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Abstract

ML is a multigrid preconditioning package intended to solve linear systems of equations Az = b
where A is a user supplied n X n sparse matrix, b is a user supplied vector of length n and x is a vector
of length n to be computed. ML should be used on large sparse linear systems arising from partial
differential equation (PDE) discretizations. While technically any linear system can be considered, ML
should be used on linear systems that correspond to things that work well with multigrid methods
(e.g. elliptic PDEs). ML can be used as a stand-alone package or to generate preconditioners for a
traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with
the AZTEC 2.1 and AzTECOO iterative packages [20]. However, other solvers can be used by supplying
a few functions.

This document describes one specific algebraic multigrid approach: smoothed aggregation. This
approach is used within several specialized multigrid methods: one for the eddy current formulation
for Maxwell’s equations, and a multilevel and domain decomposition method for symmetric and non-
symmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dy-
namics problems). Other methods exist within ML but are not described in this document. Examples
are given illustrating the problem definition and exercising multigrid options.
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1 Notational Conventions

In this guide, we show typed commands in this font:
% a_really_long_command

The character % indicates any shell prompt!. Function names are shown as ML_Gen_Solver.
Names of packages or libraries as reported in small caps, as EPETRA. Mathematical entities
are shown in italics.

2 Overview

This guide describes the use of an algebraic multigrid method within the ML package. The
algebraic multigrid method can be used to solve linear system systems of type

Ar =b (1)

where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and
x is a vector of length n to be computed. ML is intended to be used on (distributed) large
sparse linear systems arising from partial differential equation (PDE) discretizations. While
technically any linear system can be considered, ML should be used on linear systems that
correspond to things that work well with multigrid methods (e.g. elliptic PDEs).

The ML package is used by creating a ML object and then associating a matrix, A, and
a set of multigrid parameters which describe the specifics of the solver. Once created and
initialized, the ML object can be used to solve linear systems.

This manual is structured as follows. Multigrid and multilevel methods are briefly re-
called in Section 3. A quick start is reported in Section 4. The process of configuring and
building ML is outlined in Section 5. Section 6 shows the basic usage of ML as a black-
box preconditioner for EPETRA matrices. The definition of (parallel) preconditioners using
ML _Epetra::MultiLevelPreconditioner is detailed. This class only requires the linear system
matrix, and a list of options. Available parameters for ML_Epetra::MultiLevel Preconditioner
are reported in Section 6.4. Section 7 reports how to use the Maxwell solvers of ML. More
advanced uses of ML are presented in Section 8. Here, we present how to define and
fine-tune smoothers, coarse grid solver, and the multilevel hierarchy. Multigrid options are
reported in Section 9. Smoothing options are reported in Section 10, where we also present
how to construct a user’s defined smoother. Advanced usage of ML with EPETRA objects
is reported in Section 11. Section 12 reports how to define matrices in ML format without
depending on EPETRA.

3 Multigrid Background

A brief multigrid description is given (see [4], [10], or [11] for more information). A multigrid
solver tries to approximate the original PDE problem of interest on a hierarchy of grids and
use ‘solutions’ from coarse grids to accelerate the convergence on the finest grid. A simple
multilevel iteration is illustrated in Figure 1. In the above method, the S}()’s and SZ()’s

1For simplicity, commands are shown as they would be issued in a Linux or Unix environment. Note, however, that ML
has and can be built successfully in a Windows environment.



/*Solve A u =D (k is current grid level) */
proc multilevel(Ay, b, u, k)
u = Sp(Ag, b, u);
if ( k # Nlevel — 1)
Py, = determine_interpolant( Ay );
= PT(b— Apu) ;
A1 = PP AP v =0;
multilevel(/ikﬂ, 7,0,k + 1);
u=u+ P v;
u = S%(Ak,b,u);

Figure 1: High level multigrid V cycle consisting of ‘Nlevel’ grids to solve (1), with 4y = A.

are approximate solvers corresponding to k steps of pre and post smoothing, respectively.
These smoothers are discussed in Section 9. For now, it suffices to view them as basic it-
erative methods (e.g. Gauss-Seidel) which effectively smooth out the error associated with
the current approximate solution. The P;’s (interpolation operators that transfer solutions
from coarse grids to finer grids) are the key ingredient that are determined automatically by
the algebraic multigrid method?. For the purposes of this guide, it is important to under-
stand that when the multigrid method is used, a hierarchy of grids, grid transfer operators
(Py), and coarse grid discretizations (Ay) are created. To complete the specification of the
multigrid method, smoothers must be supplied on each level. There are several smoothers
within ML or an iterative solver package can be used, or users can write their own smoother
(see Section 9).

4 Quick Start

This section is intended for the impatient user. It’s assumed that you’ve already have a local
copy of TRILINOS®. Using the instructions here, your build of TRILINOS will have the fol-
lowing libraries: AzTECOO, EPETRA, EPETRAEXT, IFPACK, LOCA, ML, NEW_PACKAGE,
NOX, AMESOS and TEUCHOS.

1. cd into the TRILINOS directory.

2. Make a build directory, e.g., mkdir sandbox.
3. cd sandbox.

4. Configure TRILINOS:

(a) ../configure --enable-teuchos --enable-amesos --enable-aztecoo --enable-epetra
if you do not want to use MPI.

(b) ../configure --enable-teuchos
--enable-amesos --enable-aztecoo --enable-epetra --with-mpi-compilers=/usr/loca
(or wherever your MPI compilers are located) to use MPI.

2The P}’s are usually determined as a preprocessing step and not computed within the iteration.
3Please refer to the web page http://trilinos.sandia.gov to know how to obtain a copy of TRILINOS.



5. Build TRILINOS: make.*

6. If your build finished without errors, you should see the directory
Trilinos/sandbox/packages/, with subdirectories below that for each individual
library. ML’s subdirectory, ml, should contain files config.log, config.status,
Makefile, and Makefile.export, and directories src and examples. Directory src
contains object files and 1ibml .a. Directory examples contains executables with exten-
sion .exe, symbolic links to the corresponding source code, and object files. Directory
test is intended primarily for developers and can be ignored.

7. Look in Trilinos/sandbox/packages/ml/examples for examples of how to use ML.
File Trilinos/packages/ml/examples/README suggests how to use the examples.

5 Configuring and Building ML

ML is configured and built using the GNU autoconf [8] and automake [9] tools. It can
be configured and build as a standalone package without or with AZTEC 2.1 support (as
detailed in Section 5.1 and 5.2), or as a part of the TRILINOS framework [12] (as described
in Section 5.3). Even though ML can be compiled and used as a standalone package, the
recommended approach is to build ML as part of the TRILINOS framework, as a richer set
of features are then available.

ML has been configured and built successfully on a wide variety of operating systems,
and with a variety of compilers (as reported in Table 1).

Operating System Compilers(s)

Linux GNU, Intel, Portland Group
MAC OS X GNU

IRIX N32, IRIX 64, HPUX, Solaris, DEC native

ASC Red Storm native and Portland Group
Windows Microsoft and Cygwin

Table 1: Main operating systems and relative compilers supported by ML.

Although it is possible to configure directly in the ML home directory, we strongly advise
against this. Instead, we suggest working in an independent directory and configuring and
building there.

5.1 Building in Standalone Mode

To configure and build ML as a standalone package without any AZTEC support, do the
following. It’s assumed that the shell variable $ML_HOME identifies the ML directory.

% cd $ML_HOME
% mkdir standalone
% cd standalone

41If you are using GNU’s make on a machine with more than one processor, then you can speed up the build with make -j
XX, where XX is the number of processors. You can also reduce the size of the link lines with the option --with-gnumake.



% $ML_HOME/configure --disable-epetra --disable-aztecoo \
—--prefix=$ML_HOME/standalone

% make

% make install

The ML library file 1ibml.a and the header files will be installed in the directory specified
in —-prefix.

5.2 Building with AZTEC 2.1 Support

To enable the supports for AzTEC 2.1, ML must be configured with the options reported
in the previous section, plus -—with-ml_aztec2_1 (defaulted to no).
All of the AzTEC 2.1 functionality that ML accesses is contained in the fileml_aztec_utils.c.

In principal by creating a similar file, other solver packages could work with ML in the same
way. For the AZTEC users there are essentially three functions that are important. The
first is AZ_ML_Set_Amat which converts AZTEC matrices into ML matrices by making ap-
propriate ML calls (see Section 12.1 and Section 12.2). It is important to note that when
creating ML matrices from AZTEC matrices information is not copied. Instead, wrapper
functions are made so that ML can access the same information as AZTEC. The second
is ML_Gen_SmootherAztec that is used for defining AZTEC iterative methods as smoothers
(discussed in Section 9. The third function, AZ_set_ML_preconditioner, can be invoked to
set the AZTEC preconditioner to use the multilevel “V’ cycle constructed in ML. Thus, it
is possible to invoke several instances of AZTEC within one solve: smoother on different
multigrid levels and/or outer iterative solve.

5.3 Building with TRILINOS Support (RECOMMENDED)

We recommend to configure and build ML as part of the standard TRILINOS build and
configure process. In fact, ML is built by default if you follow the standard TRILINOS con-
figure and build directions. Please refer to the TRILINOS documentation for information
about the configuration and building of other TRILINOS packages.

To configure and build ML through TRILINOS, you may need do the following (actual
configuration options may vary depending on the specific architecture, installation, and
user’s need). It’s assumed that shell variable $TRILINOS_HOME (here introduced for the
sake of simplicity only) identifies the TRILINOS directory, and, for example, that we are
compiling under LINUX and MPI.

% cd $TRILINOS_HOME

% mkdir LINUX_MPI

% cd LINUX_MPI

% $TRILINOS_HOME/configure \
--enable-teuchos \
--enable-amesos \
--with-mpi-compilers \
—-prefix=$TRILINOS_HOME/LINUX_MPI

% make

% make install
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If required, other TRILINOS and ML options can be specified in the configure line. A
complete list of ML options is given in Section 5.3.1 and 5.3.2. You can also find a complete
list and explanations by typing ./configure --help in the ML home directory.

5.3.1 Enabling Third Party Library Support

ML can be configured with the following third party libraries (TPLs): SuperLU, Su-
PERLU _DIST, PARASAILS, ZOLTAN, METIS, and PARMETIS. It can take advantage of
the following TRILINOS packages: IFPACK, TEUCHOS, TRIUTILS, AMESOS, EPETRAEXT.
Through AMESOS, ML can interface with the direct solvers KLu, UMFPACK, SUPERLU,
SUPERLU_DIST?, MUMPS. It is assumed that you have already built the appropriate li-
braries (e.g., libsuperlu.a) and have the header files. To configure ML with one of the
above TPLs, you must enable the particular TPL interface in ML.

The same configure options that enable certain other Trilinos packages also enable the
interfaces to those packages within ML.

-—enable-epetra Enable support for the EPETRA package. (Rec-
ommended)

--enable-epetraext Enable support for the EPETRAEXT package.
(Recommended)

--enable-aztecoo Enable support for the AzTECOO package.
(Recommended)

--enable-amesos Enables support for the AMESOS package.

AMESOS is an interface with several direct
solvers. ML supports UMFPACK [6], KLU, SU-
PERLU DIST (1.0 and 2.0), Muwmps [1]. This
package is necessary to use the AMESOS inter-
face to direct solvers. (Recommended)

--enable-teuchos Enables support for the TEUCHOS pack-
age. This package is necessary to use the
ML _Epetra::MultiLevel Preconditioner class.
(Recommended)

--enable-triutils Enables support for the TRIUTILS package.
ML uses TRIUTILS in some examples and tests
to create the linear system matrix.

-—enable-galeri Enables support for the GALERI package.
ML uses GALERI in some examples and tests
to create the linear system matrix.

--enable-ifpack Enable support for the IFPACK package [13], to
use IFPACK factorizations as smoothers for ML.

5Currently, ML can support SUPERLU_DIST directly (without AMESOS support), or through AMESOS.
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To know whether the -—enable-package options below reported are enabled or disabled
by default®, please consult the configure at the Trilinos level by typing

$TRILINOS_HOME/configure --help

The following configure line options enable interfaces in ML to certain TPLs. By default,
all the ——with-m1_TPL options are disabled. For the most up-to-date list, please type
configure --help at the ML package level.

--with-ml _parasails Enables interface for PARASAILS [5].
--with-ml metis Enables interface for METIS [17].

--with-ml parmetis2x Enables interface for PARMETIS, version 2.x.
--with-ml_parmetis3x Enables interface for PARMETIS [16], version
3.2.

--with-ml superlu Enables ML’s direct interface for serial SuU-
PERLU [7] 1.0. This interface is deprecated in
favor of the AMESOS interface. Note: you

cannot configure ML with both this option and
-—enable-amesos.

--with-ml_superlu?2 Enables ML’s direct interface for serial SuU-
PERLU [7] 2.0. This interface is deprecated in
favor of the AMESOS interface. Note: you
cannot configure ML with both this option and
--enable-amesos.

--with-ml _superlu dist Enables ML interface for SUPERLU_DIST [7].
This interface is deprecated in favor of the AME-
sos interface. Note: you cannot configure ML
with both this option and --enable-amesos.

If one of the above options is enabled, then the user must specify the location of the
header files, with the option

--with-incdirs=<include-locations>

(Header files for TRILINOS libraries are automatically located if ML is built through the
TRILINOS configure.) In order to link the ML examples, the user must indicate the
location of all the enabled packages’ libraries , with the option

--with-1ldflags="<lib-locations>"
--with-1ibs="<1lib-1ist>"

The user might find useful the option

--disable-examples

SThis refers to configurations from the Trilinos top level (that is, using $TRILINOS_HOME/configure). If ML if configured
from the ML level (that is, the user directly calls $ML_HOME/configure), then all the -—enable-package are off by default.

12



which turns off compilation and linking of all Trilinos examples, or
--disable-ml-examples

which turns off compilation and linking of ML examples.

Here is an example configure line, where METIS, PARMETIS, ZOLTAN, and SUPERLU are

all used:

./configure --with-mpi-compilers="/usr/local/mpich/bin" CXXFLAGS="-03" CFLAGS="-03"
FFLAGS="-03" --cache-file=config.cache --with-gnumake --with-ml metis --with-ml_zoltan
--with-ml parmetis3x --with-1ldflags="-L/usr/local/superlu-3.0/1ib -L/usr/local/parmetis
-L/usr/local/zoltan/1lib" --with-libs="-1lsuperlu -lparmetis -lmetis -lzoltan"
--with-incdirs="-I/usr/local/superlu-3.0/SRC -I/usr/local/parmetis-3.1 -I/usr/local/par
-I/usr/local/parmetis-3.1/ParMETISLib -I/usr/local/zoltan/include"

More details about the installation of TRILINOS can be found at the TRILINOS web site,

http://trilinos.sandia.gov
and [19, Chapter 1].

5.3.2 Enabling Profiling

All of the options below are disabled by default.
-—enable-ml_timing This prints out timing of key ML routines.

--enable-ml flops This enables printing of flop counts.

Timing and flop counts are printed when the associated object is destroyed.

5.3.3 Linking to ML

The most typical usage of ML is as a solver or preconditioner within an application. ML
provides an easy facility for ensuring that the proper header and library files are available for
compilation and linking. The ML build directory contains the file Makefile.export.ml. (If
Trilinos has been installed, this file will be in the installation directory.) Makefile.export.ml
should be included in application Makefiles, Makefile.export.ml defines two macros,
ML_LIBS and ML_INCLUDES, that contain all of ML’s library and include dependencies, re-
spectively. Additionally, the macro HAVE_CONFIG_H must be defined. Here is an example of
how to build an sample code that used ML has a third-party library:

include ${ROOT_OF_TRILINOS_BUILD}/packages/ml/Makefile.export.ml

flowCode.exe: flowCode.o
g++ —o flowCode.exe flowCode.o ${ML_LIBS}

flowCode.o: flowCode.cpp
g++ -c -DHAVE_CONFIG_H ${ML_INCLUDES} flowCode.c

13



6 ML and Epetra: Getting Started with the MultiLevelPrecon-
ditioner Class

In this Section we show how to use ML as a preconditioner to EPETRA and AZTECOO through
the MultiLevelPreconditioner class. This class is derived from the Epetra_RowMatrix class,
and is defined in the ML_Epetra namespace.

The MultiLevelPreconditioner class automatically constructs all the components of the
preconditioner, using the parameters specified in a TEUCHOS parameter list. The construc-
tor of this class takes as input an Epetra_.RowMatrix pointer” and a TEUCHOS parameter
list®.

In order to compile, it may also be necessary to include the following files: m1_config.h
(as first ML include), Epetra_ConfigDefs.h (as first EPETRA include), Epetra_RowMatrix.h,
Epetra_MultiVector.h, Epetra_LinearProblem.h, and Aztec00.h. Check the EPETRA
and AZTECOO documentation for more details. Additionally, the user must include the
header file "m1_MultilLevelPreconditioner.h". Also note that the macro HAVE_CONFIG_H
must be defined either in the user’s code or as a compiler flag.

6.1 Example 1: ml_preconditioner.cpp

We now give a very simple fragment of code that uses the MultiLevelPreconditioner. For the
complete code, see $ML_HOME/examples/BasicExamples/ml_preconditioner.cpp. The
linear operator A is derived from an Epetra_RowMatrix, Solver is an AztecOO object, and
Problem is an Epetra_LinearProblem object.

#include "ml_include.h"
#include "ml_MultilevelPreconditioner.h"
#include "Teuchos_ParameterList.hpp"

Teuchos: :ParameterlList MList;

// set default values for smoothed aggregation in MLList
ML_Epetra::SetDefaults("SA" ,MLList);

// overwrite with user’s defined parameters
MLList.set("max levels",6);

MLList.set("increasing or decreasing","decreasing");
MLList.set("aggregation: type", "MIS");
MLList.set("coarse: type","Amesos-KLU");

// create the preconditioner

"Note that not all Epetra matrices can be used with ML. Clearly, the input matrix must be a square matrix. Besides, it
is supposed that the OperatorDomainMap(), the OperatorRangeMap() and the RowMatrixRowMap() of the matrix all coincide,
and that each row is assigned to exactly one process.

8In order to use the MultiLevelPreconditioner class, ML must be configured with options -enable-epetra
--enable-teuchos.
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ML_Epetra: :MultilLevelPreconditioner* MLPrec =
new ML_Epetra::MultilevelPreconditioner(A, MLList, true);

// create an Aztec00 solver
Aztec00 Solver(Problem)

// set preconditioner and solve
Solver.SetPrecOperator (MLPrec) ;
Solver.SetAztecOption(AZ_solver, AZ_gmres);
Solver.Iterate(Niters, le-12);

delete MLPrec;

A MultiLevelPreconditioner may be defined as follows. First, the user defines a TEU-
cHOS parameter list?. Table 2 briefly reports the most important methods of this class.

set (Name,Value) Add entry Name with value and type specified by Value. Any
C++ type (like int, double, a pointer, etc.) is valid.

get (Name,DefValue) Get value (whose type is automatically specified by DefValue). If
not present, return DefValue.

subList (Name) Get a reference to sublist List. If not present, create the sublist.

Table 2: Some methods of Teuchos::ParameterList class.

Input parameters are set via method set (Name,Value), where Name is a string contain-
ing the parameter name, and Value is the specified parameter value, whose type can be
any C++ object or pointer. A complete list of parameters available for class MultiLevel-
Preconditioner is reported in Section 6.4. Automatic selection of defaults is discussed in
Section 6.5. In particular, the ML_Epetra: :SetDefaults command sets multigrid defaults
for specific problem or solution types (e.g. classic smoothed aggregation for positive-definite
systems or a variant more suitable for highly nonsymmetric systems.).

The parameter list is passed to the constructor, together with a pointer to the matrix,
and a boolean flag. If this flag is set to false, the constructor will not create the multilevel
hierarchy until when MLPrec->ComputePreconditioner () is called. The hierarchy can be
destroyed using MLPrec->DestroyPreconditioner ()!°. For instance, the user may define
a code like:

// A is still not filled with numerical values
ML_Epetra: :MultiLevelPreconditioner* MLPrec =
new ML_Epetra::MultilevelPreconditioner(A, MLList, false);

// compute the elements of A

9See the TEUCHOS documentation for a detailed overview of this class.

10We suggest to always create the preconditioning object with new and to delete it using delete. Some MPI calls occur in
DestroyPreconditioner(), so the user should not call MPI_Finalize() or delete the communicator used by ML before the
preconditioning object is destroyed.
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// now compute the preconditioner
MLPrec->ComputePreconditioner() ;

// solve the linear system

// destroy the previously define preconditioner, and build a new one
MLPrec->DestroyPreconditioner () ;

// re-compute the elements of A

// now re-compute the preconditioner, using either
MLPrec->ComputePreconditioner() ;

// or

MLPrec->ReComputePreconditioner();
// re-solve the linear system

// .. finally destroy the object
delete MLPrec;

In this fragment of code, the user defines the ML preconditioner, but the preconditioner
is created only with the call ComputePreconditioner (). This may be useful, for exam-
ple, when ML is used in conjunction with nonlinear solvers (like Nox [18]). Method
ReComputePreconditioner () can be used to recompute the preconditioner using already
available information about the aggregates. ReComputePreconditioner() reuses the al-
ready computed tentative prolongator, then recomputes the smoothed prolongators and the
other components of the hierarchy, like smoothers and coarse solver!!.

6.2 Example 2: ml_2level DD.cpp

In the second example, a two level domain decomposition preconditioner is constructed.
The coarse space is defined using aggregation. It is worthwhile to compare the parameters
selected here to the default parameters stated in Table 6.

File $ML_HOME/examples/TwolLevelDD/ml 2level DD.cpp reports the entire code. In
the example, the linear system matrix A, is an Epetra_CrsMatrix corresponding to the
discretization of a Laplacian on a 2D Cartesian grid. The solution vector and right-hand
side are x and b respectively.

The AztecOO linear problem is defined as

Epetra_LinearProblem problem(&A, &x, &b);
Aztec00 solver(problem);

We create the TEUCHOS parameter list as follows:

ParameterList MLList;
ML_Epetra::SetDefaults("DD", MLList);
MLList.set("max levels",2);

Note that the hierarchy produced by ReComputePreconditioner() can differ from that produced by
ComputePreconditioner () for non-zero threshold values.
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MLList.set("increasing or decreasing","increasing");

MLList.set("aggregation: type", "METIS");
MLList.set("aggregation: nodes per aggregate", 16);
MLList.set("smoother: pre or post", "both");
MLList.set("coarse: type","Amesos-KLU");
MLList.set("smoother: type", "Aztec");

The last option tells ML to use the AZTEC preconditioning function as a smoother. All
AZTEC preconditioning options can be used as ML smoothers. AZTEC requires an integer
vector options and a double vector params. Those can be defined as follows:

Teuchos: :RCP<vector<int>> options = rcp(new vector<int>(AZ_0OPTIONS_SIZE));
Teuchos: :RCP<vector<double>> params = rcp(new vector<double>(AZ_PARAMS_SIZE));
AZ_defaults(options,params);

AZ_defaults(&(*xoptions) [0],& (*params) [0]);

(xoptions) [AZ_precond] = AZ_dom_decomp;

(*options) [AZ_subdomain_solve] = AZ_icc;

MLList.set("smoother: Aztec options", options);
MLList.set("smoother: Aztec params", params);

The last two commands set the TEUCHOS reference-counted pointers, options and params,
in the parameter list.
The ML preconditioner is created as in the previous example,

ML_Epetra: :MultiLevelPreconditioner* MLPrec =
new ML_Epetra::MultilevelPreconditioner(A, MLList, true);

and we can check that no options have been misspelled, using
MLPrec->PrintUnused() ;
The AztecOO solver is called using, for instance,

solver.SetPrecOperator (MLPrec) ;
solver.SetAztecOption(AZ_solver, AZ_cg_condnum);
solver.SetAztecOption(AZ_kspace, 160);
solver.Iterate(1550, 1e-12);

Finally, some (limited) information about the preconditioning phase are obtained using
cout << MLPrec->GetOutputList();

Note that the input parameter list is copied in the construction phase, hence later changes
to MLList will not affect the preconditioner. Should the user need to modify parameters
in MLPrec’s internally stored parameter list, he or she can get a reference to the internally
stored list:

ParameterList& List = MLPrec->GetList();

and then directly modify List. Method GetList () should be used carefully, as a change
to List may modify the behavior of MLPrec.
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Uncoupled

MIS

Uncoupled-MIS

METIS

ParMETIS

VBMETIS

Attempts to construct aggregates of optimal size (37 nodes in d
dimensions). Each process works independently, and aggregates
cannot span processes.

Uses maximal independent set technique [21] to define aggregates.
Aggregates can span processes. May provide better quality aggre-
gates than uncoupled, but computationally more expensive be-
cause it requires matrix-matrix product.

Uses Uncoupled for all levels until there is 1 aggregate per pro-
cessor, then switches over to MIS.

Use graph partitioning algorithm to create aggregates, working
process-wise. Number of nodes in each aggregate is specified
with option aggregation: nodes per aggregate. Requires
-—-with-ml metis

As METIS, but partition global graph. Requires
--with-ml_parmetis2x or --with-ml_parmetis3x. Aggre-
gates can span arbitrary number of processes. Specify global
number of aggregates with aggregation: global number.

As METIS, but for matrices with nonconstant nodal block size. The
appearing maximum number of degrees of freedom per nodal block
is specified in PDE equations. Additional information on layout
of variable nodal blocks is required via aggregation: nblocks,
aggregation: length blocks, aggregation: blocks, and
aggregation: block_pde. User-specified null space must be
provided using null space: vectors. Number of nodes
in each aggregate is specified with aggregation: nodes per
aggregate. Requires --with-ml metis.

Table 3: ML_Epetra::MultiLevelPreconditioner: Available coarsening schemes.

6.3 Tips for Achieving Good Parallel Performance

This section gives a few tips on tuning ML’s parallel performance.

6.3.1 Hints for the Impatient User

1. Use the matrix repartitioning option. This is discussed in detail in the next section,

§6.3.2.

2. In order to reduce message-passing latency, try limiting the number of multigrid levels

to 3 or 4. The syntax is described in §6.4.2.

3. Instead of doing a direct solve on the coarsest level, try a few smoothing sweeps instead.

See §6.4.5.

4. For a symmetric positive definite linear system, choose a smoother whose computa-

tional kernel is a matvec, such as the Chebyshev polynomial smoother. See §6.4.4.

6.3.2 Dynamic Load-balancing

ML supports dynamic load-balancing of coarse-level matrices in the multigrid precondi-
tioner. This is extremely important for two reasons. First, it is not unusual for the message-
passing latency on a coarse level to be roughly equivalent to the latency of the fine level,
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Jacobi Point-Jacobi. Specify damping factor with smoother: damping

factor.

Gauss-Seidel Point Gauss-Seidel.  Specify damping factor with smoother:
damping factor.

symmetric Gauss-Seidel Point symmetric Gauss-Seidel. Specify damping factor with
smoother: damping factor.

Chebyshev Use Chebyshev smoother. Specify polynomial order by smoother:

sweeps . Smoother will damp errors between p and p/«, where p
is spectral radius of diag(A)~!A and « is specified via smoother:
Chebyshev alpha.

IC, ILU, ICT, ILUT Local (processor-based) incomplete factorization methods from
IFPACK. See Ifpack manual [13] for a complete description of these
methods. See §6.4.4 for associated ML parameter list options.
Aztec Use AzTECOO’s built-in preconditioners as smoothers. Or, if
smoother: Aztec as solver is true, use an AZTECOO Krylov
method as smoother. AZTECOO vectors options and params can
be set using smoother: Aztec options and smoother: Aztec
params. See §6.2 for an example.

user—-defined User-defined  smoothing function with  prototype int
(*) (ML_Smoother *, int inLength, double *invec,
int outLength, double *outvec). See ML example

ml_user_smoothing.cpp.

Table 4: ML_Epetra::MultiLevelPreconditioner: Commonly used smoothers. Unless otherwise noted, number
of sweeps is specified with smoother: sweeps. In Gauss-Seidel and symmetric Gauss-Seidel, IFPACK
implementation is automatically used (if available) for matrices of type Epetra_CrsMatrix.

even though the number of matrix unknowns on the coarse level is much smaller than on
the fine level. Second, as the number of unknowns per processor becomes small, ML’s
aggregation methods become less effective. The coarsening rate may drop, thus leading to
more multigrid levels than one might observe in serial.

We now give two code fragments to demonstrate how to use the repartitioning options.
The complete description of options that control repartitioning is given in §6.4.6. The
following code demonstrates repartitioning for a matrix with unknowns that are node-based.

Teuchos: :ParameterList MLList;
MLList.set("repartition: enable",1);
MLList.set("repartition: max min ratio",1.3);
MLList.set("repartition: min per proc",500);
MLList.set("repartition: partitioner","Zoltan");
MLList.set("repartition: Zoltan dimensions",2);

// Zoltan requires coordinates
double *xcoord, *ycoord, *zcoord;

// user must load the coordinates, of coarse

MLList.set("x-coordinates", xcoord);
MLList.set("y-coordinates", xcoord);
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Jacobi Point Jacobi. Specify damping with coarse: damping factor.

Gauss-Seidel Point Gauss-Seidel. Specify damping with coarse: damping
factor.

symmetric Gauss-Seidel Symmetric point Gauss-Seidel. Specify damping with coarse:
damping factor.

Chebyshev Use degree coarse: sweeps Chebyshev polynomial as a solver.

Hiptmair Two-stage Hiptmair smoother. Take coarse: node sweeps

(or coarse: edge sweeps) iterations with method coarse:
subsmoother type to solve the nodal (or edge) subproblem.

Amesos-KLU Use KLU through AMES0S. Coarse grid problem is shipped to
proc 0, solved, and solution is broadcast

Amesos-Superlu Use SUPERLU, version 3.0, through AMESOS.

Amesos-UMFPACK Use UMFPACK through AMESOS. Coarse grid problem is shipped
to proc 0, solved, and solution is broadcasted.

Amesos-Superludist Use SUPERLU_DIST through AMESOS.

Amesos-MUMPS Use double precision version of MUMPS through AMESOS.

user—-defined User-defined  smoothing function with  prototype int
(*) (ML_Smoother *, int inLength, double *invec,
int outLength, double *outvec). See ML example
ml_user_smoothing.cpp.

SuperLU Use ML interface to SUPERLU (deprecated).

Table 5: ML_Epetra::MultiLevelPreconditioner: Commonly used coarse matrix solvers. Unless otherwise
noted, number of sweeps is specified with coarse: sweeps. To use Amesos solvers, ML must be config-
ured with with-ml_amesos, and Amesos must be properly configured. In Gauss-Seidel and symmetric
Gauss-Seidel, IFPACK implementation is automatically used (if available) for matrices of type Epe-
tra_CrsMatrix.

The following code demonstrates repartitioning for a system arising from the eddy current
approximations to Maxwell’s equations.

Teuchos: :ParameterList MLList;

// these correspond to the main edge matrix
MLList.set("repartition: enable",1);
MLList.set("repartition: max min ratio",1.3);
MLList.set("repartition: min per proc",1000);
MLList.set("repartition: partitioner","Zoltan");

// Zoltan requires coordinates
double *xcoord, *ycoord, *zcoord;

// user must load the coordinates, of coarse
MLList.set("x-coordinates", xcoord);
MLList.set("y-coordinates", ycoord);

MLList.set("z-coordinates", zcoord);

// these correspond to the auxiliary node matrix
MLList.set("repartition: node max min ratio",1.5);
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MLList.set("repartition: node min per proc",300);
MLList.set("repartition: node partitioner","Zoltan");
MLList.set("repartition: Zoltan dimensions",3);

double *node_xcoord, *node_ycoord, *node_zcoord;
// user must load the coordinates, of coarse ...

MLList.set("x-coordinates", node_xcoord);
MLList.set("y-coordinates", node_ycoord);
MLList.set("z-coordinates", node_zcoord);

6.4 List of All Parameters for MultiLevelPreconditioner Class

In this section we give general guidelines for using the MultiLevelPreconditioner class ef-
fectively. The complete list of input parameters is also reported. It is important to point
out that some options can be effectively used only if ML has been properly configured. In
particular:

e METIS aggregation scheme requires —-with-ml_metis, or otherwise the code will in-
clude all nodes in the calling processor in a unique aggregate;

e PARMETIS aggregation scheme requires ——with-ml metis --enable-epetra and
--with-ml_parmetis2x or --with-ml_parmetis3x.

e AMESOS coarse solvers require -—enable-amesos --enable-epetra --enable-teuchos.
Moreover, AMESOS must have been configure to support the requested coarse solver.
Please refer to the AMESOS documentation for more details.

e [FPACK smoothers require --enable-ifpack --enable-epetra --enable-teuchos.

e PARASAILS smoother requires -—with-ml_parasails.

Note that spaces are important within a parameter’s name. Do not include non-
required leading or trailing spaces. Please separate words by just one space!
Mispelled parameters will not be detected. One may find it useful to print unused
parameters by calling PrintUnused () after the construction of the multilevel hierarchy.

Some of the parameters that affect the MultiLevelPreconditioner class can in principle
be different from level to level. By default, the set method for the MultiLevelPreconditioner
class affects all levels in the multigrid hierarchy. In order to change a setting on a partic-
ular level, such as level d, the string “(level d)” is appended to the option string (note
that a space must separate the option and the level specification). For instance, assuming
decreasing levels starting from 4, one could set the aggregation schemes as follows:

MLList.set("aggregation: type","Uncoupled");
MLList.set("aggregation: type (level 1)","METIS");
MLList.set("aggregation: type (level 3)","MIS");
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If the finest level is 0 and there are 5 levels, ML uses Uncoupled for levels 0, 2 and 4, METIS
for level 1 and MIS for level 3. Parameters that can be set differently on individual levels
are denoted with the symbol * (this symbol is not part of the parameter name).

6.4.1 General Options

ML output

print unused

ML print initial list

ML print final list

PDE equations

eigen-analysis: type

[int] Controls the amount of printed informa-
tion. Ranges from 0 to 10 (0 is no output, and
10 is incredibly detailed output). Default: 0.

[int] If non-negative, will print all unused pa-
rameters on the specified processor. If -1, un-
used parameters will be printed on all processes.
If -2, nothing will be printed. Default: -2.

[int] If non-negative, will print all parameters
in the parameter list supplied to the constructor
on the specified processor. If —1, parameters
will be printed on all processes. If —2, nothing
will be printed. Default: —2.

[int] If non-negative, will print all parameters
in the final list used by the constructor on the
specified processor. (The constructor will add
entries to the list.) If —1, parameters will be
printed on all processes. If —2, nothing will be
printed. Default: —2.

[int] Number of PDE equations at each grid
node. Not used for Epetra VbrMatrix objects
as this is obtained from the block map used to
construct the object. While only block maps
with constant element size can be considered,
ML has some ability to work with a noncon-
stant number of equations per grid node (see
ml_example elasticity.c). Default: 1.

[string] Defines the numerical scheme to use
when computing spectral radius estimates for
D™'A, where D = diag(A) and A refers to a dis-
cretization matrix on a particular level. Spec-
tral radius estimates are needed to generate the
smoothed aggregation prolongator and for some
smoothers. Choices are: cg (conjugate gradi-
ent method), Anorm (the A-norm of the matrix),
power-method. Default: cg.
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eigen-analysis: iterations [int] The number of iterations to perform in
estimating the spectral radius. Default: 10.

6.4.2 Multigrid Cycle Options

cycle applications [int] Number of multigrid applications within
a preconditioner Default: 1.

max levels [int] Maximum number of levels. Default: 10.

increasing or decreasing [string] If set to increasing, level 0 will corre-
spond to the finest level. If set to decreasing,
max levels - 1 will correspond to the finest
level. Default: increasing.

prec type [string] Multigrid cycle type.
Possible values: MGV, MGW,
full-MGV, one-level-postsmoothing,
two-level-additive, two-level-hybrid,
two-level-hybrid2, projected MGV. Default:
MGV.

projected modes [doublex*| Array of double vectors containing

modes that should be projected out before and
after the AMG V-cycle is applied. For use with
the projected MGV option. Default: NULL.

number of projected modes [int] Number of modes that are to be projected
out before and after the AMG V-cycle is ap-
plied. For use with the projected MGV option.
Possible values: 1,2, or 3. Default: 0.

6.4.3 Aggregation and Prolongator Parameters

aggregation: type * [string] Define the aggregation scheme. See
Table 3. Default: Uncoupled.

aggregation: threshold [double] Dropping threshold in aggregation.
Default: 0.0.
aggregation: damping factor [double] Damping factor for smoothed aggrega-

tion. Default: 4/3.
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aggregation: smoothing sweeps [int] Number of smoothing sweeps to use
in the prolongator smoother. This should
only be changed when using larger aggregates
from either METIS or ParMETIS aggregation
schemes. In general, one wants the num-
ber of sweeps to be less than or equal to
logs(AggregateDiameter — 1). If sweeps equals
1, then aggregation: damping factor is
used. If sweeps is greater than 1, damping fac-
tors are calculated automatically. Default: 1.

aggregation: global aggregates * [int] Defines the global (or total) number of ag-
gregates that should be created (only for METIS
and ParMETIS aggregation schemes).

aggregation: local aggregates x  [int] Defines the number of aggregates of the
calling processor (only for METIS and ParMETIS
aggregation schemes). Note: this value over-
writes aggregation: global aggregates.

aggregation: nodes per aggregate x[int] Defines the number of nodes to be
assigned to each aggregate (only for METIS
and ParMETIS aggregation schemes). Note:
this value overwrites aggregation: local
aggregates. If none among aggregation:
global aggregates, aggregation: local
aggregates and aggregation: nodes per
aggregate is specified, the default value is 1
aggregate per process.

aggregation: next-level aggregates[int| Defines the maximum number of next-
per process * level matrix rows per process (only for
ParMETIS aggregation scheme). Default: 128.

aggregation: mnblocks [int] Defines the number of processor nodal
blocks in the matrix (only for VBMETIS aggre-
gation scheme). Nodal blocks must not span
processors. Default: 0.

aggregation: length blocks [int] Length of vectors specified with
aggregation: blocks and aggregation:
block pde (only for VBMETIS aggregation
scheme).  Usually, this correponds to the
processor local number of scalar rows of the
problem. Default: 0.
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aggregation: blocks

aggregation: block_pde

aggregation: wuse tentative
restriction

aggregation: symmetrize

energy minimization: enable

energy minimization: type

[int] Vector of length aggregation: length
blocks. Contains processor global block num-
bering starting from 0. blocks[i] is the nodal
block the scalar equation i of the matrix be-
longs to, where 1 is a processor local scalar row
index of the matrix (only for VBMETIS aggrega-
tion scheme). The user is responsible for freeing
the vector. Default: NULL.

[int] Vector of length aggregation: length
blocks. block pde[i] is the number of the pde
equation inside one nodal block, where number-
ing starts from 0. Note that a user specified
null space matching the supplied pde distribu-
tion in this vector should be supplied in null
space: vectors (only for VBMETIS aggrega-
tion scheme). The user is responsible for freeing
the vector. Default: NULL.

[bool] If true, then the final restriction opera-
tor at level £ is computed as R, = PJ;, where
P, is the tentative prolongator. Note that
the final prolongator is still computed as spec-
ified by parameter aggregation: damping
factor. Default: false.

[bool| If true, then the final prolongator for
level ¢ is computed as P, = (I — w/Apae(A +
AT))Pys, where w is the damping param-
eter specified using aggregation: damping
factor, A\ is the maximum eigenvalue of
D7'A, and P, is the tentative prolongator at
level ¢. The restriction is defined as R, = P}.
Default: false.

[bool] If true, then use multigrid variant (based
on local damping parameters and restrictor
smoothing) suitable for highly nonsymmetric
problems. Default: false.

[int] Choose the norm used within local mini-
mization of the energy minimizing option. 2 is
the more reliable. 1 is the cheapest to set up.
3 is the closest to classic smoothed aggregation.
Default: 2.
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energy minimization: droptol

energy minimization: cheap

6.4.4 Smoothing Parameters

smoother:

smoother:

smoother:

smoother:

smoother:

smoother:

smoother:

smoother:

type *

sweeps *

damping factor

pre or post *

Aztec options *

Aztec params *

Aztec as solver x

ifpack level-of-fill x

[double| Drop entries in intermediate calcula-
tions of the energy minimizing prolongator that
have absolue value less than this tolerance De-
fault: 0..

[bool| If true and energy minimization:
enable has been set, a version of energy min-
imization which is less reliable but cheaper to
set up is used. Default: false.

[string] Type of the smoother. See Table 4.
Default: Chebyshev.

[int] Number of smoother sweeps (or polyno-
mial degree if using Chebyshev). Default: 2

[double] Smoother damping factor for Jacobi,
Gauss-Seidel, symmetric Gauss-Seidel,
block Gauss-Seidel, or symmetric block
Gauss-Seidel. Default: 1.0.

[string] It can assume one of the following val-
ues: pre, post, both. Default: both.

[RCP<vector<int>>] TEUCHOS reference-
counted pointer to AZTEC’s options vector
(only for Aztec smoother) .

[RCP<vector<double>>] TEUCHOS reference-
counted pointer to AZTEC’s params vector
(only for Aztec smoother) .

[bool| If true, smoother: sweeps iterations
of AZTEC solvers will be used as smoothers.
If false, only the AZTEC’s preconditioner func-
tion will be used as smoother (only for Aztec
smoother). Default: false.

[double] Specifies fill-level for IFPACK incom-
plete factorization methods. ML will internally
interpret this as an integer where appropriate.
Default: 0.0.
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smoother:

smoother:
threshold %

smoother:
threshold *

smoother:

smoother:

smoother:

smoother:
symmetric

subsmoother:

subsmoother:

subsmoother:

subsmoother:

ifpack overlap x

ifpack relative

ifpack absolute

Chebyshev alpha *

user—-defined function

user-defined name

Hiptmair efficient

type *

Chebyshev alpha %

SGS damping factor %

edge sweeps x

[int] Specifies subdomain overlap if IFPACK
smoothers are used. Default: 1.

[double] Specifies relative threshold for per-
turbing matrix diagonal. See [13] for details.
Default: 1.0.

[double| Specifies absolute threshold for per-
turbing matrix diagonal. See [13] for details.
Default: 0.0.

[double] Chebyshev smoother will damps errors
between p and p/alpha where p is the spectral
radius of diag(A)~'A. Default: 20.

[int (*) (ML_Smoother *, int inLength,
double *invec, int outLength, double
*xoutvec)| Pointer to user-defined smoothing
function. Default: NULL.

[string]| Label for user-defined smoother. De-
fault: “User-defined”.

[bool] Reduce the preconditioner computa-
tional work while maintaining symmetry by do-
ing edge-then-node relaxation on the first leg of
the V-cycle, and node-then-edge relaxation on
the second leg. Default: true.

[string] Smoother to be used as a subsmoother
on the nodal and edge subproblems within Hipt-
mair smoothing. It can assume the following
values: Chebyshev, symmetric Gauss-Seidel.
Default: Chebyshev.

[double] Hiptmair Chebyshev subsmoother will
damps errors between p and p/alpha where p is
the spectral radius of diag(A)~'A. Default: 20.

[double] Damping factor for Hiptmair sub-
smoother symmetric Gauss-Seidel. Default:
automatically calculated in the range (0, 2).

[int] Number of iterations (or polynomial de-

gree) of Hiptmair subsmoother to perform on
edge problem. Default: 2.
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subsmoother: node sweeps %

6.4.5 Coarsest Grid Parameters

coarse:

coarse:

coarse:

coarse:

coarse:

coarse:

coarse:

coarse:

coarse:

max size

type

pre or post *

sweeps

user—-defined function

user-defined name

damping factor

subsmoother type

node sweeps

[int] Number of iterations (or polynomial de-
gree) of Hiptmair subsmoother to perform on
nodal projection problem. Default: 2.

[int] Maximum dimension of the coarse grid.
ML will not coarsen further if current levels size
is less than this value. Default: 128.

[string] Coarse solver. See Table 5. Default:
AmesosKLU.

[string] It can assume one of the following val-
ues: pre, post, both. Practically, pre and
post are the same. Default: post.

[int] (Only for Jacobi, Gauss-Seidel,
symmetric Gauss-Seidel, Hiptmair, and
Chebyshev.) Number of sweeps (or polynomial
degree) in the coarse solver. Default: 2.

[int (*) (ML_Smoother *, int inLength,
double *invec, int outLength, double
*xoutvec)]| Pointer to user-defined smoothing
function. Default: NULL.

[string]| Label for user-defined smoother. De-
fault: “User-defined”.

[double] Smoother damping factor for Jacobi,
Gauss-Seidel, symmetric Gauss-Seidel,
block Gauss-Seidel, or symmetric block
Gauss-Seidel. Default: 1.0.

[string] Smoother to be used as a sub-
smoother at each step of coarse Hiptmair
smoothing. It can assume the following values:
Chebyshev, symmetric Gauss-Seidel. De-
fault: Chebyshev.

[int] Number of sweeps (or polynomial degree)

for nodal subproblem within coarse Hiptmair
smoothing. Default: 2.
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coarse: edge sweeps

coarse: Chebyshev alpha

coarse: maxX processes

6.4.6 Load-balancing Options

repartition:

repartition:

repartition:

repartition:

repartition:

enable

partitioner

max min ratio

min per proc

node max min ratio

[int] Number of sweeps (or polynomial degree)
for edge subproblem within coarse Hiptmair
smoothing. Default: 2.

[double | Chebyshev smoother (or sub-
smoother) will damps errors between p and
p/alpha where p is the spectral radius of
diag(A)~tA. Default: 30.

[int] Maximum number of processes to be
used in the coarse grid solution (only for
Amesos-Superludist, Amesos-MUMPS). If -1,
AMESOs will decide the optimal number of pro-
cessors to be used. Default: -1.

[int] Enable/disable repartitioning. Default: 0
(off).

[string| Partitioning package to use. Can as-
sume the following values: Zoltan, ParMETIS.
Default: Zoltan.

[double] Specifies desired ratio of Ggmaz/Gmin,
where ¢4, is the maximum number of rows over
all processors, and ¢, is the minimum number
of rows over all processors. If the actual ratio is
larger, then repartitioning occurs. Default: 1.3.

[int] Specifies desired minimum number of rows
per processor. If the actual number is smaller,
then repartitioning occurs. Default: 512.

[double] Maxwell-specific option for auxiliary
nodal hierarchy.  Specifies desired ratio of
Imaz | Gmin, Where gpmq. is the maximum num-
ber of rows over all processors, and ¢,,;, is the
minimum number of rows over all processors.
If the actual ratio is larger, then repartitioning
occurs. Default: 1.3.
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repartition: node min per proc

repartition: Zoltan dimensions

6.4.7 Analysis Options

analyze memory

viz: enable

viz: output format

viz: print starting solution

viz: equation to plot

6.4.8 Miscellaneous Options

x—-coordinates

y—coordinates

z—-coordinates

node: x-coordinates

node: y-coordinates

node: z-coordinates

[int] Maxwell-specific option for auxiliary nodal
hierarchy. Specifies desired minimum number
of rows per processor. If the actual number
is smaller, then repartitioning occurs. Default:
170.

[int] Dimension of the problem. Can assume
the following values: {2, 3}.

[bool] Analyze memory used by the precondi-
tioner. Default: false.

[bool| Enable/disable visualization. Default:
false.

[string] The format of the visualization files.
Can assume the following values: vtk, xyz,
openx. Default: vtk.

[bool| Enable/disable printing of initial starting
solution.

[bool] In the case of systems of PDEs, the equa-
tion number to print. Default: all equations.

[doublex| Pointer to array of xz-coordinates of
mesh nodes (edges, in the case of Maxwell).

[doublex| Pointer to array of y-coordinates of
mesh nodes (edges, in the case of Maxwell).

[doublex| Pointer to array of z-coordinates of
mesh nodes (edges, in the case of Maxwell).

[doublex| Pointer to array of z-coordinates of
mesh nodes. (Maxwell only)

[doublex*| Pointer to array of y-coordinates of
mesh nodes. (Maxwell only)

[doublex| Pointer to array of z-coordinates of
mesh nodes. (Maxwell only)
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read XML

XML input file

[bool] Read parameter list options from file.
Default: false

[string] Name of XML file that con-
tains paraameter list options. Default:
ml ParameterList.xml

6.4.9 Smoothed Aggregation and the Null Space

Smoothed aggregation builds grid transfers by improving an initial operator based on a near
null space. For scalar PDEs, this null space is often taken to be a constant. In this case, the
initial grid transfer is piecewise constant interpolation. For a PDE system with n degrees
of freedom per mesh node, the null space if often taken as n constant vectors corresponding
to each degree of freedom. While ML generates these simple null spaces automatically, it is
also possible to pass in a null space (e.g. the set of rigid body modes for elasticity systems)
that ML uses. A possibility to compute a null space via ANASAZI is currently disabled, but
will hopefully get turned back on soon.

null space:

null space:

null space:

null space:

null space:

type

vectors

dimension

vectors to compute

add default vectors

[string] If default vectors, the default
null space is used (no computation required).
If pre-computed, a pointer to the already-
computed null is obtained from option null
space: vectors. If enriched, ML will com-
pute, using ANASAZI, an approximation of the
null space of the operator. Note: there is a util-
ity ML_Coord2RBM() that converts coordinates
to rigid body modes for elasiticty problems. De-
fault: default vectors.

[doublex]. Pointer to user-supplied null space
vectors.

[int]. Number of user-supplied null space vec-
tors.

[int]. If null space: type is set to
enriched, this option indicates the number of
eigenvectors to compute. Default: 1.

[bool]. If true, the default null space (one con-
stant vector for each unknown) will be added to
the computed null space. Default: true.

31



6.4.10 Aggregation Strategies

In some case, it is preferable to generate the aggregates using a matrix defined as follows:

Lij=(xi—%x;)7%, 1#7], Li; =— ZLi,ja (2)
1#]

(where x; represents the coordinates of node 7) in conjunction with a given nonzero dropping
threshold. This is often useful in cases where it is difficult to determine directions where
smoothing is difficult based only on matrix coefficients. This may happen, for instance,
when working with bilinear finite elements on stretched grids. ML can be instructed to
generate the aggregates using matrix (2), then build the preconditioner using the actual
linear system matrix (i.e. use the original PDE matrix A dropping entries according to (2)
in the prolongator smoother), as done in the following code fragment:

double* x_coord;

double*x y_coord; // set to to O for 1D problems
doublex z_coord; // set to to O for 2D problems
// here we define the nodal coordinates...

MLList.set("x-coordinates", x_coord );
MLList.set("y-coordinates", y_coord );
MLList.set("z-coordinates", z_coord );

The double vectors y_coord and/or z_coord can be set to 0. x_coord (and y_coord if
2D, and z_coord if 3D) must be allocated to contain the coordinates for all nodes assigned
to the calling processor, plus that of the ghost nodes. For systems of PDE equations,
the coordinates must refer to the block nodes (that is, x-coordinate of local row i will be
reported in x_coord[i/NumPDEEgqns]. The actual PDE matrix A is only modified when
developing a prolongator (i.e. for the aggregation and in the prolongator smoother). This
modification drops entries corresponding to small L;;’s and adds dropped entries to the
diagonal. For block PDEs, dropped entries in row i are only added to the diagonal if they
correspond to the same degree of freedom within a block as i. The general idea is that
contants will still be in the null space of the modified A if they were in the null space of A.
The following options can be used:

aggregation: aux: enable [bool]. Enable/disable the use of matrix (2).
Default: false.

aggregation: aux: threshold [double]. The matrix entry A;; is ignored if
L;; < threshold x max;;+;L; ;. Note: the diag-
onal of A is also modified so that constants are
still in the null space (assuming that this was
true for the unmodified A). Default: 0.0.

6.5 Default Parameter Settings for Common Problem Types

The MultiLevelPreconditioner class provides default values for five different preconditioner
types:
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1. Classical smoothed aggregation for symmetric positive definite or nearly symmetric
positive definite systems.

Classical smoothed aggregation-based 2-level domain decomposition
3-level algebraic domain decomposition

Eddy current formulation of Maxwell’s equations

AN R

Energy-based minimizing smoothed aggregation suitable for highly convective nonsym-
metric fluid flow problems.

Default values are listed in Table 6. In the table, SA refers to “classical” smoothed ag-
gregation (with small aggregates and relative large number of levels), DD and DD-ML to
domain decomposition methods (whose coarse matrix is defined using aggressive coarsen-
ing and limited number of levels). Maxwell refers to the solution of Maxwell’s equations.
NSSA is a nonsymmetric smoothed aggregation variant which may be appropriate for highly
nonsymmetric operators.

Default values for the parameter list can be set by ML_Epetra::SetDefaults(). The
user can easily put the desired default values in a given parameter list as follows:

Teuchos: :ParameterlList MLList;
ML_Epetra::SetDefaults(ProblemType, MLList);

Teuchos: :ParameterList MLList;
ML_Epetra::SetDefaults(ProblemType, MLList, options, params);

Teuchos: :ParameterList MLList;
ML_Epetra::SetDefaults(ProblemType, MLList, options, params, true);

In the second usage, options and params are vectors that control the AZTEC smoother. In
the third usage, the boolean argument true permits SetDefaults to override any previously
set parameters.

For DD and DD-ML, the default smoother is Aztec, with an incomplete factorization ILUT,
and minimal overlap. Memory for the two AZTEC vectors, options and params, is allocated
using TEUCHOS reference-counted pointers, and so will be freed automatically.

6.6 Analyzing the ML preconditioner

A successful multilevel preconditioner require the careful choice of a large variety of parame-
ters, for instance each level’s smoother, the aggregation schemes, or the coarse solver. Often,
for non-standard problems, there is no theory to support these choices. Also, sometimes it
is difficult to understand which component of the multilevel cycle is not properly working.
To help to set the multilevel components, ML offers a set of tools, to (empirically) analyze
several components of the multilevel cycles, and the finest-level matrix.

Two examples are included in the ML distribution:

e File examples/Visualization/ml_viz.cpp shows how to visualize the effect of the
ML cycle and each level’s smoother on a random vector;
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e File examples/Advanced/ml_analyze.cpp shows who to get some quantitative infor-
mation about each level’s matrix, and multilevel preconditioner.

In the following subsections, we suppose that a MultiLevelPreconditioner object has
already be defined, and the preconditioner computed.

6.6.1 Cheap Analysis of All Level Matrices

Method AnalyzeMatrixCheap() will report on standard output general information about
each level’s matrix. An example of output is as reported below. (Here, we report only the
part of output related to the finest level.)

*x*%* Analysis of ML_Operator ‘A matrix level 0’ **x

Number of global rows = 256

Number of equations =1

Number of stored elements = 1216

Number of nonzero elements = 1216
Mininum number of nonzero elements/row =3

Maximum number of nonzero elements/row =5

Average number of nonzero elements/rows = 4.750000
Nonzero elements in strict lower part = 480

Nonzero elements in strict upper part = 480

Max |i-jl|, a(i,j) !'= 0 = 16

Number of diagonally dominant rows = 86 (= 33.59%)
Number of weakly diagonally dominant rows = 67 (= 26.17%)
Number of Dirichlet rows =0 (= 0.00%)
I 1AlI_F = 244.066240
Min_{i,j} Ca(i,j) ) = -14.950987
Max_{i,j} ( a(i,j) ) = 15.208792
Min_{i,j} ( abs(a(i,j)) ) = 0.002890
Max_{i,j} ( abs(a(i,j)) ) = 15.208792
Min_i ( abs(a(i,i)) ) = 2.004640
Max_i ( abs(a(i,i)) ) = 15.208792
Min_i ( \sum_{j'=i} abs(a(i,j)) ) = 2.004640
Max_i ( \sum_{j'=i} abs(a(i,j)) ) = 15.205902
max eig(A) (using power method) = 27.645954

1.878674

max eig(D~{-1}A) (using power method)

Total time for analysis = 3.147979e-03 (s)

This analysis is “cheap” in the sense that it involves only element-by-element comparison,
plus the computation of the largest-magnitude eigenvalue (which requires some matrix-
vector products). AnalyzeMatrixCheap() can be used for both serial and parallel runs.
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6.6.2 Analyze the Effect of Smoothers

For each level, method AnalyzeSmoothers() computes the eigenvectors of the matrix (say,
A). Then, for each eigenvector (say, v) of A, the smoother is applied to the solution of the
homogeneous system

Ae =0

with starting solution eg = v. The code reports on file the real and imaginary values of the
eigenvalue corresponding to eigenvector v, and the ||e||/||eo]]-

The syntax is AnalyzeSmoothers(NumPre, NumPost). NumPre is the number of pre-
smoother applications, and NumPost the number of post-smoother applications. This method
reports on the standard output the following information:

Solving Ae = 0, with a random initial guess

- number of pre-smoother cycle(s) = 5

- number of post-smoother cycle(s) = 5

- all reported data are scaled with their values
before the application of the solver
(0 == perfect solution, 1 == no effect)

- SF is the smoothness factor

Solver Linf L2 SF

Presmoother (level 0, eq 0) 0.827193 0.804528 0.313705
Postsmoother (level 0, eq 0) 0.822015 0.810521  0.342827
Presmoother (level 1, eq 0) 0.972593 0.908874 2.51318
Postsmoother (level 1, eq 0) 0.982529  0.922668 2.53639

6.6.3 Analyze the effect of the ML cycle on a random vector

Method AnalyzeCycle(NumCycles), where NumCycles is the number of multilevel cycles
to apply, applies the already computed ML preconditioner to a random vector, and reports
on standard output the following information:

Solving Ae = 0, with a random initial guess
using 5 ML cycle(s).

- (eq 0) scaled Linf norm after application(s) = 0.0224609
- (eq 0) scaled L2 norm after application(s) = 0.000249379
- (eq 0) scaled smoothness factor = 10.6517

6.6.4 Test different smoothers

The MultiLevelPreconditioner class offers a very easy way to test the effect of a variety of
smoothers on the problem at hand. Once the preconditioning object has been created, a
call to TestSmoothers () performs the following operations:

1. Creates a new linear system, whose matrix is the one used to construct the MultiLevel-
Preconditioner object;

2. Defines a random solution, and the corresponding right-hand side;
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3. Defines a zero starting vector for the Krylov solver;

4. Creates a new preconditioning object, with the same options as in the current precon-
ditioner, except for the choice of the smoothers;

5. Solve the linear system with the newly created preconditioner;
6. Reports in a table the iterations to converge and the corresponding CPU time.

The following options, to be set before calling ComputePreconditioner(), can be used
to tune the test session:

test: max iters [int] Maximum number of iterations for the
Krylov solver. Default: 500.

test: tolerance [double| Tolerance for the Krylov solver. De-
fault: 1e-5.
test: Jacobi [bool| Enable/disable test with Jacobi

smoother. Default: true.

test: Gauss-Seidel [bool| Enable/disable test with Gauss-Seidel
smoother. Default: true.

test: symmetric Gauss-Seidel [bool| Enable/disable test with symmetric
Gauss-Seidel smoother. Default: true.

test: Dblock Gauss-Seidel [bool| Enable/disable test with block Gauss-
Seidel smoother. Default: true.

test: Aztec [bool| Enable/disable test with AzTECOO
smoother. Default: true.

test: Aztec as solver [bool| Enable/disable test with AZTECOO as a
solver smoother. Default: true.

test: ParaSails [bool| Enable/disable test with PARA-
SaiLssmoother. Default: true.

test: IFPACK [bool|  Enable/disable  test  with  Ir-
PACKsmoother. Default: true.

An example of output is reported below. Note that some smoothers (PARASAILS, IF-
PACK) will be tested only if ML has been properly configured. Note also that TestSmoothers ()
requires ML to be configured with option --enable-aztecoo.

KKK KA KKK KKK KA KA K KKK A KKK KK KKK
%% Analysis of ML parameters (smoothers) *x*x
KK KA A KKK A KKK A A A A KKK KKK

**% maximum iterations = 500
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**x*x tolerance = 1e-05

*%*% All options as in the input parameter list,

**% all levels have the same smoother

*kk M: maximum iterations exceeded without convergence
%% N: normal exit status (convergence achieved)
***x B: breakdown occurred

*%* J:. matrix is ill-conditioned

*%*x L: numerical loss of precision occurred
count smoother type................. its

- Jacobi

#0..... n=5, omega=2.50e-01........... 12

#1..... n=5, omega=5.00e-01........... 12

#2..... n=b, omega=7.50e-01........... 12

#3..... n=5, omega=1.00e+00........... 12

#4. .. .. n=5, omega=1.25e+00........... 12

- Gauss-Seidel

#5..... n=5, omega=2.50e-01........... Toviiit.
#6. .. .. n=5, omega=5.00e-01........... Tooooo.
#7..o. .. n=5, omega=7.50e-01........... 6.........
#8..... n=b, omega=1.00e+00........... Toooooo.
#9..... n=b, omega=1.25e+00........... A

- Gauss-Seidel (sym)

#10....n=5, omega=2.50e-01........... 4.........
#11....n=5, omega=5.00e-01........... 4.
#12....n=5, omega=7.50e-01........... 4.
#13....n=5, omega=1.00e+00........... 4.
#14....n=5, omega=1.26e+00........... 4.,

- Gauss-Seidel (block)

#15....n=5, omega=2.50e-01........... 6.........
#16....n=5, omega=5.00e-01........... Toviiiii
#17....n=5, omega=7.50e-01........... 6.........
#18....n=5, omega=1.00e+00........... 6.
#19....n=b5, omega=1.26e+00........... 6.........

- Aztec preconditioner

#20. .. . ILUC£i11=0) ... ...covvneennn. Toooooot.
#21. . ILU(fill=1).......... . ... ..... 6.........
#22. . ILU(£il1=2) ........... ... ..... Tovioot.
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except that

Il /1 1x_0lT..

.97314e-06. ...
.21844e-06. . ..
.52614e-06. . ..
.80406e-06. . ..
.15858e-06. . ..

O O O O o

.20736e-06. . .
.91864e-06. . ..
.40948e-06. . ..
.36415e-06. . ..
.4833e-06

O O OO

o

.32835e-06. . ..
.68576e-06. . ..
.51966e-07. . ..
.34439e-06. . ..
.09185e-06. . ..

O O O O o

.56673e-06. . ..
.77309e-06. . ..
.53488e-06. . ..
.66381e-06. . ..
.87356e-06. . ..

O O O O o

.93736e-06. . ..
.54992e-06. . ..
.4724e-06

.0839319......
.0820519......

.0824361......

.0857691......
.0789189......

.0792729. ... ..
.0790809......

.0793679......
.0787291......
.0790669. ... ..

.0920131......
.0881529......
.0846661......
.0839909......

.0712331......
.0647091......
.0678911......



- Aztec as solver

#23....iterations=1........ ... ... .... T ... 1.94081e-06....0.140772....... N
#24 ... .iterations=3........... ... .... 4......... 8.90029e-08....0.0687031...... N
#25....iterations=5........... ... .... G 1.00778e-07....0.069193....... N
- ParaSails

#26....default.......... ... ... . ... ... 20........ 6.60045e-06....0.214094....... N

*** The best iteration count was obtain in test 25
**xx The best CPU-time was obtain in test 21

xx*x Total time = 2.43798(s)

6.7 Visualization Capabilities

6.7.1 Visualizing the Aggregates

ML offers the possibility to visualize the aggregates for all levels. Aggregates generated by
Uncoupled and METIS aggregation schemes can be visualized for serial and parallel runs,
while aggregates generated using MIS and ParMETIS can be visualized only for serial runs.

Data can be stored in the “xyz” format, readable by packages such as XD3D [?]. For each
aggregate, the file contains a line of type

x—coord y-coord <z-coord> aggregate-number

(z-coord is present only for 3D computations.) XD3D can be used to visualize files in this
format, but only for 2D problems. Results are reported in Figure 2.

Data can also be stored in the “vtk legacy” format, readable by packages such as PAR-
AVIEW [?7]. PARAVIEW allows for 2D and 3D point clouds visualization. It is also possible
to visualize sections of 3D data via cutting planes. In order to use this format, fine level
coordinates must be supplied. Coarse level coordinates are derived from the fine level coor-
dinates via the multigrid restriction operators. Data is stored as follows. The first section
begins with the header

POINTS XX float
where XX is the total number of points. For each point, the coordinates are given as
x-coord y-coord <z-coord>

Next, connectivity information is given in a pair-wise fashion. For example, if the (i, 7)
entry of matrix A is nonzero, then there is a line in the data file of the form

21 j
where the first entry specifies the number of points that follow. (This first entry will always

be 2 because the connectivity is pair-wise.) The next data section specifies the aggregate
to which each point belongs. It begins with the header
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POINT_DATA XX
SCALARS aggregate_number int 1
LOOKUP_TABLE default

The section then has a line for each point of the form
aggregate_number

The final section specifies the solution (residual) at each point. The section begins with the
header

SCALARS solution float 1
LOOKUP_TABLE default

and then has a line for each point of the form
solution_value

With the exception of connectivity, all information is given in the same order. Hence, all
information for the jth unknown can be found at the jth line of each section.

6.7.2 Visualizing the effect of the ML Preconditioner and Smoothers

In some cases, it may be useful to visualize the effect of the ML preconditioner, or of
each level’s smoother, on a random vector (whose components are contained in the interval
[0.5,1]), to understand if there are zones or directions that are not affected by the current
multilevel preconditioner. This can be easily done with the following code fragment:

double*x x_coord;
double* y_coord;
// here we define the nodal coordinates...

MLList.set("viz: enable", true);

//you can also specify "xyz" on the line below
MLList.set("viz: output format", "vtk");
MLList.set("viz: x-coordinates", x_coord);
MLList.set("viz: y-coordinates", y_coord);

// by default the starting solution is not printed
MLList.set("viz: print starting solution", true);

// create the preconditioner
ML_Epetra: :MultilLevelPreconditioner * MLPrec =
new ML_Epetra::MultilevelPreconditioner(*A, MLList, true);

// visualize the effect of the ML preconditioner on a
// random vector. We ask for 10 multilevel cycles

MLPrec->VisualizeCycle(10);

// visualize the effect of each level’s smoother on a
// random vector. We ask for 5 steps of presmoothers,
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// and 1 step of postsmoother
MLPrec->VisualizeSmoothers(5,1);

(File m1_viz.cpp contains the compilable code.) We note that the parameters must be set
before calling ComputePreconditioner(). See also Section 6.4.10 for the requirements on
the coordinates vectors. Results will be written in the following files:

6.8

before-presmoother-eqX-levelY.vtk contains the random vector before the appli-
cation of the presmoother, for equation X at level Y;

after-presmoother-eqX-levelY.vtk contains the random vector after the applica-
tion of the presmoother, for equation X at level Y;

before-postsmoother-eqX-levelY.vtk contains the random vector before the appli-
cation of the postsmoother, for equation X at level Y;

after-postsmoother-eqX-levelY.vtk contains the random vector after the applica-
tion of the postsmoother, for equation X at level Y;

before-cycle-eqX-levelY.vtk contains the random vector before the application of
the MLcycle, for equation X at the finest level;

after-cycle-eqX-levelY.vtk contains the random vector after the application of the
ML cycle, for equation X at finest level.

Print the Computational Stencil for a 2D Cartesian Grid

Method PrintStencil2D() can be used to print out the computational stencil for problems
defined on 2D Cartesian grids, if the nodes numbering follows the x-axis. The following
fragment of code shows the use of this method:

int
int
int
int

Nx = 16; // nodes along the x-axis

Ny = 32; // nodes along the y-axis

NodeID = -1; // print the stencil for this node
EquationID = 0; // equation O, useful for vector problems

// MLPrec is a pointer to an already created
// ML_Epetra::MultilevelPreconditioner
MLPrec->PrintStencil2D(Nx,Ny,NodeID, EquationID);

// also valid in this case
MLPrec->PrintStencil2D(Nx,Ny);

If NodeID == -1, the code considers a node in the center of the computational domain. The
result can be something as follows:

2D computational stencil for equation O at node 136 (grid is 16 x 16)

0 -1 0
-1 4 -1
0 -1 0
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Figure 2: Decomposition into aggregates. Uniform colors between blue spheres represent the interior of
aggregates. Visualization was done with XD3D.
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Figure 3: Starting solution (left) and solution after 10 ML cycles (right). Visualization was done using
XD3D.
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7 Using the Maxwell Solvers in ML

This section gives a brief overview of how to ML’s two AMG preconditioners for the eddy
current formulation of Maxwell’s equations. These first solver (Maxwell) is intended only
for real-valued equations in the time domain. The second solver (RefMaxwell) is intended
for real-valued (not complex) problems in the time or frequency domains.

7.1 Background

The eddy current formulation of Maxwell’s equations can be written as
VXxVxE+dE="f, (3)

where E is the unknown electric field to be computed, o is the spatially-varying electrical
conductivity, and f is the known right-hand side. Neumann, Dirichlet, and/or periodic
boundary conditions are supported.

Although we assume that (3) is discretized with first-order edge elements, it is possible
to use this preconditioner for higher-order discretizations, as long as the user provides the
sub-matrix that corresponds to just the first-order discretization. For more theoretical
background and algorithm descriptions, please see [15, 2].

7.2 Notational conventions

For the remainder of the discussion, K (¢) denotes the matrix corresponding to the first-order
element discretization of (3). K(®) can be written as

K© =8+ M,

where S is the stiffness matrix corresponding to the V x Vx term in (3), and M is the mass
matrix corresponding to the oE term in (3). The null-space of S is given by the discrete
gradient matrix, 7. T corresponds to the null space of the V x Vx term in (3). K™ is an
auxiliary nodal matrix that is described in §7.4.2.

7.3 Description of the discrete gradient matrix 7T

T is a rectangular, N, x N,, matrix, where NNV, is the number of edges in the mesh (rows in
K(©) and N, is the number of nodes in the mesh (rows in K ). Each row of T has at most
two entries, a +1 and/or a —1. There are two ways to construct 7. In the first method,
it’s assumed that the mesh topology is available. T" can be viewed as a node-edge incidence
matrix of the mesh as a directed graph. As such, each row of T' corresponds to an edge,
and the +1/—1 entries in the row are the head/tail of the edge, respectively. Hence, T' can
be built one row at a time by visiting each edge and inserting +1/—1 in the appropriate
columns. The second method assumes that K™ is already constructed. Each off-diagonal
nonzero entry, (i,7), in the upper triangular portion of K™ corresponds to a row in T
containing a 1 and a —1 in columns ¢ and j.
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7.4 Solver #1: Maxwell
The Maxwell solver is accessed through the ML_Epetra::MultiLevelPreconditioner class,
which is described in more detail in Section 6.
7.4.1 Operators that the user must supply
The user must provide three matrices:
1. the first-order edge element matrix K.
2. the auxiliary nodal matrix ™.

3. the discrete gradient matrix 7.

7.4.2 Description of the auxiliary nodal matrix K

K™ is a square, N,, x N,, matrix, where N,, is the number of nodes in the mesh. There are
two ways to construct K ™. The first method is to discretize the PDE

/au-v+/Vu~Vv, (4)
Q 0

using nodal linear finite elements on the same mesh as (3). The second method assumes
that you already have T available. K (™ can be formed via the triple-matrix product

TTKOT =TT MT,

where we have used the fact that ST = 0.

7.4.3 Smoother options

The default smoother for the Maxwell solver is a two-stage smoother that we call Hiptmair
smoothing [14]. This smoother consists of three steps: one step of a smoother S on the
entire system Kx = f; one step of a smoother S on the projected system TYMTe = T'r,
where r = f — Kx; and finally one step of a smoother § on the entire system with initial
guess T + e.

The default sub-smoother § is a degree 3 Chebyshev polynomial. The coefficients of this
polynomial are calculated automatically based on the coarsening rate of the multigrid hierar-
chy. The Chebyshev degree for the nodal (or edge) problem can be changed with the options
subsmoother: node sweeps (or subsmoother: edge sweeps) and coarse: node sweeps
(or coarse: edge sweeps) depending on whether the Hiptmair smoothing is done on a fine
or the coarsest level.

7.4.4 Sample Usage

#include "ml_MultilevelPreconditioner.h"

// Allocate Matrices
Epetra_CrsMatrix CurlCurlMatrix(...);
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Epetra_CrsMatrix TMatrix(...);
Epetra_CrsMatrix KnMatrix(...);

// Fill Matrices Here

// Build Maxwell Preconditioner
ML_Epetra::MultilevelPreconditioner (CurlCurlMatrix, TMatrix, KnMatrix);

7.5 Solver #2: RefMaxwell

The RefMaxwell solver is accessed through the ML_Epetra::RefMaxwellPreconditioner
class, which can be found in the directory m1/src/RefMaxwell. This preconditioner handles
the range and null space of the curl operator with a dedicated MultiLevelPreconditioner
object for each and has demonstrated excellent parallel scalability in practice. The solver
algorithm is detailed in [3]

7.5.1 Operators that the user must supply
The user must provide four matrices:
1. the first-order edge element matrix K(©.
2. the discrete gradient matrix 7.
3. the inverse of the (lumped) nodal mass matrix M,.

4. the edge mass matrix M;.

The matrices K(?and T are identical to the matrices used in Maxwell (described in
Section 7.4). The matrix M, is used for the algebraic gauging of the edge space and should
include appropriate factors for the permeability (u). The matrix M is used only for the
edge space, meaning that it does not include the conductivity (o).

7.5.2 Smoother options

Unlike the Maxwell solver, it is not particularly advantageous to use the so-called Hiptmair
hybrid smoother with RefMaxwell. A more traditional smoother, such as Chebyshev (in
parallel) or Gauss-Seidel (in serial should be used).

7.5.3 Setting parameter options

RefMaxwell uses a nested parameter list in order to logically separate the options for each
individual solver. Each sublist would include the appropriate options for that particular
solver. A full list of options supported by the MultiLevelPreconditioner can be found in
Section 6.4.

In addition to the options for MultiLevelPreconditioner (almost all of which are valid),
the RefMaxwell solver has the following unique options:

refmaxwell: 11solver [string] Sets the type of solver to use on the
(1,1) block (edges). Default: edge matrix
free.
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refmaxwell: 11list [ParameterList] Contains all of the options for
the (1,1) block preconditioner (edges).

refmaxwell: 22solver [string] Sets the type of solver to use on the
(2,2) block (nodes). Default: multilevel.

refmaxwell: 22list [ParameterList] Contains all of the options for
the (2,2) block preconditioner (nodes).

refmaxwell: mode [string] Sets the specific type of preconditioner
used. Default: additive.

The EdgeMatrixFreePreconditoner for the (1,1) block (currently the only supported op-
tion) also has one unique option:
edge matrix free: coarse [ParameterList] Contains all of the options for
the coarse (1,1) block preconditioner (edges).

7.5.4 Sample Usage
#include "ml_RefMaxwell.h"

// Allocate Matrices
Epetra_CrsMatrix CurlCurlMatrix(...);
Epetra_CrsMatrix TMatrix(...);
Epetra_CrsMatrix MOinvMatrix(...);
Epetra_CrsMatrix MiMatrix(...);

// Fill Matrices Here
// Build RefMaxwell Preconditioner

ML_Epetra: :RefMaxwellPreconditioner (CurlCurlMatrix, TMatrix,
MOinvMatrix, M1Matrix);
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8 Advanced Usage of ML

Sections 6 and 6.4 have detailed the use of ML as a black box preconditioner. In some
cases, instead, the user may need to explicitly construct the ML hierarchy. This is reported
in the following sections.

A brief sample program is given in Figure 4. The function ML_Create creates a multilevel

ML_Create (&ml_object, N_grids);

ML_Init_Amatrix (ml_object, 0, nlocal, nlocal,(void *) A_data);
ML_Set_Amatrix_Getrow(ml_object, O, user_getrow, NULL, nlocal_allcolumns);
ML_Set_Amatrix_Matvec(ml_object, 0, user_matvec);

N_levels = ML_Gen_MGHierarchy_UsingAggregation(ml_object, O,
ML_INCREASING, NULL);
ML_Gen_Smoother_Jacobi(ml_object, ML_ALL_LEVELS, ML_PRESMOOTHER, 1,
ML_DEFAULT) ;
ML_Gen_Solver (ml_object, ML_MGV, 0, N_levels-1);
ML_Iterate(ml_object, sol, rhs);
ML_Destroy(&ml_object);

Figure 4: High level multigrid sample code.

solver object that is used to define the preconditioner. It requires the maximum number of
multigrid levels be specified. In almost all cases, N_grids= 20 is more than adequate. The
three ‘Amatrix’ statements are used to define the discretization matrix, A, that is solved.
This is discussed in greater detail in Section 12.1. The multigrid hierarchy is generated
via ML_Gen_MGHierarchy_UsingAggregation. Controlling the behavior of this function is dis-
cussed in Section 10. For now, it is important to understand that this function takes the
matrix A and sets up relevant multigrid operators corresponding to the smoothed aggre-
gation multigrid method [23] [22]. In particular, it generates a graph associated with A,
coarsens this graph, builds functions to transfer vector data between the original graph and
the coarsened graph, and then builds an approximation to A on the coarser graph. Once
this second multigrid level is completed, the same operations are repeated to the second
level approximation to A generating a third level. This process continues until the cur-
rent graph is sufficiently coarse. The function ML_Gen_Smoother_Jacobi indicates that a
Jacobi smoother should be used on all levels. Smoothers are discussed further in Section
9. Finally, ML_Gen_Solver is invoked when the multigrid preconditioner is fully specified.
This function performs any needed initialization and checks for inconsistent options. After
ML_Gen_Solver completes ML _Iterate can be used to solve the problem with an initial guess
of sol (which will be overwritten with the solution) and a right hand side of rhs. At the
present time, the external interface to vectors are just arrays. That is, rhs and sol are
simple one-dimensional arrays of the same length as the number of rows in A. In addition
to ML _lterate, the function ML _Solve_ MGV can be used to perform one multigrid ‘V’ cycle
as a preconditioner.
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9 Multigrid & Smoothing Options

Several options can be set to tune the multigrid behavior. In this section, smoothing and
high level multigrid choices are discussed. In the next section, the more specialized topic of
the grid transfer operator is considered.

For most applications, smoothing choices are important to the overall performance of
the multigrid method. Unfortunately, there is no simple advice as to what smoother will
be best and systematic experimentation is often necessary. ML offers a variety of standard
smoothers. Additionally, user-defined smoothers can be supplied and it is possible to use
AzTECas a smoother. A list of ML functions that can be invoked to use built-in smoothers
are given below along with a few general comments.

ML_Gen_Smoother_Jacobi Typically, not the fastest smoother. Should
be used with damping. For Poisson problems,
the recommended damping values are 2 (1D), 3
(2D), and % (3D). In general, smaller damping
numbers are more conservative.

ML_Gen_Smoother_GaussSeidel Probably the most popular smoother. Typi-
cally, faster than Jacobi and damping is often
not necessary nor advantageous.

ML_Gen_Smoother_SymGaussSeidel Symmetric version of Gauss Seidel. When us-
ing multigrid preconditioned conjugate gradi-
ent, the multigrid operator must be symmetriz-
able. This can be achieved by using a symmetric
smoother with the same number of pre and post
sweeps on each level.

ML_Gen_Smoother_BlockGaussSeidel Block Gauss-Seidel with a fixed block size. Of-
ten used for PDE systems where the block size
is the number of degrees of freedom (DOF's) per
grid point.

ML_Gen_Smoother_VBlockJacobi Variable block Jacobi smoother. This allows
users to specify unknowns to be grouped into
different blocks when doing block Jacobi.

ML _Gen_Smoother_VBlockSymGaussSeidel Symmetric variable block Gauss-Seidel smooth-
ing. This allows users to specify unknowns to be
grouped into different blocks when doing sym-
metric block Gauss-Seidel.

It should be noted that the parallel Gauss-Seidel smoothers are not true Gauss-Seidel. In
particular, each processor does a Gauss-Seidel iteration using off-processor information from
the previous iteration.

AZTEC user’s [20] can invoke ML_Gen_SmootherAztec to use either AZTEC solvers or
AZTEC preconditioners as smoothers on any grid level. Thus, for example, it is possible to
use preconditioned conjugate-gradient (where the preconditioner might be an incomplete
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Cholesky factorization) as a smoother within the multigrid method. Using Krylov smoothers
as a preconditioner could potentially be more robust than using the simpler schemes pro-
vided directly by ML. However, one must be careful when multigrid is a preconditioner to
an outer Krylov iteration. Embedding an inner Krylov method within a preconditioner to
an outer Krylov method may not converge due to the fact that the preconditioner can no
longer be represented by a simple matrix. Finally, it is possible to pass user-defined smooth-
ing functions into ML via ML_Set_Smoother. The signature of the user defined smoother
function is

int user_smoothing(ML_Smoother *smoother, int x_length, double x[],
int rhs_length, double rhs[])

where smoother is an internal ML object, x is a vector (of length x_length) that corre-

sponds to the initial guess on input and is the improved solution estimate on output, and rhs

is the right hand side vector of length rhs_length. The function ML_Get_MySmootherData(smoother)
can be used to get a pointer back to the user’s data (i.e. the data pointer given with the
ML_Set_Smoother invocation). A simple (and suboptimal) damped Jacobi smoother for the

finest grid of our example is given below:

int user_smoothing(ML_Smoother *smoother, int x_length, double x[], int rhs_length, double rhs[])
{

int i;
double ap[5], omega = .5; /* temp vector and damping factor */

Poisson_matvec (ML_Get_MySmootherData(smoother), x_length, x, rhs_length, ap);
for (i = 0; i < x_length; i++) x[i] = x[i] + omega*(rhs[i] - apl[il)/2.;

return O;

}

A more complete smoothing example that operates on all multigrid levels is given in the file
mlguide.c. This routine uses the functions ML_Operator_Apply, ML _Operator_Get_Diag, and
ML_Get_Amatrix to access coarse grid matrices constructed during the algebraic multigrid
process. By writing these user-defined smoothers, it is possible to tailor smoothers to a par-
ticular application or to use methods provided by other packages. In fact, the AZTEC meth-
ods within ML have been implemented by writing wrappers to existing AZTEC functions
and passing them into ML via ML_Set_Smoother.

At the present time there are only a few supported general parameters that may be
altered by users. However, we expect that this list will grow in the future. When us-
ing ML _lterate, the convergence tolerance (ML _Set_Tolerance) and the frequency with which
residual information is output (ML_Set_ResidualOutputFrequency) can both be set. Addi-
tionally, the level of diagnostic output from either ML _Iterate or ML _Solve_ MGV can be set
via ML_Set_OutputLevel. The maximum number of multigrid levels can be set via ML_Create
or ML_Set_MaxLevels. Otherwise, ML continues coarsening until the coarsest grid is less
than or equal to a specified size (by default 10 degrees of freedom). This size can be set via
ML_Aggregate Set_MaxCoarseSize.
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10 Smoothed Aggregation Options

When performing smooth aggregation, the matrix graph is first coarsened (actually vertices
are aggregated together) and then a grid transfer operator is constructed. A number of
parameters can be altered to change the behavior of these phases.

10.1 Aggregation Options

A graph of the matrix is usually constructed by associating a vertex with each equation
and adding an edge between two vertices i and j if there is a nonzero in the (i,7)" or
(4,4)" entry. It is this matrix graph whose vertices are aggregated together that effectively
determines the next coarser mesh. The above graph generation procedure can be altered in
two ways. First, a block matrix graph can be constructed instead of a point matrix graph.
In particular, all the degrees of freedom (DOFSs) at a grid point can be collapsed into a
single vertex of the matrix graph. This situation arises when a PDE system is being solved
where each grid point has the same number of DOFs. The resulting block matrix graph is
significantly smaller than the point matrix graph and by aggregating the block matrix graph,
all unknowns at a grid point are kept together. This usually results in better convergence
rates (and the coarsening is actually less expensive to compute). To indicate the number
of DOF's per node, the function ML_Aggregate_Set_NullSpace is used. The second way in
which the graph matrix can be altered is by ignoring small values. In particular, it is often
preferential to ignore weak coupling during coarsening. The error between weakly coupled
points is generally hard to smooth and so it is best not to coarsen in this direction. For
example, when applying a Gauss-Seidel smoother to a standard discretization of

Upy + €Uyy =

(with 0 < € < 1079) | there is almost no coupling in the y direction. Consequently, simple
smoothers like Gauss-Seidel do not effectively smooth the error in this direction. If we apply
a standard coarsening algorithm, convergence rates suffer due to this lack of y-direction
smoothing. There are two principal ways to fix this: use a more sophisticated smoother or
coarsen the graph only in the z direction. By ignoring the y-direction coupling in the matrix
graph, the aggregation phase effectively coarsens in only the z-direction (the direction for
which the errors are smooth) yielding significantly better multigrid convergence rates. In
general, a drop tolerance, tol;, can be set such that an individual matrix entry, A(i,j) is
dropped in the coarsening phase if

|A(4, j)| < tolg = /|A(i,9)A(j, 7).

This drop tolerance (whose default value is zero) is set by ML_Aggregate_Set_Threshold.
There are two different groups of graph coarsening algorithms in ML:

e schemes with fixed ratio of coarsening between levels: uncoupled aggregation, coupled
aggregation, and MIS aggregation. A description of those three schemes along with
some numerical results are given in [21]. As the default, the Uncoupled-MIS scheme
is used which does uncoupled aggregation on finer grids and switches to the more
expensive MIS aggregation on coarser grids;
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e schemes with variable ratio of coarsening between levels: METIS and PARMETISaggregation.
Those schemes use the graph decomposition algorithms provided by METIS and PARMETIS,
to create the aggregates.

Poorly done aggregation can adversely affect the multigrid convergence and the time per
iteration. In particular, if the scheme coarsens too rapidly multigrid convergence may suffer.
However, if coarsening is too slow, the number of multigrid levels increases and the number

of nonzeros per row in the coarse grid discretization matrix may grow rapidly. We refer the

reader to the above paper and indicate that users might try experimenting with the different

schemes via ML_Aggregate_Set_CoarsenScheme_Uncoupled, ML_Aggregate_Set_CoarsenScheme_Coupled,
ML_Aggregate_Set_CoarsenScheme_MIS, ML_Aggregate_Set_CoarsenScheme_METIS, and
ML_Aggregate_Set_CoarsenScheme_ParMETIS.

10.2 Interpolation Options

An interpolation operator is built using coarsening information, seed vectors, and a damping
factor. We refer the reader to [22] for details on the algorithm and the theory. In this section,
we explain a few essential features to help users direct the interpolation process.
Coarsening or aggregation information is first used to create a tentative interpolation
operator. This process takes a seed vector or seed vectors and builds a grid transfer operator.
The details of this process are not discussed in this document. It is, however, important
to understand that only a few seed vectors are needed (often but not always equal to
the number of DOFs at each grid point) and that these seed vectors should correspond
to components that are difficult to smooth. The tentative interpolation that results from
these seed vectors will interpolate the seed vectors perfectly. It does this by ensuring that
all seed vectors are in the range of the interpolation operator. This means that each seed
vector can be recovered by interpolating the appropriate coarse grid vector. The general
idea of smoothed aggregation (actually all multigrid methods) is that errors not eliminated
by the smoother must be removed by the coarse grid solution process. If the error after
several smoothing iterations was known, it would be possible to pick this error vector as the
seed vector. However, since this is not the case, we look at vectors associated with small
eigenvalues (or singular values in the nonsymmetric case) of the discretization operator.
Errors in the direction of these eigenvectors are typically difficult to smooth as they appear
much smaller in the residual (r = Ae where r is the residual, A is discretization matrix,
and e is the error). For most scalar PDEs, a single seed vector is sufficient and so we
seek some approximation to the eigenvector associated with the lowest eigenvalue. It is
well known that a scalar Poisson operator with Neumann boundary conditions is singular
and that the null space is the constant vector. Thus, when applying smoothed aggregation
to Poisson operators, it is quite natural to choose the constant vector as the seed vector.
In many cases, this constant vector is a good choice as all spatial derivatives within the
operator are zero and so it is often associated with small singular values. Within ML
the default is to choose the number of seed vectors to be equal to the number of DOFs
at each node (given via ML_Aggregate_Set_NullSpace). Each seed vector corresponds to a
constant vector for that DOF component. Specifically, if we have a PDE system with two
DOFs per node. Then one seed vector is one at the first DOF and zero at the other DOF
throughout the graph. The second seed vector is zero at the first DOF and one at the
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other DOF throughout the graph. In some cases, however, information is known as to
what components will be difficult for the smoother or what null space is associated with
an operator. In elasticity, for example, it is well known that a floating structure has six
rigid body modes (three translational vectors and three rotation vectors) that correspond
to the null space of the operator. In this case, the logical choice is to take these six vectors
(which can be computed with the help of ML_Coord2RBM() ) as the seed vectors in smoothed
aggregation. When this type of information is known, it should be given to ML via the
command ML_Aggregate_Set_NullSpace.

Once the tentative prolongator is created, it is smoothed via a damped Jacobi it-
eration. The reasons for this smoothing are related to the theory where the interpo-
lation basis functions must have a certain degree of smoothness (see [22]). However,
the smoothing stage can be omitted by setting the damping to zero using the function
ML _Aggregate_Set_DampingFactor. Though theoretically poorer, unsmoothed aggregation
can have considerably less set up time and less cost per iteration than smoothed aggrega-
tion. When smoothing, ML has a few ways to determine the Jacobi damping parameter and
each require some estimate of the spectral radius of the discretization operator. The current
default is to use a few iterations of the power method method (subspace size of two) to es-
timate this value (see ML_Set_SpectralNormScheme_PowerMethod) However, if the matrix is
symmetric conjugate-gradient method should be used via ML_Set_SpectralNormScheme_Calc.
It is also possible to change the default number of iterations used in the eigensolver from
ten via ML_Set SpectralNorm _lterations. There are several other internal parameters that
have not been discussed in this document. In the future, it is anticipated that some of these
will be made available to users.

11 Advanced Usage of ML and Epetra

Class ML _Epetra::MultiLevelOperator is defined in a header file, that must be included as
#include "ml_MultilLevelOperator.h"

Users may also need to includeml_config.h, Epetra_Operator.h, Epetra_MultiVector.h,
Epetra_LinearProblem.h, Aztec00.h. Check the EPETRA and AztecOO documentation
for more details.

Let A be an Epetra_RowMatrix for which we aim to construct a preconditioner, and let
ml_handle be the structure ML requires to store internal data (see Section 8), created with
the instruction

ML_Create(&ml_handle,N_levels);

where N_levels is the specified (maximum) number of levels. As already pointed out, ML
can accept in input very general matrices. Basically, the user has to specify the number of
local rows, and provide a function to update the ghost nodes (that is, nodes requires in the
matrix-vector product, but assigned to another process). For Epetra matrices, this is done
by the following function

EpetraMatrix2MLMatrix(ml_handle, 0, &A);
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and it is important to note that A is not converted to ML format. Instead, EpetraMa-
trix2MLMatrix defines a suitable getrow function (and other minor data structures) that
allows ML to work with A.

Let agg_object a ML_Aggregate pointer, created using

ML_Aggregate_Create(&agg_object);

At this point, users have to create the multilevel hierarchy, define the aggregation schemes,
the smoothers, the coarse solver, and create the solver. Then, we can finally create the
ML_Epetra::MultiLevelOperator object

ML_Epetra::MultilevelOperator MLop(ml_handle,comm,map,map);

(map being the Epetra_Map used to create the matrix) and set the preconditioning operator
of our AZTECOO solver,

Epetra_LinearProblem Problem(A,&x,&b) ;
Aztec00 Solver(Problem);
solver.SetPrecOperator (&MLop) ;

where x and b are Epetra_MultiVector’s defining solution and right-hand side. The linear
problem can now be solved as, for instance,

Solver.SetAztecOption( AZ_solver, AZ_gmres );
solver.Iterate(Niters, 1le-12);

12 Using ML without Epetra

12.1 Creating a ML matrix: Single Processor

Matrices are created by defining some size information, a matrix-vector product and a
getrow function (which is used to extract matrix information). We note that EPETRA and
A7ZTEC users do not need to read this (or the next) section as there are special functions to
convert EPETRA objects and AZTEC matrices to ML matrices (see Section 5.2). Further,
functions for some common matrix storage formats (CSR & MSR) already exist within ML
and do not need to be rewritten!2.

Size information is indicated via ML_Init_Amatrix. The third parameter in the Figure 4
invocation indicates that a matrix with nlocal rows is being defined. The fourth parameter
gives the vector length of vectors that can be multiplied with this matrix. Additionally, a
data pointer, A_data, is associated with the matrix. This pointer is passed back into the
matrix-vector product and getrow functions that are supplied by the user. Finally, the
number ‘0’ indicates at what level within the multigrid hierarchy the matrix is to be stored.
For discussions within this document, this is always ‘0’. It should be noted that there
appears to be some redundant information. In particular, the number of rows and the
vector length in ML_Init_Amatrix should be the same number as the discretization matrices
are square. Cases where these ‘apparently’ redundant parameters might be set differently
are not discussed in this document.

12The functions CSR_matvec, CSR_getrows, MSR_matvec and MSR_getrows can be used.
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The function ML_Set_Amatrix_Matvec associates a matrix-vector product with the dis-
cretization matrix. The invocation in Figure 4 indicates that the matrix-vector product
function user matvec is associated with the matrix located at level ‘0’ of the multigrid
hierarchy. The signature of user matvec is

int user_matvec(ML_Operator *Amat, int in_length, double p[], int out_length,
double apl[])

where A mat is an internal ML object, p is the vector to apply to the matrix, in_length is
the length of this vector, and ap is the result after multiplying the discretization matrix by
the vector p and out_length is the length of ap. The function ML_Get_MyMatvecData(Amat)
can be used to get a pointer back to the user’s data (i.e. the data pointer given with the
ML_Init_Amatrix invocation).

Finally, ML_Set_Amatrix_Getrow associates a getrow function with the discretization ma-
trix. This getrow function returns nonzero information corresponding to specific rows. The
invocation in Figure 4 indicates that a user supplied function user _getrow is associated
with the matrix located at level ‘0’ of the multigrid hierarchy and that this matrix con-
tains nlocal allcolumns columns and that no communication (NULL) is used (discussed
in the next section). It again appears that some redundant information is being asked as
the number of columns was already given. However, when running in parallel this number
will include ghost node information and is usually different from the number of rows. The
signature of user_getrow is

int user_getrow(ML_Operator *Amat, int N_requested_rows, int requested_rowsl[],
int allocated_space, int columns[], double values[], int row_lengths[])

where Amat is an internal ML object, N_requested rows is the number of matrix rows for
which information is returned, requested rows are the specific rows for which informa-
tion will be returned, allocated space indicates how much space has been allocated in
columns and values for nonzero information. The function ML_Get_MyGetrowData(Amat)
can be used to get a pointer back to the user’s data (i.e. the data pointer given with the
ML_Init_Amatrix invocation). On return, the user’s function should take each row in order
within requested rows and place the column numbers and the values corresponding to
nonzeros in the arrays columns and values. The length of the ith requested row should
appear in row_lengths[i]. If there is not enough allocated space in columns or values,
this routine simply returns a ‘0’, otherwise it returns a ‘1’.
To clarify, these functions, one concrete example is given corresponding to the matrix:

2 -1

-1 2 -1 . (5)
-1 2 -1
—1 2

To implement this matrix, the following functions are defined:

int Poisson_getrow(ML_Operator *Amat, int N_requested_rows, int requested_rows[],
int allocated_space, int columns[], double values[], int row_lengths[])
{

int count = 0, i, start, row;
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for (i = 0; i < N_requested_rows; i++) {
if (allocated_space < count+3) return(0);
start = count;
row = requested_rows[i];
if ( (row >= 0) || (row <= 4) ) {
columns [count] = row; values[count++] = 2.;

if (row != 0) { columns[count] = row-1; values[count++] = -1.; }
if (row !'= 4) { columns[count] = row+1l; values[count++] = -1.; }
¥
row_lengths[i] = count - start;
}
return(l);
}
and

int Poisson_matvec(ML_Operator *Amat, int in_length, double p[], int out_length,
double apl[])
{
int i;
for (i = 0; i < 5; i++ ) {
ap[i] = 2*p[il;
if (i != 0) apli]l -= pli-1];
if (i !'= 4) apl[i] -= pli+1];
}

return O;

}

Finally, these matrix functions along with size information are associated with the fine grid
discretization matrix via

ML_Init_Amatrix (ml_object, 0, 5, 5, NULL);
ML_Set_Amatrix_Getrow(ml_object, 0, Poisson_getrow, NULL, 5);
ML_Set_Amatrix_Matvec(ml_object, 0, Poisson_matvec);

Notice that in these simple examples Amat was not used. In the next section we give a
parallel example which makes use of Amat. The complete sample program can be found in
the file mlguide.c within the ML code distribution.

12.2 Creating a ML matrix: Multiple Processors

Creating matrices in parallel requires a bit more work. In this section local versus global
indexing as well as communication are discussed. In the description, we reconsider the
previous example (5) partitioned over two processors. The matrix row indices (ranging from
0 to 4) are referred to as global indices and are independent of the number of processors
being used. On distributed memory machines, the matrix is subdivided into pieces that are
assigned to individual processors. ML requires matrices be partitioned by rows (i.e. each
row is assigned to a processor which holds the entire data for that row). These matrix pieces
are stored on each processor as smaller local matrices. Thus, global indices in the original
matrix get mapped to local indices on each processor. In our example, we will assign global
rows 0 and 4 to processor 0 and store them locally as rows 1 and 0 respectively. Global
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columns 0, 1, 3, and 4 are stored locally as columns 1, 3, 2, and 0. This induces the local

matrix
2 -1
2 -1/

Likewise, processor 1 is assigned global rows 1, 2, and 3 which are stored locally as rows 0,
1, and 2 respectively. Global columns 0 - 4 are stored locally as columns 3, 0, 1, 2, and 4
inducing the local matrix
2 -1 -1
-1 2 -1
-1 2 -1

At the present time, there are some restrictions as to what type of mappings can be used. In
particular, all global rows stored on a processor must be mapped from 0 to k — 1 where k is
the number of rows assigned to this processor. This row mapping induces a partial column
mapping. Any additional columns must be mapped with consecutive increasing numbers
starting from k.

ML has no notion of global indices and uses only the local indices. In most cases,
another package or application already mapped the global indices to local indices and so
ML works with the existing local indices. Specifically, the parallel version of user_getrow
and user_matvec should correspond to each processor’s local matrix. This means that when
giving the column information with ML_Set_Amatrix_Getrow, the total number of columns
in the local matrix should be given and that when row £ is requested, user_getrow should
return the k™ local row using local column indices. Likewise, the matrix-vector product
takes a local input vector and multiplies it by the local matrix. It is important to note that
this local input vector does not contain ghost node data (i.e. the input vector is of length
nlocal where nlocal is the number of matrix rows). Thus, user matvec must perform the
necessary communication to update ghost variables. When invoking ML _Init_Amatrix, the
local number of rows should be given for the number of rows and the vector length'®. A
specific communication function must also be passed into ML when supplying the getrow
function so that ML can determine how local matrices on different processors are ‘glued’
together. The signature of the communication function is

int user_comm(double x[], void *Adata)

where A_data is the user-defined data pointer specified in the ML_Init_Amatrix and x is a
vector of length nlocal _allcolumns specified in ML_Set_Amatrix_Getrow. This parameter
should be set to the total number of matrix columns stored on this processor. On input,
only the first nlocal elements of x are filled with data where nlocal is the number of
rows/columns specified in ML_Init_Amatrix. On output, the ghost elements are updated to
their current values (defined on other processors). Thus, after this function a local matrix-
vector product could be properly performed using x. To make all this clear, we give the
new functions corresponding to our two processor example.

int Poisson_getrow(ML_Operator *Amat, int N_requested_rows, int requested_rows[],
int allocated_space, int cols[], double values[], int row_lengths[])

13Tn contrast to ML_Set_Amatrix_Getrow in which the number of local columns are given (including those that correspond to
ghost variables), ML_Init_Amatrix does not include ghost variables and so both size parameters should be the number of local
rows.
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int m = 0, i, row, proc, *itemp, start;

itemp = (int *) ML_Get_MyGetrowData(Amat);
proc = *itemp;

for (i = 0; i < N_requested_rows; i++) {
row = requested_rows[i];
if (allocated_space < m+3) return(0);

values[m] = 2; values[m+1] = -1; values[m+2] = -1;
start = m;
if (proc == 0) {
if (row == 0) {cols[m++] = 0; cols[m++] = 2; }
if (row == 1) {cols[m++] = 1; cols[m++] = 3;}
}
if (proc == 1) {
if (row == 0) {cols[m++] = 0; cols[m++] = 1; cols[m++] = 4;}
if (row == 1) {cols[m++] = 1; cols[m++] = 0; cols[m++] = 2;}
if (row == 2) {cols[m++] = 2; cols[m++] = 1; cols[m++] = 3;}
}
row_lengths[i] = m - start;
}
return(l);

}

int Poisson_matvec(ML_Operator *Amat, int in_length, double p[], int out_length,
double apl[])

{
int i, proc, *itemp;
double new_p[5];
itemp = (int *) ML_Get_MyMatvecData(Amat) ;
proc = *itemp;
for (i = 0; i < in_length; i++) new_p[i] = pl[il;
Poisson_comm(new_p, A_data);
for (i = 0; i < out_length; i++) ap[i] = 2.*new_pl[i];
if (proc == 0) {
ap[0] -= new_p[2];
ap[1] -= new_p[3];
}
if (proc == 1) {
ap[0] -= new_p[1]; ap[0] -= new_p[4];
ap[1] -= new_p[2]; ap[1] -= new_p[O0];
ap[2] -= new_p[3]; ap[2] -= new_p[1];
}
return O;
}
and

int Poisson_comm(double x[], void *A_data)

{
int proc, neighbor, length, *itemp;
double send_buffer[2], recv_buffer[2];
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}

itemp
proc

(int *) A_data;
*itemp;

length = 2;

if (proc == 0) {
neighbor = 1;
send_buffer[0] = x[0]; send_buffer[1] = x[1];
send_msg(send_buffer, length, neighbor);
recv_msg(recv_buffer, length, neighbor);
x[2] = recv_buffer([1]; x[3] = recv_buffer[0];

}

else {
neighbor = 0;
send_buffer[0] = x[0]; send_buffer[1] = x[2];
send_msg(send_buffer, length, neighbor);
recv_msg(recv_buffer, length, neighbor);
x[3] = recv_buffer[1]; x[4] = recv_buffer[0];

}

return O;

Finally, these matrix functions along with size information are associated with the fine grid
discretization matrix via

if (proc == 0) {nlocal = 2; nlocal_allcolumns = 4;}
else if (proc == 1) {nlocal = 3; nlocal_allcolumns = 5;}
else {nlocal = 0; nlocal_allcolumns = O0;}
ML_Init_Amatrix (ml_object, 0, nlocal, nlocal, &proc);

ML_Set_Amatrix_Getrow(ml_object, O, Poisson_getrow, Poisson_comm,
nlocal_allcolumns) ;
ML_Set_Amatrix_Matvec(ml_object, 0, Poisson_matvec);

13 MLMEX: The MATLAB Interface for ML

MLMEX is ML’s interface to the MATLAB environment. It allows access to a limited set
of routines either using the ML_Epetra or the MLAPI interfaces. It is designed to provide
access to ML’s aggregation and solver routines from MATLAB and does little else. MLMEX
allows users to setup and solve arbitrarily many problems, so long as memory suffices. More
than one problem can be setup simultaneously.

13.1 Configure and Make

In order to use MLMEX, ML must be configured with (at least) the following options:

./configure -enable-epetra --enable-teuchos --enable-ifpack \

--enable-aztecoo --enable-galeri --enable-amesos --enable-epetraext \
--enable-ml-matlab \

--with-matlab-exec=<directory with matlab binaries> \
--with-matlab-root=<root directory of matlab install>

99



Most additional options (such as ——enable-zoltan) can be specified as well. It is important
to note that MLMEX does not work properly with MPI, hence MPI must be disabled in
order to compile MLMEX .
On 64-bit Intel/AMD architectures, ML and all required Trilinos libraries must be com-
piled with the ~fPIC option. This necessitates adding CFLAGS=-fPIC CXXFLAGS=-fPIC FFLAGS=-fPIC
to the Trilinos configure line. Currently, MLMEX will not compile under Solaris.
The build system uses the mexext script from Mathworks to detect the appropriate file
extension for the architecture. At present, this means that cross-compilation is not possible.
It also means that MLMEX will only support MATLAB 7.2 (R2006a) and up.

13.2 Using MLMEX

MLMEX is designed to be interfaced with via the MATLAB script m1.m. There are five
modes in which MLMEX can be run:

1. Setup Mode — Performs the problem setup for ML. Depending on whether or not the
mlmex: interface option is used, MLMEX creates either a ML_Epetra or MLAPI
object. This call returns a problem handle used to reference the problem in the future.

2. Solve Mode — Given a problem handle and a right-hand side, ML solves the problem
specified. Setup mode must be called before solve mode.

3. Cleanup Mode — Frees the memory allocated to internal ML objects. This can be
called with a particular problem handle, in which case it frees that problem, or without
one, in which case all MLMEX memory is freed.

4. Status Mode — Prints out status information on problems which have been set up.
Like cleanup, it can be called with or without a particular problem handle.

5. Aggregate Mode — Uses MLMEX as an interface to ML’s aggregation routines.

All of these modes, with the exception of status and cleanup take option lists which will be
directly converted into Teuchos: :ParameterList objects by MLMEX. This means that the
options described in Section 6 for ML_Epetra and those in the MLAPI guide (for MLAPI)
will work correctly for MLMEX.

13.2.1 Setup Mode
Setup mode is called as follows:
>> [h,oc]=ml(’setup’,A, [’parameter’,value,...])

The parameter A represents the sparse matrix to perform aggregation on and the parame-
ter/value pairs represent standard ML options.
The routine returns a problem handle, h, and the operator complexity oc for the operator.
In addition to the standard options, setup mode has one unique option of its own:
mlmex: interface [string] Whether to use ML_Epetra (’epetra’)
or MLAPI (‘mlapi’). Default: ’epetra’.
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13.2.2 Solve Mode

Solve mode is called as follows:
>> x=ml(h,A,b, [’parameter’,value,...])

The parameter h is a problem handle returned by the setup mode call, A is the sparse
matrix with which to solve and b is the right-hand side. Parameter/value pairs are as
above. However, a few additional MLAPI options, normally not supported by ML_Epetra,
are supported as well:

krylov: tolerance [double] Tolerance for the solver. Default: 1e-9.

krylov: max iterations [int] Maximum number of krylov iterations.
Default 1550.

krylov: type [string] Solver to use, e.g. ‘cg’, 'gmres’, "fixed

point’. Default 'gmres’.

krylov: output level [int] ML output level. Default 10.
krylov: conv [string] ML convergence criterion. Default
0’

All of these options are taken directly from MLAPI, so consult its manual for more
information.

13.2.3 Cleanup Mode

Cleanup mode is called as follows:
>> ml(’cleanup’, [h])

The parameter h is a problem handle returned by the setup mode call and is optional. If h
is provided, that problem is cleaned up. If the option is not provided all currently set up
problems are cleaned up.

13.2.4 Status Mode

Status mode is called as follows:
>> ml(’status’, [h])

The parameter h is a problem handle returned by the setup mode call and is optional. If h
is provided, status information for that problem is printed. If the option is not provided all
currently set up problems have status information printed.

13.2.5 Aggregate Mode
Status mode is called as follows:

>> agg=ml(’aggregate’,A, [’parameter’,value,...])

The parameter A represents the sparse matrix to perform aggregation upon. The aggregates
are returned and all memory is immediately freed. The purpose of this option is to allow
access to ML’s aggregation routines in MATLAB.
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13.3 Tips and Tricks

Internally, MATLAB represents all data as doubles unless you go through efforts to do
otherwise. MLMEX detects integer parameters by a relative error test, seeing if the relative
difference between the value from MATLAB and the value of the int-typecast value are
less than le-15. Unfortunately, this means that MLMEX will choose the incorrect type for
parameters which are doubles that happen to have an integer value (a good example of where
this might happen would be the parameter ‘smoother Chebyshev: alpha’, which defaults to
30.0). Since MLMEX does no internal typechecking of parameters (it uses ML’s internal
checks), it has no way of detecting this conflict. From the user’s perspective, avoiding this
is as simple as adding a small perturbation (greater than a relative le-15) to the parameter
that makes it non-integer valued.
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