
Documentation – Hybridization Expansion CT-QMC solver
version 3.0b1

Emanuel Gull,1, 2 Hartmut Hafermann,3 and Philipp Werner4

1Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
2Physics Department, University of Michigan, Ann Arbor, MI
3École Polytechnique, CNRS, 91128 Palaiseau Cedex, France

4Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
(Dated: February 12, 2013)

This is the user documentation for the hybridization expansion solver of the ALPS DMFT code.
It documents installation, running, and integration of the hybridization code into the ALPS self-
consistencies of the ALPS DMFT code and the solver’s Python interface. It is designed to be a
useful documentation for users, primarily in the LDA+DMFT community.

I. INTRODUCTION

Welcome! This is the user documentation for the
third version of the ALPS1 hybridization expansion2 CT-
QMC3 code, written by Emanuel Gull, in collaboration
with Hartmut Hafermann and Philipp Werner, based on
an earlier version4 by Philipp Werner, Emanuel Gull,
Brigitte Surer, and Matthias Troyer. This user documen-
tation is designed to make the program useful for users,
in particular users from the LDA+DMFT field, who want
to replace their solvers (IPT, Hirsch Fye, other versions
of CT-QMC) with the ALPS hybridization code. A ba-
sic understanding of impurity models, Monte Carlo sim-
ulations and, where needed, LDA+DMFT is assumed.
Knowledge of the inner workings of CT-QMC is not re-
quired, and we strive to make the code accessible to users
who are not Monte Carlo experts.

This documentation, as well as version 3 of the hy-
bridization expansion code, is open source. Bug reports
and bug fixes, problem reports, and suggestion for im-
provements are most welcome.

II. PREREQUISITES

A. Downloading

The hybridization solver is included in the
compiled ALPS packages as a binary. Release
versions and nightly builds are available from
alps.comp-phys.org. You can find the binary
version at alps-prefix/bin/hybridization.

B. Building

The hybridization expansion code uses several ALPS
libraries1 and requires ALPS to build. You will therefore
need to obtain the source code for ALPS from alps.comp-
phys.org, either by downloading a current nightly build
or by requesting a subversion account and downloading
the svn version of ALPS. The ALPS home page has de-
tailed instructions on how this works. In case of problems

building ALPS, the ALPS user mailing list will help you
out. If this does not work, please don’t hesitate to con-
tact Emanuel .

The ALPS DMFT code is dependent on two addi-
tional modules: HDF5 and MPI are required. Once
ALPS and the hybridization code are installed in
$ALPS_PREFIX/bin/hybridization3, try running it.
You will see

terminate called after throwing\
an instance of ’std::invalid_argument’
what(): No job file specified

In $ALPS_ROOT/src/alps/ngs/lib/mcoptions.cpp\
on 62 in mcoptions

If you have an MPI environment you can also run the
code using, e.g.,
$MPI_RUN_COMMAND -np 3 $ALPS_PREFIX/ \

bin/hybridization3
and you’ll see the same output three times.

$MPI_RUN_COMMAND is platform dependent, common op-
tions are mpirun, mpiexec, openmpirun, and so on. Con-
sult your MPI manual on what you need to use.

III. RUNNING THE HYBRIDIZATION CODE

The input of the solver consists of a parameter file, the
hybridization function ∆(τ) and optionally, the retarded
interaction function K(τ) and its first derivative K ′(τ).

A. Using the standalone executable

1. Specifying a parameter file

We start with a simple parameter file to solve a single
site impurity problem. A minimal parameter file, call it
hyb1.param, could look like this:

SWEEPS = 100000000
MAX_TIME = 60
THERMALIZATION = 1000
SEED = 0

http://alps.comp-phys.org
http://alps.comp-phys.org
http://alps.comp-phys.org/mediawiki/index.php/Download_and_install_ALPS_2
http://alps.comp-phys.org/mediawiki/index.php/Download_and_install_ALPS_2
mailto:comp-phys-alps-users@lists.phys.ethz.ch
mailto:gull@pks.mpg.de
http://www.hdfgroup.org/
http://www.openmpi.org

2

N_MEAS = 50
N_HISTOGRAM_ORDERS = 50
N_ORBITALS = 2
U = 4.0
MU = 2.0
DELTA = "delta.dat"
N_TAU = 1000
BETA = 45

This is a parameter file for a single impurity Anderson
model (two “orbitals”, i.e. Norb = 2, one for spin “up”
and one for spin “down”) with U = 5, µ = 2.5, and
β = 30 for which the hybridization function will be read
from the file delta.dat. The energy units are the ones
of delta.dat. This simulation runs for sixty seconds.

Using the command p2h5 this parameter file is con-
verted into an hdf5 file:

$ALPS_PREFIX/bin/p2h5 hyb1.h5 < hyb1.param

2. Running the solver

We can then run the program using this parameter file
(make sure this is in a directory with read/write access
and the file delta.dat is present):

$ALPS_PREFIX/bin/hybridization3 hyb1.h5

A typical output is:

U matrix with 2 orbitals:
0 5
5 0
chemical potential with 2 orbitals:
2.5 2.5

local configuration:
0 empty
1 empty

the hybridization function is:
0 -0.5 -0.5
1 -0.492823 -0.492823
2 -0.485805 -0.485805
3 -0.478945 -0.478945
4 -0.47224 -0.47224
5 -0.465686 -0.465686
6 -0.459282 -0.459282
7 -0.453024 -0.453024
8 -0.446909 -0.446909
9 -0.440935 -0.440935
... *** etc *** ...
1000 -0.5 -0.5

process 0 starting simulation

Running the same simulation under MPI will produce
additional lines indicating the process number: process
1 starting simulation and so on. After MAX_TIME is up

or the number of SWEEPS have been done, the code exits.
The results will be written to the file hyb1.out.h5 in this
case. The results can also be written in human-readable
format by adding the line

TEXT_OUTPUT = 1

to the parameter file. Do not forget to convert the pa-
rameter file to hdf5 format before running the solver.

B. Python interface

If ALPS is built with Python support (parameter
ALPS_BUILD_PYTHON=ON), the solver is also built as a
Python module. It can directly be called from within a
Python script. This provides a flexible framework which
allows one to easily set up tasks ranging from calcula-
tions for multiple parameters to complex selfconsistency
schemes.

Basic usage of the Python interface is illustrated by
the following script, which repeats the previous example
for the standalone executable:

import pyalps.cthyb as cthyb # solver module
import pyalps.mpi as mpi # MPI library

parms={
’SWEEPS’ : 100000000,
’MAX_TIME’ : 60,
’THERMALIZATION’ : 1000,
’SEED’ : 0,
’N_MEAS’ : 50,
’N_HISTOGRAM_ORDERS’ : 50,
’N_ORBITALS’ : 2,
’U’ : 4.0,
’MU’ : 2.0,
’DELTA’ : "delta.dat",
’N_TAU’ : 1000,
’BETA’ : 45,
’TEXT_OUTPUT’ : 1
}

if mpi.rank==0:
f=open("delta.dat","w")
for i in range(parms["N_TAU"]+1):
f.write("%i %f %f\n"%(i,-0.5,-0.5))

f.close()

cthyb.solve(parms)

The first line imports the solver module. Note that im-
porting the MPI library in the second line is mandatory,
even if the code is run on a single process. In the next
four lines a simple (constant) hybridization function is
written to file. The parameters are specified in the form
of a Python dict. Finally the solver is invoked by ex-
ecuting the solve method of the Python module. The
latter takes the parameter dict as an argument. The hy-
bridization function is read from file. Results are written

3

to the file results.out.h5. The name (without suffix)
can be altered by specifying the parameter BASENAME.

The script is executed as follows:

alpspython scriptname.py

or using MPI:

mpirun -np 2 alpspython scriptname.py

On some machines it may be necessary to use

mpirun -np 2 bash alpspython scriptname.py

instead. Note that on some platforms mpirun has to be
replaced by a different command to invoke MPI. See your
MPI manual for details.

The above example and more advanced examples on
how to use the Python framework can be found in the
hybridization tutorials within the /tutorials directory
inside the ALPS installation directory:

/hybridization-01-python
/hybridization-02-kondo
/hybridization-03-retarded-interaction
/hybridization-04-spinfreezing

These tutorials illustrate how to run calculations for
multiple parameters within a single script, plotting re-
sults, implementing a selfconsistency scheme, using the
hdf5 interface, performing calculations with retarded in-
teractions and for multiorbital models as well as perform-
ing simple computations with the measured observables.

IV. DETAILED INPUT DESCRIPTION

A. Hybridization function

We use the following definition of the hybridization
function:

∆ab(iνn) =
∑
kj

V ajk V ∗jbk

iνn − εjk
(1)

∆(τ) =
1

β

∞∑
n=−∞

∆(iνn)e−iνnτ (2)

where in the current implementation, the hybridization
function is restricted to be diagonal, ∆ab(τ) = ∆a(τ)δab.
As a consequence of this definition, the hybridization
function is always negative. The code will throw a cor-
responding exception if this is not the case.

The hybridization function is read from a text file the
name of which is specified by the parameter DELTA. The
file has to contain a column with imaginary time values
(or the time index, the actual values are ignored) and
a column of hybridization values for each orbital. The
number of lines has to match the number of time points
Nτ +1 used in the imaginary-time Green’s function mea-
surement, where Nτ is specified by the parameter N_TAU.

The code will attempt to read the hybridization func-
tion data from an hdf5 archive if the optional param-
eter DELTA_IN_HDF5 is set to 1. In this case the data
has to be provided as a collection of one-dimensional
arrays in the paths /Delta_{i}, one for each orbital i
(i = 0, . . . , Norb − 1). Each array has length Nτ + 1 and
the n-th entry corresponds to the value of the hybridiza-
tion function at time τn = nβ/Nτ (n = 0, . . . , Nτ). That
the hybridization function has been read in correctly can
be verified from the screen output of the solver immedi-
ately after starting the simulation.

Note that the level energies, or double counting terms
should not be absorbed into the hybridization function.
They have to be specified separately, see Sec. IV C.

In cases where the hybridization function becomes ex-
tremely small, of the order of the machine accuracy, nu-
merical instabilities will occur, which render the results
useless, since the algorithm operates on the inverse of
the matrix of hybridization functions [∆(τi−τ ′j)]−1. This
may happen within a DMFT calculation deep in the in-
sulating phase and at very low temperature, or when an
orbital is completely filled (or empty). These cases how-
ever are easily identified at the level of the Green’s func-
tion, which will exhibit a lot of noise or even may change
sign.

B. Retarded interaction function

A retarded interaction occurs in models with phonons,
when dynamical screening is considered, or in the context
of extended dynamical mean-field theory.

The general algorithm for phonons is given in Ref. 5.
The formalism for retarded interactions is described in
Ref. 6. The function K(τ), corresponding to the twice-
integrated retarded interaction (for details see Ref. 6)
connects all pairs of creation and annihilation operators.
It is symmetric, K(β − τ) = K(−τ) = K(τ), and hence
is tabulated as a function K(τ) on Nτ + 1 points be-
tween 0 and β. K is positive and equal for all orbitals.
We further use the convention that K(0) = 0. For the
measurement of the improved estimator, the integrated
retarded interaction, or equivalently, the first derivative
of K(τ), i.e. K ′(τ), is required. While in principle K ′(τ)
can be obtained from the knowledge of K(τ), the com-
putation from finite differences on the imaginary time
grid is not reliable. Hence the derivative should also be
precomputed and be provided in tabulated form.

Providing the retarded interaction function and its
derivative is optional. This feature is enabled by provid-
ing a filename through the parameter RET_INT_K. K(τ)
and K ′(τ) are provided either through a text file, or, if
the (optional) parameter K_IN_HDF5 is set to 1, within
an hdf5 archive. The file format in both cases is similar
as for the hybridization function. The text file should
provide three columns. The first column is the time or
index (the actual value is ignored), the second column is
the tabulated value of K(τ) and the third column gives

4

the corresponding value of K ′(τ). Likewise, the array in
the hdf5 file should provide the Nτ+1 values of K and K ′

within the paths Ret_int_K forK(τ) and Ret_int_Kp for
K ′(τ). Note that there is no orbital dependence because
the retarded interaction couples to all orbitals equally.

In case of a retarded interaction, the Hartree self-
energy is given by

ΣH
i = −2K ′(0+)

∑
i

〈ni〉+
1

2

∑
j

Uij〈nj〉, (3)

so that in the particle-hole symmetric case an input
chemical potential to µ = −2K ′(0+) +

∑
j Uij/2 (which

is independent of i) will give a half-filled system. The
chemical potential is provided through the input param-
eters U and MU or input the corresponding input files.
The treatment of the retarded interaction requires the
static interaction and chemical potential to be shifted by
Uij → Uij − 2K ′(0) for i 6= j and µ→ µ+K ′(0), respec-
tively. This is done internally by the solver and does not
have to be done by the user. The shifted values will be
printed to screen as “effective” interaction and chemical
potential.

C. Orbital chemical potential / double counting
terms

In the simplest case, the level energies of all levels are
the same, and a parameter MU sets them to that value.
Note that in this code, there is no shift of the chemical
potential µ to half filling: For a single impurity Anderson
model with interaction U , half filling is at µ = U/2.

Double counting terms or crystal field splittings en-
ter the code as orbital-dependent chemical potentials.
They can be read in from a file, which is specified as
MU_VECTOR. In the file the level energies should be listed
consecutively, in the order of the orbitals. For example,
a two-orbital case with a small magnetic field H = 0.02,
half filled, for an interaction U = 4, could be specified
like this:

1.99 2.01

After reading the on-site level energy it is printed to the
standard output, as:

chemical potential with 2 orbitals:
1.99 2.01

The chemical potential can also be provided in the form
of an hdf5 archive. To this end, set MU_IN_HDF5=1. The
level energies should be stored in a single array in the file
path /MUvector, in the order of the orbitals.

D. General density-density interaction matrices

In the simplest case, repulsion terms are U . This is
the default case that is chosen if only the parameter U is
specified.

In multiorbital problems, more complicated interac-
tions are needed. In this case, the “orbital index” i,
which runs from 0 to Norb−1 used in the code represents
a combined spin-orbital index i = {σ,m}. For example,
for a model with two physical orbitals and two spins,
we have Norb = 4. The code in general makes no as-
sumption on the order of spins and physical orbitals. We
recommend ordering these as follows: 1 ↑, 1 ↓, 2 ↑, 2 ↓,
which correspond to orbital indices i = 0, 1, 2, 3, respec-
tively. The values of the interaction matrix can be spec-
ified in a file U_MATRIX, which has Norb × Norb entries
specifying the matrix elements Uij of the interaction term
1
2

∑
ij Uijninj .

To see how the interaction matrix for the above order-
ing is built consider the following Hamiltonian:

HU =
1

2
U
∑
m,σ

nmσnm,−σ (4)

+
1

2
U ′

∑
m6=m′,σ

nm,σnm′,−σ

+
1

2
(U ′ − J)

∑
m 6=m′,σ

nm,σnm′,σ,

Û =

 0 U U’-J U’
U 0 U’ U’-J
U’-J U’ 0 U
U’ U’-J U 0

 (5)

Choosing U = 4.0, U ′ = 3.6 and J = 0.2, the file
generating the interaction matrix of the example above
is:

0.0 4.0 3.4 3.6
4.0 0.0 3.6 3.4
3.4 3.6 0.0 4.0
3.6 3.4 4.0 0.0

After reading the interactions, they are printed to the
standard output like this:

U matrix with 4 orbitals:
0 4 3.4 3.6
4 0 3.6 3.4
3.4 3.6 0 4
3.6 3.4 4 0
chemical potential with 4 orbitals:
5.5 5.5 5.5 5.5

Since the above Hamiltonian is widely used, it is directly
into the code. To use it, simply specify the parameters
U ,U ′ and J in the input file: adding the block

U = 4
U’=3.6
J=0.2

produces the same output as above. For a single physi-
cal orbital, it reduces to the Hubbard interaction Un↑n↓.

5

Note that when using the built-in Hamiltonian, the order
of spins and orbitals is relevant and has to be chosen as
recommended above. For these interaction matrices, the
condition for half-filling reads µ1/2 = 1

2

∑
i Ûij (which is

independent of j). For the above example, µ1/2 = 5.5.
The interaction matrix will be read from an hdf5 archive
if UMATRIX_IN_HDF5=1. The N2

orb values should be stored
in the file path /Umatrix in a one-dimensional array,
where Uij is stored at position iNorb + j, i.e. elements
within a row are contiguous.

V. DETAILED PARAMETER DESCRIPTION

A. Mandatory parameters

The following parameters are required for any simu-
lation. The code will not work unless all of them are
provided.

• N_MEAS={natural number} specifies how many up-
dates need to be done between measurements. For
e.g. N_MEAS=50, 50 modifications of the Monte
Carlo configuration (such as segment insertions and
removals) are attempted between measurements.

• SWEEPS={natural number}is the total number of
Monte Carlo sweeps. A sweep consists of N_MEAS
attempted modifications of the Monte Carlo con-
figuration and a single the measurement of the ob-
servables. The code exits either after it has done
at least SWEEPS Monte Carlo sweeps or after the
maximum time has been reached.

• MAX_TIME={natural number} is the maximum run-
time of the code, in seconds.

• THERMALIZATION={natural number} is the number
of thermalization steps. These are steps that are
done at the beginning that are needed to reach the
equilibrium distribution.

• N_ORBITALS={natural number} is the number of
(spin-)orbitals. For the single impurity Anderson
model this is two (spin up and spin down), Cerium
would have 14.

• SEED={natural number} is the random number
seed.

• N_TAU={natural number} specifies the number Nτ
of τ -points on which the Green function is mea-
sured, and also indicates the number of τ -points
on which the hybridization function and the re-
tarded interaction are specified. The imaginary
time at index n is given by τn = nβ/Nτ , where
n = 0, . . . , Nτ , so that the first point (index n = 0)
specifies G(τ = 0), the last point (index n = Nτ
specifies G(τ = β). Note that the number of imag-
inary time points hence is Nτ + 1.

• N_HISTOGRAM_ORDERS={natural number} is the
maximum expansion order to which the order his-
togram is measured.

• DELTA={filename} specifies the name of the file
which contains the hybridization function input
data (in text format).

• MU={real number} is the chemical potential or level
energy for model Hamiltonians. On-site level ener-
gies can be specified differently (in particular in an
orbital dependent way, see section on double count-
ing). This parameter is ignored if a file with the
chemical potential values is specified using the pa-
rameter MU_VECTOR.

• U={real number} is the on-site interaction. In this
case it is a term

∑
i ni↑ni↓. As in the case of the

chemical potential, this can be chosen differently,
see section on double counting.

• BETA={real number} specifies the inverse tempera-
ture β = T−1.

B. Optional parameters

1. Physical parameters

These parameters are explained in Sec. IV D.

• J={real number} specifies the interaction parame-
ters J .

• U’={real number} specifies the interaction param-
eters U ′.

2. Measurement control parameters

The following optional parameters control the different
measurements implemented in the solver. For details on
those measurements, see Sec. VI.

• MEASURE_time={0,1} activates the Green’s func-
tion measurement in imaginary time. Note: This
measurement is turned on by default.

• MEASURE_freq={0,1} activates the Green’s func-
tion measurement on Matsubara frequencies. Re-
quires N_MATSUBARA.

• N_MATSUBARA={natural number} The number Nν
of (fermionic) Matsubara frequencies νn = (2n +
1)π/β. The Green’s function will be measured for
all frequencies with n = 0, . . . , Nν − 1.

• MEASURE_legendre={0,1} activates the measure-
ment of coefficients of Green’s function in the Leg-
endre polynomial basis. Requires N_LEGENDRE and
N_MATSUBARA.

6

• N_LEGENDRE={natural number} specifies the num-
ber of Legendre coefficients to be measured. Co-
efficiencts with indices l = 0, . . . , Nl − 1 will be
measured.

• MEASURE_nn={0,1} controls the measurement of
the equal-time density-density correlation function.

• MEASURE_nnt={0,1} turns on or off the measure-
ment of the time dependent density-density corre-
lation function. Requires N_nn.

• N_nn={natural number} specifies the number of
imaginary time points for which the density-density
correlation function is measured.

• MEASURE_g2w={0,1} turns on the measurement of
the two-particle Green’s function. Requires N_w2
and N_W.

• MEASURE_h2w={0,1} turns on the measurement of
the three-particle correlator H (see Sec.??). Re-
quires N_w2 and N_W.

• N_w2={natural number} specifies the number Ñν of
fermionic frequencies for the two-particle Green’s
function or the correlator H. These quantities
are measured for frequencies with indices n =
−Ñν/2, . . . , Ñν/2− 1.

• N_W={natural number} specifies the number Nω
of bosonic frequencies ωm = 2πm/β for the two-
particle Green’s function or the correlator H.
These quantities are measured for frequencies with
indices m = 0, . . . Nω − 1.

• MEASURE_nnw={0,1} turns on the measurement of
the susceptibility in frequency. Requires N_W.

• MEASURE_sector_statistics={0,1} controls the
measurement of the sector statistics.

3. Optional control parameters

• SPINFLIP={0,1} specifies whether to perform spin
flip updates. In such an update a segment is moved
from one orbital to another, if the latter is empty.

• COMPUTE_VERTEX={0,1} specifies whether the re-
ducible impurity vertex function should be calcu-
lated. This parameter requires MEASURE_g2w or
MEASURE_h2w or both be set to 1.

• TEXT_OUTPUT={0,1} specifies if the simulation re-
sults should be written to text-files in human-
readable format (in addition to the hdf5 output).

• VERBOSE={0,1} When turned on, some additional
information (e.g. which measurements are turned
on) is displayed when starting the simulation.

• OUTPUT_PERIOD={natural number} If VERBOSE=1,
it specifies the number of sweeps after which simu-
lation details of the master thread (acceptance ra-
tios etc.) are printed to stdout. The default value
is 100 000.

• DELTA_IN_HDF5={0,1} specifies whether the hy-
bridization function to be read from an hdf5
archive. The data must be stored in the path
/Delta. For details on the file format, see Sec.
IV A.

• MU_VECTOR={filename} specifies the file name for a
text file containing the orbital dependent chemical
potentials. The file format is such that the chemical
potentials for all orbitals are listed consecutively,
separated either by a space or a new line. If this
parameter is specified, the parameter MU is ignored.

• MU_IN_HDF5={0,1} specifies whether the chemical
potential should be read from an hdf5 archive. The
data must be stored in the path /MUvector as an
array of length Norb. See Sec. IV C for more infor-
mation.

• U_MATRIX={filename} specifies the file name for a
text file containing the interaction matrix. For the
file format, refer to Sec. IV D. If this parameter is
specified, the parameter U is ignored.

• UMATRIX_IN_HDF5={0,1} specifies whether the in-
teraction matrix should be read from an hdf5
archive. The data must be stored in the path
/Umatrix.For the file format, see Sec. IV D.

• RET_INT_K={filename} specifies the filename for
the retarded interaction function K. When speci-
fied, this feature is automatically turned on.

• K_IN_HDF5={0,1} forces the retarded interaction to
be read from an hdf5 archive. Overrides the file-
name given in RET_INT_K. The data must be stored
in the path /Ret_int_K. For the format, consult
Sec. IV B.

• BASENAME={name} changes the name of the output
file when the Python module is used. The file will
be called name.out.h5 .

VI. DETAILED DESCRIPTION OF
MEASUREMENTS

In this section, we describe the measurements sup-
ported by the code in detail. That is, we state what
is measured exactly, and give the precise definition of the
observable that we use, so that the code can be easily
integrated into your projects. We further give some rec-
ommendations on how to use these measurements.

All measurements except for the one for the imaginary-
time Green’s function are performed once after N_MEAS
attempted configuration changes.

7

A. Imaginary-time Green’s function

We define the imaginary time Green’s function as fol-
lows:

Gi(τ) := −〈Tτ ci(τ)c†i (0
+)〉 (6)

The code measures this function by binning it on an
equidistant grid on the interval [0, β] with the number
of bins Nτ specified by the parameter N_TAU. The corre-
sponding improved estimator

Fi(τ) := −1

2

∑
j

(Uij + Uji)〈Tτnj(τ)ci(τ)c†i (0
+)〉 (7)

is measured automatically. The bins of width β/Nτ
are centered around the equidistant grid points at τn =
nβ/Nτ . Hence τ0 = 0 and τNτ = β. Note that because
of this choice, the first and the last bin only have half the
width of a regular bin. As a consequence of the above
definition, the density is given by −G(β − 0+) = Gi(τ =

0−) = −〈Tτ ci(0−)c†i (0
+)〉 = +〈c†i (0+)ci(0

−)〉 = 〈c†i ci〉 =
〈ni〉.

This measurement is very efficient and the performance
of the algorithm is hardly influenced by number of bins,
which hence can be chosen large. We recommend to use a
number of bins of the order of at least ∼ 5βU . The mea-
surement is turned on by default, but can nevertheless
be turned off by setting MEASURE_time=0.

The raw data of the measurement is
stored in the hdf5 output file in the path
/simulation/results/g_i/mean/value, where i is
the orbital index. Note that the data at the interval
endpoints has less statistics because of the smaller
bin size. When using the raw data, the values at the
interval endpoints have to be multiplied by two (since
the effective bin size at the boundary is half of the
regular size) to get the correct value. The data for all
orbitals is stored in a single one-dimensional array, where
successive τ -points for a given orbital are consecutive in
memory. The Green’s function at time τn, n = 0, . . . , Nτ
and orbital i = 0, . . . , Norb−1 is hence stored at position
i(Nτ + 1) + n. During post processing, the data for
G(τ) is written to the path /G_tau/0/mean/value
for orbital 0 and likewise for the other orbitals in the
output file. The values at the interval endpoints are
thereby replaced by the corresponding values inferred
from the densities. When TEXT_OUTPUT=1, the processed
Green’s function data is written to a human-readable
text file Gt.dat, which allows for easy plotting, e.g. with
gnuplot. The first column is the imaginary time and
successive columns are listed in the order of the orbitals.

B. Frequency Space Measurements

The code measures the Fourier transform of Green’s
function

G(iνn) =

∫ β

0

dτG(τ)eiνnτ , (8)

where G(τ) is defined as in (6).
Measurements in frequency space are relatively ex-

pensive, as exp(iνn(τi − τj)) has to be evaluated at
each measurement for each pair of operators (values for
successive frequencies are generated by multiplication
of these exponentials). Frequency space measurements
are enabled by setting MEASURE_freq=1 and specifying
N_MATSUBARA=512 for Nν = 512 Matsubara frequencies.
The Green’s function is measured for frequencies νn with
indices n = 0, . . . , Nν − 1. The number of frequencies
compatible with our above recommendation for the num-
ber of time slices is Nν ∼ 5βU/2π.

The improved estimators Fi(iνn) described in Ref. 7
only cause a small overhead and are automatically mea-
sured (using the same definitions as given in that ref-
erence). The resulting F (iνn) and G(iνn), as well as
the self-energy Σ(iνn), are stored in the hdf5 file un-
der /G_omega, /F_omega, and /S_omega, respectively,
where the actual data is in the subpath /i/mean/value
for orbital i ∈ 0, . . . , Norb − 1. The data for each
of these quantities is stored in two-dimensional array
with dimensions NνNorb × 2. The index of the first
dimension specifies the location iNν + n of the com-
plex value for frequency νn and orbital i, and the sec-
ond index ({0, 1}) selects real or imaginary part. The
raw data for G(iνn) and F (iνn) is stored in path
simulation/results/<g/f>w_<re/im>_i, where, e.g.,
the subpath is gw_re_0 for the real part of G in orbital
0.

If text output is enabled (parameter TEXT_OUTPUT=1),
G, F , and Σ are also written to the text files Gw.dat,
Fw.dat, and Sw.dat, respectively, where the first column
is the Matsubara frequency and the i-th pair of columns
lists real and imaginary part of the i-th orbital.

C. Legendre Polynomial Measurements

The measurements can also be done using Legendre
polynomials – a method recently introduced by Boehnke
et al.8. The code measures the coefficients of the expan-
sion of Green’s function in terms of orthogonal Legendre
polynomials. These coefficients are defined as

Gl =

∫ β

0

dτG(τ)Pl(x(τ)) (9)

where x(τ) = 2τ/β − 1. Note that this definition for
the Legendre coefficients differs from the one in Ref. 8
by a factor

√
2l + 1, which we omit to save time dur-

ing the simulation and reintroduce during post process-
ing. Legendre measurements are enabled by specifying

8

MEASURE_legendre=1 and the number of Legendre coeffi-
cients Nl through N_LEGENDRE. The improved estimators
F 7 are measured automatically.

The raw data (i.e. the coefficients) for or-
bital i are stored in the hdf5 output file
in the path /simulation/results/gl_i and
/simulation/results/fl_i. The actual values
are stored in a one-dimensional array in the subpath
/mean/value. After the simulation, the quantities G(τ),
F (τ) as well as G(iνn), F (iνn) and Σ(iνn) are evalu-
ated from the Legendre coefficients and stored in the
paths G_l_tau, F_l_tau, G_l_omega, F_l_omega and
S_l_omega, respectively. The values actual in orbital
i are found within the one-dimensional array stored
in the subpath /i/mean/value. For the evaluation,
the number of imaginary time points and Matsubara
frequencies is determined from the parameters N_TAU
and N_MATSUBARA. If text output is enabled (parameter
TEXT_OUTPUT=1), G, F , and Σ are also written to the
text files Gtl.dat, Ftl.dat, Gwl.dat, Fwl.dat, and
Swl.dat.

This measurement yields comparatively smooth
curves, but as the results for different frequencies are
correlated a precise error estimate and accurate control
of the number of legendre coefficients considered is im-
portant.

The number of Legendre coefficients required for the
accurate representation of a given observable may depend
on the quantity under consideration and is difficult to in-
fer from looking at the coefficients themselves. Rather
one should analyze the dependence of a given observable
on the basis cutoff Nl. To this end, one can look at the
files Gl_conv.dat and Fl_conv.dat which are written
when text output is enabled. In the former, the Green’s
function at τ = 0 and τ = β/2 is written as a function
of the basis cutoff up to the maximum cutoff Nl. The
latter contains the same for the correlator F . To get a
feeling for the required cutoff, one should run a simu-
lation at the desired parameters with a large cutoff Nl
and plot the data in these files. For a converged calcula-
tion and sufficiently large Nl, one should see an extended
plateau, where the observable does not change as a func-
tion of the cutoff. For less coefficients, the expansion
is not converged and for a larger number, Monte Carlo
noise enters. The basis cutoff is well defined for an Nl
within the plateau.

Recently, it has been proposed to improve this method
by employing the Kernel polynomial method9. We do
not provide an implementation here. While the method
does damp spurious oscillations in the Green’s function,
it leads to rather large systematic errors in the moments.

D. Density

The densities are always measured. They are stored in
the hdf5 file in path /simulation/results/density_i.
If text output is enabled, they are written to the file

observables.dat.

E. Susceptibility – imaginary time

The time-dependent density-density correlation func-
tion, χij(τ) = 〈ni(τ)nj(0)〉, or susceptibility, is measured
by setting MEASURE_nnt=1. Only components with j ≤ i
are measured. The spin and charge susceptibilities can
be obtained as linear combinations of these correlation
functions. The number of imaginary time points can be
different from the one for Green’s function and has to be
specified through the mandatory parameter N_nn. The
imaginary-time grid is otherwise the same as for Green’s
function. Note however, that because of the way the al-
gorithm works, these functions are not binned, but mea-
sured exactly at the grid points. Hence the raw data does
not have to be rescaled at the interval endpoints (cf. Sec.
VI A). The raw data is stored in the hdf5 output file in
the path simulation/results/nnt_i_j, within the sub-
path /mean/value. It is additionally written to the path
/nnt_i_j without modification. When text output is en-
abled, the data is written to the text file nnt.dat for all
j ≤ i. The imaginary time is listed in column 1 and the
susceptibility χij(τ) resides in column 1 + j + 1

2 i(i+ 1),
i.e. χ00 column 1, χ10 in column 2 and χ11 in column 3,
etc. Alternatively to the imaginary time measurement,
the susceptibility can be measured directly in frequency
(see the following section).

F. Susceptibility – frequency

In the frequency measurement for the susceptibility,
the algorithm computes

χij(iωm) =

∫ β

0

dτχij(τ)eiωmτ (10)

where ωm = 2mπ/β. Note that this measurement does
not involve any time discretization. It is particularly use-
ful and fastest if only the static susceptibility χij(ω = 0)
is desired. In most cases, i.e. if the perturbation or-
der is not exceptionally large, it is still faster for a fi-
nite number of frequencies compared to the imaginary-
time measurement (using Nτ time points and an ”equiv-
alent“ number of frequency points Nω ∼ Nτ/2π, re-
spectively). Only the real part is measured, since the
function is symmetric around β/2. The measurement
is turned on with MEASURE_nnw=1. The number of
bosonic frequencies is determined by the (mandatory)
parameter N_W. Note that the same parameter deter-
mines the number of bosonic frequencies for measure-
ments of two-particle correlation functions (cf Sec. VI I).
The raw data is stored in the hdf5 output file in the
path simulation/results/nnw_re_i_j, within the sub-
path /mean/value. It is additionally written to the path
/nnw_re_i_j without modification. When text output is

9

enabled, the data is written to the text file nnw.dat for
all j ≤ i. The frequency is listed in column 1 and the
susceptibility χij(ω) resides in column 1 + j + i

2 (i+ 1).

G. Equal-time density-density correlation functions

The measurement for the density-density (equal-time)
correlation functions 〈ninj〉 is turned on by letting
MEASURE_nn=1. Although these are a special case of
the time-dependent correlation functions above, we pro-
vide a separate measurement. They are measured
for j < i only, because the operators commute,
〈ninj〉 = 〈njni〉, and 〈nini〉 = 〈n2i 〉 = 〈ni〉 would
yield the density. The raw data is stored in the path
/simulation/results/nn_i_j. No further post pro-
cessing occurs. When text output is enabled, the values
are appended to the file observables.dat.

H. Sector statistics measurement

The sector statistics give information on the fraction
of (imaginary) time the impurity spends in a given state.
The total number of possible states for this algorithm is
2Norb . We can represent any of these states in the form

|n0 = {0, 1}n1 = {0, 1} . . . nNorb−1 = {0, 1}〉 (11)

To be specific, for a two-orbital impurity, there are four
different states: The impurity can be unoccupied, which
corresponds to the state |00〉. Orbital 0 (spin up, say)
can be occupied while orbital 1 (spin down) is empty,
|10〉, or orbital 1 can be occupied with 0 being empty
|01〉. Finally, the impurity can be doubly occupied, i.e.
in state |11〉. The result of a calculation for such a system
at half-filling could look as follows:

#state |n_1={0,1} n_2={0,1} ...> n_i={0,1}: \
orbital i {empty,occupied}
#rel weight (in %)
0 18.9302 |00>
1 31.0485 |10>
2 31.0745 |01>
3 18.9467 |11>

To understand this, recall that in the atomic limit (no hy-
bridization), the energy is given by Un↑n↓ − µ(n↑ + n↓).
Hence, at half filling, where µ = U/2, the energy of the
singly occupied states is −µ and hence they are degen-
erate. The unoccupied and doubly occupied states are
degenerate as well, with energy 0 and U − 2µ = 0, re-
spectively. Hence their contributions should be equal
(within the Monte Carlo error). The singly occupied
states are lower in energy and so their contribution is
higher. Since the model is particle-hole symmetric, we
further know that the time spent in states |00〉 and |01〉
must be the same as for |10〉 and |11〉, which can read-
ily be seen from the data. The fraction the impurity

spends in state |11〉 corresponds to the integrated over-
lap and hence should be equal to the equal-time corre-
lation function 〈n↓n↑〉, as can be verified from the file
observables.dat (if MEASURE_nn=1):

n0=0.499892;
n1=0.500191;
n1n0=0.189423;

Note that the values are slightly different since they are
measured in different ways. They will converge to one
another as statistics is increased.

The data is stored in the hdf5 output file in the path
simulation/results/sector_statistics/mean/value
in a vector of length 2Norb . The position of a given state
in this vector is simply the decimal representation of
the binary number encoding the state, i.e. the state
|01〉 has the index 0 · 20 + 1 · 21 = 2. With text output
enabled, a file sector_statistics.dat as shown above
is produced.

I. Two-particle correlation functions

The use of two-particle correlation functions is gaining
importance. They are used for calculating lattice suscep-
tibilities within dynamical mean-field theory or novel di-
agrammatic extensions of DMFT. To meet these require-
ments, we provide a measurement for the two-particle
Green’s function:

G
(2)
ij (τa, τb, τc, τd) := 〈ci(τa)c†i (τb)cj(τc)c

†
j(τd)〉 (12)

where G
(2)
ij is a shorthand notation for G

(2)
iijj . As a result

of the fact that the hybridization is diagonal, the Green’s
function depends only on two independent orbital indices.
An annihilator on orbital i has to come in pair with a cre-
ator on the same orbital, otherwise the average is zero.

To generate the orbital combinations G
(2)
ijji, relations of

the form G
(2)
ijji(τa, τb, τc, τd) = −G(2)

iijj(τa, τd, τc, τb) can be

used (and the corresponding ones in frequency space).
These functions are measured only for j ≤ i, since mea-
suring this quantity with indices i and j interchanged
would yields exactly the same result, i.e. there is no gain
through averaging. The diagonal quantities (i = j) are
different for different orbitals even if they are degenerate
due to the sampling error, so that they can (and should)
be averaged if the orbitals are symmetry equivalent.

Due to time translational invariance, the function de-
pends on three independent time differences, or equiva-
lently three independent frequencies. Because of memory
restrictions, the actual measurement is performed in fre-
quency space, for which we use the following definition
of the Fourier transform:

G
(2)
ij (ν, ν′, ω) :=

1

β

∫ β

0

dτa

∫ β

0

dτb

∫ β

0

dτc

∫ β

0

dτd (13)

×G(2)
ij (τa, τb, τc, τd)

× ei(ν+ω)τae−iντbe−iν
′τce−i(ν

′+ω)τa

10

Here ν ≡ νn = (2n + 1)π/β and ν′ are fermionic fre-
quencies, whereas ω ≡ ωm = 2mπ/β is bosonic. The

number of fermionic frequencies N
(2)
ν is specified through

the parameter N_w2 and the number of bosonic ones
(Nω) through N_W (mind the capital “W”). The ver-
tex is measured for fermionic frequencies with indices
n = −Nν/2, . . . , Nν/2− 1 and indices m = 0, . . . Nω − 1
for the bosonic frequency. For negative bosonic fre-

quencies, the relation G
(2)
ij (ν, ν′,−ω) = G

(2)∗
ij (−ν,−ν′, ω)

holds.

The real and imaginary part of the two-particle Green’s
function are stored in the hdf5 output file in the path
simulation/results as g2w_re_i_j and g2w_im_i_j,
respectively (j ≤ i). The actual data is stored in

a one-dimensional array of dimension N
(2)
ν N

(2)
ν Nω in

the subpath /mean/value. The value corresponding
to frequencies νn, ν′n′ and ωm is stored at position

m(N
(2)
ν)2 + (n+N

(2)
ν /2)N

(2)
ν + (n′ +N

(2)
ν /2) (note that

n = −N (2)
ν /2, . . . , N

(2)
ν /2 − 1). When text output is en-

abled, the two-particle Green’s function is written to the

file g2w.dat. The format allows to easily plot the data
as a function of a single frequency using gnuplot, for ex-
ample:

gnuplot> p "<cat g2w.dat |grep ’wp: 1 ’|\
grep ’W: 1 ’| grep ’i: 0 j: 0’ " u 2:11 w lp

(note the whitespace in ’W: 1 ’). Column 11 is the real
part, column 12 the imaginary part.

Due to the possibly large number of observables (fre-
quencies) that have to be measured, this measurement
may significantly slow down the code, or even exceed
memory available to each process. In such cases, it may
be desirable to use additional symmetries, if present, or
altered frequency meshes. In addition, different meth-
ods may have different requirements and for these rea-
sons, it is impossible to provide a one-fits-all implemen-
tation. However, the advanced user may regard the func-
tion void hybridization::measure_G2w in the source
file hybmeasurements.cpp as an API and modify it ac-
cording to her needs.

The code may also be used to calculate the vertex func-
tion of the impurity model, which is defined as

γij(ν, ν
′, ω) =

G
(2)
ij (ν, ν′, ω)− β[Gi(ν + ω)Gj(ν

′)δω,0 − δijGi(ν + ω)G(ν′)δνν′]

Gi(ν + ω)Gi(ν)Gj(ν′)Gj(ν′ + ω)
. (14)

We provide the measurement of the correlation function

Ha
ij(τ1τ2τ3τ4) := 〈na(τ1)ci(τ1)c†i (τ2)cj(τ3)c†j(τ4)〉, (15)

which represents an improved estimator for the ver-
tex function7 and will be measured in frequency if
MEASURE_h2w is set to one. The vertex function is com-
puted during post processing, if COMPUTE_VERTEX=1. In
addition, the frequency measurement (MEASURE_freq)
and at least one of the measurements MEASURE_g2w or
MEASURE_h2w (or both) have to be turned on. The ver-
tex will be evaluated according to the data available.
Determining the vertex from G(2) only is least accu-
rate. Using G(2) and H is the most accurate. The ver-
tex may also be calculated from H only. This is some-
what less accurate, but saves a factor of 2 in memory.
The number of frequencies for the single-particle Green’s
function that enters Eq. (14), has to fulfill the relation

Nν ≤ N
(2)
ν + Nω − 1, otherwise the code will not work.

There are different ways to evaluate the vertex. Depend-
ing on which of the latter two measurements are turned
on, the method that yields the most accurate results
will be chosen. The function H is stored analogously
to the two-particle Green’s function, as h2w_re_i_j and
h2w_im_i_j, respectively and written to file h2w.dat
when text output is enabled. When evaluated, the ver-
tex function is written to the hdf5 output file in the path
/vertex_i_j in a two-dimensional array with dimensions

N
(2)
ν N

(2)
ν Nω×2. The index of the first dimension specifies

the postion m(N
(2)
ν)2 + (n+N

(2)
ν /2)N

(2)
ν + (n′+N

(2)
ν /2)

of the complex value for frequencies νn, ν′n′ and ωm and
the second index ({0, 1}) selects real or imaginary part.
With text output enabled. the vertex is written to the
file gammaw.dat, in the same format as the two-particle
Green’s function.

Note that this vertex function is the full (i.e. reducible)
vertex of the impurity model. If the irreducible or even
fully irreducible vertex is desired, this has to be obtained
by inverting a Bethe-Salpeter equation or from inverse
Parquet, respectively.

VII. DMFT – SPECIFYING A
SELF-CONSISTENCY

To run the impurity solver in a DMFT self-consistency,
the output G(τ) has to be input into a self-consistency
condition and a hybridization function ∆(τ) has to be
produced.10,11 In the simplest case, for a DMFT self-
consistency for the Bethe lattice with infinite coordi-
nation number (resulting in a semicircular density of
states), we obtain ∆(τ) = t2G(τ). Note that in our code,
both ∆ and G(τ) are negative for τ > 0. In practice,
more elaborate self-consistency conditions are almost al-
ways needed. Some of them are included in the ALPS
DMFT framework, but in general they are user provided.

11

A. ALPS DMFT framework

The hybridization solver is used in several ALPS tu-
torials, which illustrate the use of the solver with the
ALPS DMFT framework. This comprises the tutorials
in the following directories:

dmft-01-intro
dmft-02-hybridization
dmft-04-mott
dmft-05-osmt
dmft-06-paramagnet/hyb
dmft-08-lattices

within the tutorials subdirectory in the ALPS instal-
lation directory.

B. Python interface

Using alpspython together with the Python interface
of the solver (the cthyb Python module) provides a very
flexible framework for setting up any desired selfcon-
sistency scheme. The selfconsistency is thereby imple-
mented within a Python script which can be executed on
a parallel machine using MPI. Two examples are given
in the ALPS tutorials, i.e in the directories

/hybridization-02-retarded-interaction

and

/hybridization-03-spinfreezing

For how to run these tutorials, refer to Sec. III B.

VIII. SPECIFYING MEASUREMENTS

The following variables are measured by default:

• Sign: The Monte Carlo fermionic Sign.

• order_histogram_total: The histogram of ex-
pansion orders, containing all interaction vertices.

• order_histogram_i: with i from 0 to Norb−1: the
expansion order in each orbital

• density_i: density in orbital i, wiht i from 0 to
Norb − 1.

• g_i: with i from 0 to Norb − 1: Green’s function
in imaginary time, binned on N_TAU time slices be-
tween zero and β.

If the frequency measurement is enabled, the following
variables are measured in addition:

• gw_re_i: with i from 0 to Norb − 1: Green’s func-
tion in frequency, real part.

• gw_im_i: with i from 0 to Norb − 1: Green’s func-
tion in frequency, imaginary part.

• fw_re_i: with i from 0 to Norb− 1: F function for
improved estimators in frequency, real part.

• fw_im_i: with i from 0 to Norb− 1: F function for
improved estimators in frequency, imaginary part.

If the legendre measurement is enabled, the following
variables are measured in addition:

• gl_i: with i from 0 to Norb − 1: Legendre coeffi-
cients of Green’s function G.

• fl_i: with i from 0 to Norb − 1: Legendre coeffi-
cients of F function for improved estimators.

These observables are written into a hdf5
file after the simulation exits. The stan-
dard hdf5 tools, h5ls -r and h5dump or
h5dump -d /simulation/results/Sign/mean/value
will give their values.

For all available measurements, we refer the reader to
Sec. VI.

IX. ANALYSIS AND POST-PROCESSING

After the simulation exits, the simulation results have
to be read in and evaluated. This is best done using one
of the many hdf5 tools. The ALPS DMFT framework
provides access from C++, but Python tools (h5py and
similar) also work. The hybridization tutorials show how
to use the ALPS Python hdf5 interface. Typically, the
Green function, its error, and the densities need to be
read in and post-processed.

A. Elementary checks: Expansion order and Sign
problem

Each new run of the impurity solver should start with
a check of the expansion order and the error on it. Plot
the results of order_histogram_i including error bars.
Does the statistics look good? is the expansion order
reasonable? If there are degenerate orbitals, is their ex-
pansion order the same within error bars? For diagonal
hybridizations, the Monte Carlo sign problem should be
always one. As a rule of thumb: If your sign drops below
about 0.75, you have to be careful. If your sign is below
0.1, your results are most likely too noisy to be useful.

B. Further checks: Errors of Green functions

In a next step, extract the Green function from the
results and analyze them. Is the statistics good enough
for your purposes? Do the error bars make sense? If you
use h5py, you can extract the Green functions in τ from
an output file sim.h5 using

12

import h5py
h5_file = h5py.File("sim.h5", ’r’)
g_mean =h5_file["/simulation/results/\
g_0/mean/value"].value
g_error=h5_file["/simulation/results/\
g_0/mean/error"].value

Once you trust your Green functions, Fourier transform
to frequency and analyze the self energy (which will be
used in the self-consistency equations). The self energies
are very sensitive.

C. Fourier transforms and high frequency tails

To get smooth and correct behavior you may need to
use high frequency Fourier transform tricks (see e.g. the
review, Ref. 12). Further information can be found in
the references cited in the review chapter X.I.

D. Running MaxEnt

The Maximum entropy method, or MaxEnt, is used to
analytically continue imaginary frequency or imaginary
time data to the real axis to produce spectral functions
that are consistent with the imaginary time data within
statistical errors.13 ALPS provides an implementation of
a maximum entropy analytic continuation code. Note
that MaxEnt is completely uncontrolled: no reliable error
bars for the output exist. In addition, small differences in
the input data will cause large differences in the output.
Because of this, any conclusion drawn from continued
data needs to be backed up by data on the imaginary
axis, where error bars are available.

A correct error propagation that includes both the er-
rors and the covariance matrices of the Green’s function
is absolutely essential for reliable continuations. Addi-
tionally, it helps to continue the self-energies instead of
the Green’s functions14.

A tutorial for the ALPS maxent code will be provided
elsewhere. Fig. 1 shows a simple parameter file

X. SCALING – ACCESSIBLE PROBLEMS

The algorithm scales cubically in matrix size (expan-
sion order), and is therefore O(noβ

3) with a relatively
small (but complicated) dependence of U . Typically
problems with an expansion order of less than 400 per
orbital are easy to do.

XI. WHAT IS NOT POSSIBLE WITH THE
HYBRIDIZATION CODE

You cannot apply the code for calculations in the
atomic limit, i.e. for vanishing hybridization.

The following problems are not feasible at the moment:

1. Problems with non-diagonal hybridization func-
tions

2. Problems with general, non density-density inter-
actions

It is planned to extend the code to the first two types of
impurity problems. The second type of impurity prob-
lems may be considered at a later stage.

XII. LITERATURE AND FURTHER
INFORMATION

• Dynamical mean field theory: please have a look at
the original review10 and the review by Kotliar et
al.11. Introductory information can also be found
in Antoine George’s summer school lecture notes15.

• LDA+DMFT: Apart from Ref. 11, Refs. 16 and 17
are good places to start.

• Continuous-time methods: The review12, along
with summer school lecture notes18 and PhD
theses19 and the original literature.2,20,21

XIII. WHEN PROBLEMS APPEAR –
TROUBLESHOOTING

This code is still in beta stage and problems will ap-
pear. To report a problem please contact the ALPS user
mailing list or Emanuel via e-mail.

XIV. PUBLISHING – CITING THE ALPS
HYBRIDIZATION EXPANSION CODE

Citations are important for us – they mean that we
can justify investing time into the development of the
hybridization expansion code and other open source
projects. A paper should acknowledge the use of the
ALPS libraries, the use of the hybridization code, and
the original algorithm paper. A citation line could be:

Our simulations used an open source implementation3

of the hybridization expansion continuous-time quantum
Monte Carlo algorithm2 and the ALPS1 libraries.

Or, alternatively:
Our simulations used the ALPS open source hybridiza-

tion expansion code1–3.

mailto:gull@pks.mpg.de

13

N_ALPHA = 60 //the number of alphas between alpha min and max

ALPHA_MIN = 0.05 //smallest alpha value to be evaluated

ALPHA_MAX = 5 //largest alpha value to be evaluated

NORM = 1.0 //normalization of the function to be continued

OMEGA_MAX = 25 //frequency range, symmetric by default. specify omega_min otherwise

KERNEL = fermionic //Maxent kernel

BETA = 60.0 //inverse temperature

NFREQ = 2001 //number of output frequencies

NDAT = 512 //number of input data points

FREQUENCY_GRID = Lorentzian //frequency grid, e.g. Lorentzian, Linear, ...

DATASPACE =frequency //dataspace, e.g. imag time or frequency

MAX_IT = 2000 //number of iterations for iterative minimization procedure

DEFAULT_MODEL = "flat"

{

PARTICLE_HOLE_SYMMETRY = 1 //either the model is particle hole symmetric or not

X_0 = -1.58151510066 //data point X_0, here the lowest frequency point

X_1 = -1.19058822793

...etc...

X_511 = -0.0186270492461

SIGMA_0 = 0.00526104728966 //errors of X_0

SIGMA_1 = 0.00199036770537

...etc...

SIGMA_511 = 3.42643209543e-07

}

FIG. 1. A simple parameter file for the maxent code.

1 B. Bauer et al., Journal of Statistical Mechanics: Theory
and Experiment, 2011, P05001 (2011).

2 P. Werner, A. Comanac, L. de’ Medici, et al., Phys. Rev.
Lett., 97, 076405 (2006).

3 H. Hafermann, P. Werner, and E. Gull, Computer Physics
Communications, 184, 1280 (2013).

4 E. Gull, P. Werner, S. Fuchs, B. Surer, T. Pruschke, and
M. Troyer, Computer Physics Communications, 182, 1078
(2011), ISSN 0010-4655.

5 P. Werner and A. J. Millis, Physical Review Letters, 99,
146404 (2007).

6 P. Werner and A. J. Millis, Phys. Rev. Lett., 104, 146401
(2010).

7 H. Hafermann, K. R. Patton, and P. Werner, Phys. Rev.
B, 85, 205106 (2012).

8 L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann,
and O. Parcollet, Phys. Rev. B, 84, 075145 (2011).

9 L. Huang and L. Du, “Kernel polynomial representation of
imaginary-time green’s functions,” (2012), unpublished,
arXiv:1205.2791.

10 A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Rev. Mod. Phys., 68, 13 (1996).

11 G. Kotliar, S. Y. Savrasov, K. Haule, et al., Rev. Mod.
Phys., 78, 865 (2006).

12 E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov,
M. Troyer, and P. Werner, Rev. Mod. Phys., 83, 349
(2011).

13 M. Jarrell and J. E. Gubernatis, Physics Reports, 269, 133
(1996), ISSN 0370-1573.

14 X. Wang, E. Gull, L. de’ Medici, M. Capone, and A. J.
Millis, Phys. Rev. B, 80, 045101 (2009).

15 A. Georges, LECTURES ON THE PHYSICS OF HIGHLY
CORRELATED ELECTRON SYSTEMS VIII: Eighth
Training Course in the Physics of Correlated Electron Sys-
tems and High-Tc Superconductors, 715, 3 (2004).

16 K. Held, I. A. Nekrasov, G. Keller, V. Eyert, N. Bluemer,
A. K. McMahan, R. T. Scalettar, T. Pruschke, V. I. Anisi-
mov, and D. Vollhardt, Phys. Status Solidi, 243, 2599
(2006).

17 K. Held, Advances in Physics, 56, 829 (2007).
18 P. Werner, Lecture notes for the International Summer

School on Numerical Methods for Correlated Systems in
Condensed Matter, Sherbrooke, Canada (2008).

19 E. Gull, Continuous-time quantum Monte Carlo algorithms
for fermions, Ph.D. thesis, ETH Zurich (2008).

20 A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys.
Rev. B, 72, 035122 (2005).

21 A. N. Rubtsov and A. I. Lichtenstein, JETP Letters, 80,
61 (2004).

http://stacks.iop.org/1742-5468/2011/i=05/a=P05001
http://stacks.iop.org/1742-5468/2011/i=05/a=P05001
http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://www.sciencedirect.com/science/article/pii/S0010465512004092
http://www.sciencedirect.com/science/article/pii/S0010465512004092
http://dx.doi.org/DOI: 10.1016/j.cpc.2010.12.050
http://dx.doi.org/DOI: 10.1016/j.cpc.2010.12.050
http://dx.doi.org/10.1103/PhysRevLett.99.146404
http://dx.doi.org/10.1103/PhysRevLett.99.146404
http://dx.doi.org/10.1103/PhysRevLett.104.146401
http://dx.doi.org/10.1103/PhysRevLett.104.146401
http://dx.doi.org/10.1103/PhysRevB.85.205106
http://dx.doi.org/10.1103/PhysRevB.85.205106
http://dx.doi.org/10.1103/PhysRevB.84.075145
http://arxiv.org/abs/1205.2791
http://arxiv.org/abs/1205.2791
http://arxiv.org/abs/1205.2791
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1016/0370-1573(95)00074-7
http://dx.doi.org/10.1016/0370-1573(95)00074-7
http://dx.doi.org/10.1103/PhysRevB.80.045101
http://dx.doi.org/10.1063/1.1800733
http://dx.doi.org/10.1063/1.1800733
http://dx.doi.org/10.1063/1.1800733
http://dx.doi.org/10.1063/1.1800733
http://dx.doi.org/10.1002/pssb.200642053
http://dx.doi.org/10.1002/pssb.200642053
http://dx.doi.org/10.1080/00018730701619647
http://dx.doi.org/10.3929/ethz-a-005722583
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1134/1.1800216
http://dx.doi.org/10.1134/1.1800216

	Documentation – Hybridization Expansion CT-QMC solver version 3.0b1
	Abstract
	Introduction
	Prerequisites
	Downloading
	Building

	Running the hybridization code
	Using the standalone executable
	Specifying a parameter file
	Running the solver

	Python interface

	Detailed input description
	Hybridization function
	Retarded interaction function
	Orbital chemical potential / double counting terms
	General density-density interaction matrices

	Detailed parameter description
	Mandatory parameters
	Optional parameters
	Physical parameters
	Measurement control parameters
	Optional control parameters

	Detailed description of measurements
	Imaginary-time Green's function
	Frequency Space Measurements
	Legendre Polynomial Measurements
	Density
	Susceptibility – imaginary time
	Susceptibility – frequency
	Equal-time density-density correlation functions
	Sector statistics measurement
	Two-particle correlation functions

	DMFT – Specifying a self-consistency
	ALPS DMFT framework
	Python interface

	Specifying measurements
	Analysis and Post-Processing
	Elementary checks: Expansion order and Sign problem
	Further checks: Errors of Green functions
	Fourier transforms and high frequency tails
	Running MaxEnt

	Scaling – accessible problems
	What is NOT possible with the hybridization code
	Literature and Further Information
	When Problems Appear – Troubleshooting
	Publishing – Citing the ALPS hybridization expansion code
	References

