkNextfunctions can be
used to iterate through the XML node tree:

mxml_node_t *node;

node = mxmlWalkPrev (current, tree,
MXML_DESCEND) ;

node = mxmlWalkNext (current, tree,
MXML_DESCEND) ;

In addition, you can find a named element/node using
the mxmlFindelement function:

mxml_node_t *node;

node = mxmlFindElement (tree, tree, "name",
"attr", "value",
MXML_DESCEND) ;

The name, attr, and value arguments can be passed
as nuLL to act as wildcards, e.g.:

/* Find the first "a" element */

node = mxmlFindElement (tree, tree, "a
NULL, NULL,
MXML_DESCEND) ;

"
’

/* Find the first "a" element with "href"
attribute */
node = mxmlFindElement (tree, tree, "a",
"href", NULL,
MXML_DESCEND) ;

24 Finding and lterating Nodes

Mini-XML Programmers Manual, Version 2.7

/* Find the first "a" element with "href"
to a URL */
node = mxmlFindElement (tree, tree, "a",
"href",
"http://www.easysw.com/",
MXML_DESCEND) ;

/* Find the first element with a "src"
attribute */
node = mxmlFindElement (tree, tree, NULL,
"src", NULL,
MXML_DESCEND) ;

/* Find the first element with a "src"
= "foo.jpg" */
node = mxmlFindElement (tree, tree, NULL,
"src", "foo.jpg",
MXML_DESCEND) ;

You can also iterate with the same function:

mxml_node_t *node;

for (node = mxmlFindElement (tree, tree,

"name",
NULL, NULL,
MXML_DESCEND) ;
node != NULL;
node = mxmlFindElement (node, tree,

"name",
NULL, NULL,
MXML_DESCEND))

do something

Finding and lterating Nodes 25

Mini-XML Programmers Manual, Version 2.7

The mxm1,_pescenp argument can actually be one of
three constants:

® MXMI,_NO_DESCEND means to not to look at any
child nodes in the element hierarchy, just
look at siblings at the same level or parent
nodes until the top node or top-of-tree is
reached.

The previous node from "group” would be
the "node" element to the left, while the next
node from "group" would be the "node"
element to the right.

® MXML_DESCEND_FIRST means that it is OK to
descend to the first child of a node, but not to
descend further when searching. You'll
normally use this when iterating through
direct children of a parent node, e.g. all of
the "node" and "group" elements under the
"?xml" parent node in the example above.

This mode is only applicable to the search
function; the walk functions treat this as
MXML,_DESCEND Since every call is a first time.

e MxMI,_DESCEND means to keep descending
until you hit the bottom of the tree. The
previous node from "group" would be the
"val3" node and the next node would be the
first node element under "group".

If you were to walk from the root node "?xml"

to the end of the tree with mxmiwalknext (),
the order would be:

26 Finding and lterating Nodes

Mini-XML Programmers Manual, Version 2.7

?xml data node vall node val2 node val3
group node val4 node val5 node val6 node
val7 node val8

If you started at "val8" and walked using
mxmlWalkPrev (), the order would be
reversed, ending at "?xml".

Finding Specific Nodes

You can find specific nodes in the tree using the
mxmlFindPath, for example:

mxml_node_t *value;

value = mxmlFindPath (tree, "path/to/*/foo/bar");

The second argument is a "path" to the parent node.
Each component of the path is separated by a slash
(/) and represents a named element in the document
tree or a wildcard (*) path representing 0 or more
intervening nodes.

Finding Specific Nodes 27

28

Mini-XML Programmers Manual, Version 2.7

Finding Specific Nodes

More Mini-XML
Programming
Techniques

This chapter shows additional ways to use the
Mini-XML library in your programs.

Load Callbacks

Chapter 2 introduced the mxm11oadrile () and
mxmlLoadString () functions. The last argument to
these functions is a callback function which is used to
determine the value type of each data node in an
XML document.

Mini-XML defines several standard callbacks for
simple XML data files:

® MXML_INTEGER_CALLBACK - All data nodes
contain whitespace-separated integers.

More Mini-XML Programming Techniques 29

Mini-XML Programmers Manual, Version 2.7

® MXMIL_OPAQUE_CALLBACK - All data nodes
contain opaque strings ("CDATA").

e vxMI_REAL_CALLBACK - All data nodes contain
whitespace-separated floating-point
numbers.

e vxMIL_TEXT_CALLBACK - All data nodes contain
whitespace-separated strings.

You can provide your own callback functions for more
complex XML documents. Your callback function will
receive a pointer to the current element node and
must return the value type of the immediate children
for that element node: MxMI_INTEGER, MXML_OPAQUE,
MXML_REAL, Or MxML_TEXT. The function is called after
the element and its attributes have been read, so you
can look at the element name, attributes, and attribute
values to determine the proper value type to return.

The following callback function looks for an attribute
named "type" or the element name to determine the
value type for its child nodes:

mxml_type_t
type_cb (mxml_node_t *node)
{

const char *type;

/*
* You can lookup attributes and/or use the
* element name, hierarchy, etc...

*/

type = mxmlElementGetAttr (node, "type");
if (type == NULL)
type = mxmlGetElement (node);

if (!strcmp (type, "integer"))
return (MXML_INTEGER) ;
else if (!strcmp(type, "opaque"))

30 Load Callbacks

Mini-XML Programmers Manual, Version 2.7

return (MXML_OPAQUE) ;

else if (!strcmp(type, "real")
return (MXML_REAL);
else

return (MXML_TEXT);
To use this callback function, simply use the name
when you call any of the load functions:

FILE *fp;
mxml_node_t *tree;

fp = fopen("filename.xml", "r");
tree = mxmlLoadFile (NULL, fp, type_cb);
fclose (fp);

Save Callbacks

Chapter 2 also introduced the mxm1saverile (),
mxmlSaveString(),aﬂd mxmlSaveAllocString ()
functions. The last argument to these functions is a
callback function which is used to automatically insert
whitespace in an XML document.

Your callback function will be called up to four times
for each element node with a pointer to the node and
a "where" value of MxML_ws_BEFORE_OPEN,
MXML_WS_AFTER_OPEN, MXML_WS_BEFORE_CLOSE, Or
MXML_WS_AFTER_CLOSE. The callback function should
return nuLL if no whitespace should be added and the
string to insert (spaces, tabs, carriage returns, and
newlines) otherwise.

The following whitespace callback can be used to add

whitespace to XHTML output to make it more
readable in a standard text editor:

Save Callbacks 31

32

Mini-XML Programmers Manual, Version 2.7

const char *
whitespace_cb (mxml_node_t *node,
int where)

const char *name;

/*
* We can conditionally break to a new line
* before or after any element. These are
* just common HTML elements...

*/
name = mxmlGetElement (node);

if (!strcmp(name, "html")
!'strcmp (name, "head")
!'strcmp (name, "body")
!'strcmp (name, "pre") |
!'strcmp (name, "p") |
!'strcmp (name, "hl")
!'strcmp (name, "h2")
!'strcmp (name, "h3")
!'strcmp (name, "h4")
!'strcmp (name, "h5")
!'strcmp (name, "hé6")

{

/*
* Newlines before open and after
* close...
*/
if (where == MXML_WS_BEFORE_OPEN | |
where == MXML_WS_AFTER_CLOSE)
return ("\n");
}
else if (!strcmp (name, "d1") ||
!'strcmp (name, "ol") ||
!'strcmp (name, "ul")
{
/*

* Put a newline before and after list
* elements...

*/

Save Callbacks

Mini-XML Programmers Manual, Version 2.7

return ("\n");
}
else if (!strcmp(name, "dd") ||
!'strcmp (name, "dt") ||
!'strcmp (name, "1i"))
{
/*

* Put a tab before <1li>'s, * <dd>'s,

* and <dt>'s, and a newline after them...

*/

if (where == MXML_WS_BEFORE_OPEN)
return ("\t");

else if (where == MXML_WS_AFTER_CLOSE)
return ("\n");

}
/*

* Return NULL for no added whitespace...
*/

return (NULL);
To use this callback function, simply use the name
when you call any of the save functions:

FILE *fp;
mxml_node_t *tree;

fp = fopen("filename.xml", "w");
mxmlSaveFile (tree, fp, whitespace_cb);
fclose (fp);

Save Callbacks

33

Mini-XML Programmers Manual, Version 2.7
Custom Data Types

Mini-XML supports custom data types via global load
and save callbacks. Only a single set of callbacks can
be active at any time, however your callbacks can
store additional information in order to support
multiple custom data types as needed. The
MxML_cusToM hode type identifies custom data nodes.

The load callback receives a pointer to the current
data node and a string of opaque character data from
the XML source with character entities converted to
the corresponding UTF-8 characters. For example, if
we wanted to support a custom date/time type whose
value is encoded as "yyyy-mm-ddThh:mm:ssZ" (ISO
format), the load callback would look like the
following:

typedef struct
{

unsigned year, /* Year */
month, /* Month */
day, /* Day */
hour, /* Hour */
minute, /* Minute */
second; /* Second */
time_t unix; /* UNIX time */

} iso_date_time_t;

int
load_custom(mxml_node_t *node,
const char *data)
{
iso_date_time_t *dt;
struct tm tmdata;

/*
* Allocate data structure...

*/

34 Custom Data Types

Mini-XML Programmers Manual, Version 2.7

dt = calloc(l, sizeof(iso_date_time_t));

/*
* Try reading 6 unsigned integers from the
* data string...

*/

if (sscanf (data, "%u-%u-%uT%u:%u:%uz",
& (dt->year), & (dt->month),
& (dt->day), & (dt->hour),
& (dt->minute),
& (dt->second)) != 6)
{
/*
* Unable to read numbers, free the data
* structure and return an error...

*/
free(dt);

return (-1);

/*
* Range check values...
*/
if (dt->month <1 || dt->month > 12 ||
dt->day <1 || dt->day > 31 ||
dt->hour <0 || dt->hour > 23 ||
dt->minute <0 || dt->minute > 59 ||
dt->second <0 || dt->second > 59)
{
/*
* Date information is out of range...
*/
free(dt);

return (-1);

Custom Data Types 35

Mini-XML Programmers Manual, Version 2.7

/*
* Convert ISO time to UNIX time in
* seconds...

*/

tmdata.tm_year = dt->year - 1900;
tmdata.tm_mon = dt->month - 1;
tmdata.tm_day = dt->day;
tmdata.tm_hour = dt->hour;
tmdata.tm_min = dt->minute;
tmdata.tm_sec = dt->second;

dt->unix = gmtime (&tmdata);

/*
* Assign custom node data and destroy
* function pointers...

*/
mxmlSetCustom(node, data, destroy);

/*
* Return with no errors...

*/

return (0);

The function itself can return 0 on success or -1 if it is
unable to decode the custom data or the data
contains an error. Custom data nodes contain a void
pointer to the allocated custom data for the node and
a pointer to a destructor function which will free the
custom data when the node is deleted.

36 Custom Data Types

Mini-XML Programmers Manual, Version 2.7

The save callback receives the node pointer and
returns an allocated string containing the custom data
value. The following save callback could be used for
our ISO date/time type:

char *
save_custom (mxml_node_t *node)

{
char data[255];
iso_date_time_t *dt;

dt = (iso_date_time_t *)mxmlGetCustom(node) ;

snprintf (data, sizeof (data),
"%$04u-%02u-%02uT%02u:%02u:%02uz",
dt->year, dt->month, dt->day,

dt->hour, dt->minute, dt->second);

return (strdup(data));

You register the callback functions using the
mxmlSetCustomHandlers () function:

mxmlSetCustomHandlers (load_custom,
save_custom) ;

Custom Data Types 37

Mini-XML Programmers Manual, Version 2.7
Changing Node Values

All of the examples so far have concentrated on
creating and loading new XML data nodes. Many
applications, however, need to manipulate or change
the nodes during their operation, so Mini-XML
provides functions to change node values safely and
without leaking memory.

Existing nodes can be changed using the
mxmlSetElement (), mxmlSetInteger (),
mxmlSetOpaque(),mxmlSetReal(),mxmlSetText(),and
mxmlSetTextf () functions. For example, use the
following function call to change a text node to contain
the text "new" with leading whitespace:

mxml_node_t *node;

mxmlSetText (node, 1, "new");

Formatted Text

ThelnxmlNewTextf() and mxmlSetTextf()fUnCﬁonS
create and change text nodes, respectively, using
print £-style format strings and arguments. For
example, use the following function call to create a
new text node containing a constructed filename:

mxml_node_t *node;

node = mxmlNewTextf (node, 1, "%s/%s",
path, filename);

38 Changing Node Values

Mini-XML Programmers Manual, Version 2.7
Indexing

Mini-XML provides functions for managing indices of
nodes. The current implementation provides the same
functionality as mxmlFindelement (). The advantage of
using an index is that searching and enumeration of
elements is significantly faster. The only disadvantage
is that each index is a static snapshot of the XML
document, so indices are not well suited to XML data
that is updated more often than it is searched. The
overhead of creating an index is approximately equal
to walking the XML document tree. Nodes in the index
are sorted by element name and attribute value.

Indices are stored in mxm1_index_t structures. The
mxmlIndexNew () function creates a new index:

mxml_node_t *tree;
mxml_index_t *ind;

ind = mxmlIndexNew (tree, "element",
"attribute");

The first argument is the XML node tree to index.
Normally this will be a pointer to the 2xm1 element.

The second argument contains the element to index;
passing nurL indexes all element nodes
alphabetically.

The third argument contains the attribute to index;
passing nuLL causes only the element name to be
indexed.

Once the index is created, the mxmlIndexEnum(),
mxmlIndexFind(),and mxmlIndexReset () functions

Indexing 39

Mini-XML Programmers Manual, Version 2.7

are used to access the nodes in the index. The
mxmlIndexReset () function resets the "current" node
pointer in the index, allowing you to do new searches
and enumerations on the same index. Typically you
will call this function prior to your calls to
mxmlIndexEnum () and mxmlIndexFind ().

The mxm11ndexEnum () function enumerates each of
the nodes in the index and can be used in a loop as
follows:

mxml_node_t *node;
mxmlIndexReset (ind) ;

while ((node = mxmlIndexEnum(ind)) != NULL)
{

// do something with node
}

The mxmlIndexFind () function locates the next
occurrence of the named element and attribute value
in the index. It can be used to find all matching
elements in an index, as follows:

mxml_node_t *node;

mxmlIndexReset (ind) ;

while ((node = mxmlIndexFind(ind, "element",
"attr-value"))

!= NULL)

// do something with node

The second and third arguments represent the
element name and attribute value, respectively. A
NULL pointer is used to return all elements or attributes

40 Indexing

Mini-XML Programmers Manual, Version 2.7

in the index. Passing nurL for both the element name
and attribute value is equivalent to calling

mxmlIndexEnum.

When you are done using the index, delete it using
the mxmlindexbDelete () function:

mxmlIndexDelete (ind) ;

SAX (Stream) Loading of
Documents

Mini-XML supports an implementation of the Simple
API for XML (SAX) which allows you to load and
process an XML document as a stream of nodes.
Aside from allowing you to process XML documents
of any size, the Mini-XML implementation also allows
you to retain portions of the document in memory for
later processing.

The nxmlsaxLoadFd, mxmlSAXLoadFile, and
mxmlSAXLoadString functions provide the SAX Ioading
APIs. Each function works like the corresponding
mxmlLoad function but uses a callback to process each
node as it is read.

The callback function receives the node, an event
code, and a user data pointer you supply:

void

sax_cb (mxml_node_t *node,
mxml_sax_event_t event,
void *data)

. do something ...

SAX (Stream) Loading of Documents 41

Mini-XML Programmers Manual, Version 2.7

The event will be one of the following:

o vxM1,_sax_cpaTa - CDATA was just read

® MXMI,_SAX_COMMENT - A comment was just
read

e vxMm1,_SAX_DATA - Data (custom, integer,
opaque, real, or text) was just read

® MXMI,_SAX_DIRECTIVE - A processing directive
was just read

® MXML_SAX_ELEMENT_CLOSE - A close element
was just read (</element>)

® MXMI,_SAX_ELEMENT_OPEN - An open element
was just read (<element>)

Elements are released after the close element is
processed. All other nodes are released after they are
processed. The SAX callback can retain the node
using the mxmiretain function. For example, the
following SAX callback will retain all nodes, effectively
simulating a normal in-memory load:

void

sax_cb (mxml_node_t *node,
mxml_sax_event_t event,
void *data)

if (event != MXML_SAX_ELEMENT_CLOSE)
mxmlRetain (node) ;

More typically the SAX callback will only retain a small
portion of the document that is needed for
post-processing. For example, the following SAX
callback will retain the title and headings in an XHTML
file. It also retains the (parent) elements like <htm1>,
<head>, and <body>, and processing directives like
<?xml ... ?>and <!DOCTYPE ... >:

42 SAX (Stream) Loading of Documents

Mini-XML Programmers Manual, Version 2.7

void

sax_cb (mxml_node_t *node,
mxml_sax_event_t event,
void *data)

if (event == MXML_SAX_ELEMENT_OPEN)
{
/*
* Retain headings and titles...
*/

char *name = mxmlGetElement (node) ;

if (!strcmp(name, "html") ||
!'strcmp (name, "head") ||
!'strcmp (name, "title") ||
!'strcmp (name, "body") ||
I'strcmp (name, "hl") |
!'strcmp (name, "h2") |
I'strcmp (name, "h3") |
!'strcmp (name, "h4") |
I'strcmp (name, "h5") |
!'strcmp (name, "hé6"
mxmlRetain (node) ;
}
else if (event == MXML_SAX_DIRECTIVE)
mxmlRetain (node) ;
else if (event == MXML_SAX_DATA)
{
if (mxmlGetRefCount (mxmlGetParent (node)) > 1)
{
/*
* If the parent was retained, then retain
*