Hurl Documentation

Version 7.0.0 - 28-07-2025

Table of Contents

« Introduction

What'’s Hurl?

Also an HTTP Test Tool
Why Hurl?
Powered by curl
Feedbacks

Resources

o Getting_Started

(]

(]

(]

Installation
= Binaries Installation
= Linux
= Debian / Ubuntu
= Alpine
« Arch Linux / Manjaro
= NixOS / Nix

= macOS
= Homebrew
= MacPorts

= FreeBSD
= Windows
« [nstaller
« Chocolatey
= Scoop
» Windows Package Manager

= Cargo

= conda-forge
= Docker

= hpm

« Building_ From Sources
= Build on Linux
= Debian based distributions
= Fedora based distributions
= Red Hat based distributions
= Arch based distributions
= Alpine based distributions

= Build on macOS
= Build on Windows

Manual

= Name

= Synopsis

= Description

= Hurl File Format
= Capturing_values
= Asserts

= Options

= Environment
« Exit Codes

- WWW

=« See Also

Samples

file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#getting-started-installation-debian--ubuntu
file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#getting-started-installation-arch-linux--manjaro
file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#getting-started-installation-nixos--nix

= Getting Data

HTTP Headers

Query Params

Basic Authentication

Passing Data between Requests

= Sending Data

Sending HTML Form Data
Sending_Multipart Form Data
Posting.a JSON Body,
Templating_a JSON Body
Templating_a XML Body
Using_GraphQL Query

Using Dynamic Datas

« Testing Response

Testing_Status Code
Testing_Response Headers
Testing REST APIs

Testing HTML Response
Testing_Set-Cookie Attributes
Testing Bytes Content

SSL Certificate
Checking_Full Body,
Testing_Redirections

= Debug Tips

Verbose Mode

Error Format

Output Response Body,
Export curl Commands
Using_Proxy,

= Reports

HTML Report
JSON Report
JUnit Report
TAP Report

JSON Output

= Others

HTTP Version

IP Address

Polling and Retry,

Delaying_ Requests
Skipping_Requests

Testing_ Endpoint Performance
Using SOAP APIs

Capturing and Using_a CSRF Token
Redacting_Secrets

Checking_Byte Order Mark (BOM)_in Response Body
AWS Signature Version 4 Requests
Using_curl Options

Running_Tests
« Use --test Option

Selecting Tests

= Debugging

Debug Logs
HTTP Responses

= Generating Report

HTML Report

JSON Report
JUnit Report
TAP Report

= Use Variables in Tests

o Frequently Asked Questions

= General

Why “Hurl’?

Yet Another Tool, | already use X

Hurl is build on top of libcurl, but what is added?

Why shouldn’t | use Hurl?

| have a large numbers of tests, how to run just specific tests?

How can | use my Hurl files outside Hurl?

Can | do calculation within a Hurl file?

« macOS

o File Format

o Hurl File

How can | use a custom libcurl (from Homebrew by instance)?

=« Character Encoding

= File Extension
« Comments

=« Special Characters in Strings

o Entry

= Definition
= Example
= Description

o Request

Options
Cookie storage
Redirects
Retry

Control flow

= Definition
= Example
= Structure

Method
URL
Headers
Options
Query parameters
Form parameters
Multipart Form Data
Cookies
Basic Authentication
Body.

= JSON body

= XML body

= GraphQL query,

= Multiline string body

= Oneline string_body

=« Base64 body
= Hex body
= File body

o Response
= Definition
= Example
= Structure

= Capture and Assertion
= Body compression

« Timings

o Capturing Response
= Captures
= Query
= Status capture
= Version capture
= Header capture
= Cookie capture
= Body capture
= Bytes capture
=« XPath capture
»« JSONPath capture
= Regex capture
= SHA-256 capture
= MDS5 capture
« URL capture
= Redirects capture
= |P address capture
= Variable capture
=« Duration capture
« SSL certificate capture

= Redacting Secrets

o Asserting Response
= Asserts
= Structure

« Implicit asserts
= Version - Status
= Headers
= Body
= JSON body
= XML body
= Multiline string_body
= Oneline string_ body

= Base64 body
= File body

« Explicit asserts
= Predicates
= Status assert
= Version assert
« Header assert
= Cookie assert
= Body assert
= Bytes assert
= XPath assert
= JSONPath assert
= Regex assert
= SHA-256 assert
=« MD5 assert
= URL assert
= Redirects assert
= |P address assert
= Variable assert
= Duration assert
= SSL certificate assert

(]

Filters

= Definition
« Example
= Description

base64Decode
base64Encode
base64UrlSafeDecode
base64UrlSafeEncode
count
daysAfterNow
daysBeforeNow
decode

first

format
htmlEscape
htmlUnescape
jsonpath

last

location

nth

regex

replace
replaceRegex
split

toDate

toFloat

toHex

tolnt

toString
urlDecode
urlEncode
urlQueryParam
xpath

o Templates

= Variables

= Functions

= Types

= Injecting Variables

(]

(]

variable option
variables—file option
Environment variable
Options sections
Secrets

= Templating Body

Grammar

= Definitions
= Syntax Grammar

Resources
License

Introduction

Hurl&

What’s Hurl?

Hurl is a command line tool that runs HTTP requests defined in a simple plain text format.

It can chain requests, capture values and evaluate queries on headers and body response. Hurl is
very versatile: it can be used for both fetching data and testing HTTP sessions.

Hurl makes it easy to work with HTML content, REST / SOAP / GraphQL APIs, or any other XML /
JSON based APIs.

Go home and capture token

GET https://example.org

HTTP 200

[Captures]

csrf_token: xpath "string(//metal@name='_csrf_token']/@content)"

Do login!

POST https://example.org/login
X-CSRF-TOKEN: {{csrf_token}}
[Form]

user: toto

password: 1234

HTTP 302

Chaining multiple requests is easy:

GET https://example.org/api/health
GET https://example.org/api/stepl
GET https://example.org/api/step2
GET https://example.org/api/step3

Also an HTTP Test Tool

Hurl can run HTTP requests but can also be used to test HTTP responses. Different types of
queries and predicates are supported, from XPath and JSONPath on body response, to assert on
status code and response headers.

It is well adapted for REST / JSON APIs

POST https://example.org/api/tests

{
"id": "4568",
"evaluate": true
}
HTTP 200
[Asserts]

header "X-Frame-Options" == "SAMEORIGIN"

https://en.wikipedia.org/wiki/XPath
https://goessner.net/articles/JsonPath/

jsonpath "$.status" == "RUNNING" # Check the status code

jsonpath "$.tests" count == 25 # Check the number of items
jsonpath "$.id" matches /\d{4}/ # Check the format of the id
HTML content

GET https://example.org

HTTP 200

[Asserts]

xpath "normalize-space(//head/title)" == "Hello world!"

GraphQL

POST https://example.org/graphql

“graphgl
{
human(id: "1000") {
name
height(unit: FOOT)
b
¥
HTTP 200

and even SOAP APIs

POST https://example.org/InStock
Content-Type: application/soap+xml; charset=utf-8
SOAPAction: "http://www.w3.0rg/2003/05/soap—envelope"
<?xml version="1.0" encoding="UTF-8"7?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap—envelope" xmlns:m="htt
<soap:Header></soap:Header>
<soap:Body>
<m:GetStockPrice>
<m:StockName>G00G</m: StockName>
</m:GetStockPrice>
</soap:Body>
</soap:Envelope>
HTTP 200

Hurl can also be used to test the performance of HTTP endpoints

GET https://example.org/api/vl/pets
HTTP 200

[Asserts]

duration < 1000 # Duration in ms

And check response bytes

GET https://example.org/data.tar.gz

HTTP 200

[Asserts]

sha256 == hex,039058c6f2c0Ocb492c533b0addl4ef77ccOf78abccced5287d84a1a2011cfh81;

Finally, Hurl is easy to integrate in CI/CD, with text, JUnit, TAP and HTML reports

Oms 100 ms 200 ms 300 ms

I
|
[|
(|

@ GET https:/hurl.dev/blog 301
B DNS lookup 26.0 ys
[TCP handshake 0.0 s
[sSLhandshake 0.0 us
B wait 14.8 ms

Why Hurl?

Text Format

For both devops and developers

Fast CLI

A command line for local dev and continuous integration
Single Binary

Easy to install, with no runtime required

Powered by curl

Hurl is a lightweight binary written in Rust. Under the hood, Hurl HTTP engine is powered by libcurl,
one of the most powerful and reliable file transfer libraries. With its text file format, Hurl adds
syntactic sugar to run and test HTTP requests, but it’s still the curl that we love: fast, efficient and
IPv6 / HTTP/3 ready.

Feedbacks

To support its development, star Hurl on GitHub!

Feedback, suggestion, bugs or improvements are welcome.

POST https://hurl.dev/api/feedback

{
"name": "John Doe",
"feedback": "Hurl is awesome!"
}
HTTP 200
Resources
License

Blog

https://www.rust-lang.org/
https://curl.se/libcurl/
https://curl.se/
https://github.com/Orange-OpenSource/hurl/stargazers
https://github.com/Orange-OpenSource/hurl/issues
file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#resources-license
https://hurl.dev/blog

Tutorial

Documentation (download HTML, PDF, Markdown) .gz

GitHub

https://hurl.dev/docs/tutorial/your-first-hurl-file.html
https://hurl.dev/
https://hurl.dev/assets/docs/hurl-7.0.0.html
file:///docs/standalone/hurl-7.0.0.pdf
file:///docs/standalone/hurl-7.0.0.html#
https://github.com/Orange-OpenSource/hurl

Getting Started

Installation

Binaries Installation
Linux

Precompiled binary (depending on libc >=2.35) is available at Hurl latest GitHub release:

$ INSTALL_DIR=/tmp

$ VERSION=6.1.1

$ curl ——silent —--location https://github.com/0Orange-OpenSource/hurl/releases/do
$ export PATH=$INSTALL_DIR/hurl-$VERSION-x86_64—-unknown-linux—gnu/bin:$PATH

Debian / Ubuntu

For Debian >=12 / Ubuntu >=22.04, Hurl can be installed using a binary .deb file provided in each
Hurl release.

$ VERSION=6.1.1
$ curl ——location —--remote-name https://github.com/Orange-OpenSource/hurl/releas:
$ sudo apt update && sudo apt install ./hurl_${VERSION}_amd64.deb

For Ubuntu >=18.04, Hurl can be installed from ppa: lepapareil/hurl

$ VERSION=6.1.1
$ sudo apt-add-repository -y ppa:lepapareil/hurl
$ sudo apt install hurl="${VERSION}'"x

Alpine

Hurl is available on testing channel.

$ apk add ——repository http://dl-cdn.alpinelinux.org/alpine/edge/testing hurl

Arch Linux / Manjaro

Hurl is available on exira channel.

$ pacman -Sy hurl

NixOS / Nix

NixOS / Nix package is available on stable channel.

macOS

Precompiled binaries for Intel and ARM CPUs are available at Hurl latest GitHub release.

https://github.com/Orange-OpenSource/hurl/releases/latest
https://archlinux.org/packages/extra/x86_64/hurl/
https://search.nixos.org/packages?from=0&size=1&sort=relevance&type=packages&query=hurl
https://github.com/Orange-OpenSource/hurl/releases/latest

Homebrew

$ brew install hurl

MacPorts

$ sudo port install hurl

FreeBSD

$ sudo pkg install hurl

Windows

Windows requires the Visual C++ Redistributable Package to be installed manually, as this is not
included in the installer.

Zip File

Hurl can be installed from a standalone zip file at Hurl latest GitHub release. You will need to update
your PATH variable.

Installer

An executable installer is also available at Hurl latest GitHub release.

Chocolatey

$ choco install hurl

Scoop

$ scoop install hurl

Windows Package Manager

$ winget install hurl

Cargo

If you’re a Rust programmer, Hurl can be installed with cargo.

$ cargo install —--locked hurl

conda-forge

$ conda install -c conda-forge hurl

Hurl can also be installed with conda—-forge powered package manager like pixi.

https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170#latest-microsoft-visual-c-redistributable-version
https://github.com/Orange-OpenSource/hurl/releases/latest
https://github.com/Orange-OpenSource/hurl/releases/latest
https://conda-forge.org/
https://prefix.dev/

Docker

$ docker pull ghcr.io/orange-opensource/hurl:latest

npm

$ npm install --save-dev @orangeopensource/hurl

Building From Sources
Hurl sources are available in GitHub.

Build on Linux

Hurl depends on libssl, libcurl and libxml2 native libraries. You will need their development files in
your platform.

Debian based distributions

$ apt install -y build-essential pkg-config libssl-dev libcurl4-openssl-dev libxi

Fedora based distributions

$ dnf install -y pkgconf-pkg-config gcc openssl-devel libxml2-devel clang-devel

Red Hat based distributions

$ yum install -y pkg-config gcc openssl-devel libxml2-devel clang-devel

Arch based distributions

$ pacman -S —-noconfirm pkgconf gcc glibc openssl 1ibxm12 clang

Alpine based distributions

$ apk add curl-dev gcc libxml2-dev musl-dev openssl-dev clang-dev

Build on macOS

$ xcode-select ——install
$ brew install pkg-config

Hurl is written in Rust. You should install the latest stable release.

$ curl https://sh.rustup.rs -sSf | sh -s —— -y

https://github.com/Orange-OpenSource/hurl
https://www.rust-lang.org/
https://www.rust-lang.org/tools/install

$ source $HOME/.cargo/env
$ rustc ——version
$ cargo —-version

Then build hurl:

$ git clone https://github.com/Orange-OpenSource/hurl
$ cd hurl

$ cargo build --release

$./target/release/hurl ——version

Build on Windows

Please follow the contrib on Windows section.

Manual

Name

hurl - run and test HTTP requests.

Synopsis

hurl [options] [FILE...]

Description
Hurl is a command line tool that runs HTTP requests defined in a simple plain text format.

It can chain requests, capture values and evaluate queries on headers and body response. Hurl is
very versatile, it can be used for fetching data and testing HTTP sessions: HTML content, REST /
SOAP / GraphQL APIs, or any other XML / JSON based APIs.

$ hurl session.hurl

If no input files are specified, input is read from stdin.

$ echo GET http://httpbin.org/get | hurl
{

"args": {},

"headers": {
"Accept": "x/x",
"Accept-Encoding": "gzip",
"Content-Length": "0",
"Host": "httpbin.org",
"User-Agent": "hurl/0.99.10",
""X-Amzn-Trace-Id": "Root=1-5eedf4c7-520814d64e2f9249ead4e0"

+

"origin": "1.2.3.4",

"url": "http://httpbin.org/get"

https://github.com/Orange-OpenSource/hurl/blob/master/contrib/windows/README.md

Hurl can take files as input, or directories. In the latter case, Hurl will search files with . hurl
extension recursively.

Output goes to stdout by default. To have output go to a file, use the -0, ——output option:

$ hurl —o output input.hurl

By default, Hurl executes all HTTP requests and outputs the response body of the last HTTP call.

To have a test oriented output, you can use ——test option:

$ hurl ——test *x.hurl

Hurl File Format

The Hurl file format is fully documented in https://hurl.dev/docs/hurl-file.html

It consists of one or several HTTP requests

GET http://example.org/endpointl
GET http://example.org/endpoint2

Capturing values

A value from an HTTP response can be-reused for successive HTTP requests.

A typical example occurs with CSRF tokens.

GET https://example.org

HTTP 200

Capture the CSRF token value from html body.

[Captures]

csrf_token: xpath "normalize-space(//metal@name='_csrf_token']/@content)"

Do the login !

POST https://example.org/login?user=toto&password=1234
X-CSRF-TOKEN: {{csrf_token}}

More information on captures can be found here htips:/hurl.dev/docs/capturing-response.html

Asserts

The HTTP response defined in the Hurl file are used to make asserts. Responses are optional.

At the minimum, response includes assert on the HTTP status code.

GET http://example.org
HTTP 301

It can also include asserts on the response headers

GET http://example.org
HTTP 301

https://hurl.dev/docs/hurl-file.html
https://hurl.dev/docs/capturing-response.html

Location: http://www.example.org

Explicit asserts can be included by combining a query and a predicate

GET http://example.org

HTTP 301

[Asserts]

xpath "string(//title)" == "301 Moved"

With the addition of asserts, Hurl can be used as a testing tool to run scenarios.

More information on asserts can be found here https://hurl.dev/docs/asserting-response.html

Options
Options that exist in curl have exactly the same semantics.

Options specified on the command line are defined for every Hurl file’s entry, except if they are
tagged as cli-only (can not be defined in the Hurl request [Options] entry)

For instance:

$ hurl ——location foo.hurl

will follow redirection for each entry in foo.hurl. You can also define an option only for a particular
entry with an [Options] section. For instance, this Hurl file:

GET https://example.org
HTTP 301

GET https://example.org
[Options]

location: true

HTTP 200

will follow a redirection only for the second entry.

Option Description

Generate an Authorization
header with an AWS SigV4
signature.

Use -u,_—-user to specify Access
Key Id (username) and Secret Key

——aws-sigv4
o (password).

<PROVIDER1[:PROVIDER2[:REGION[:SERVICE]]]>

To use temporary session
credentials (e.g. for an AWS IAM
Role), add the X—Amz-Security-
Token header containing the
session token.

Specifies the certificate file for peer
verification. The file may contain

https://hurl.dev/docs/asserting-response.html

——cacert <FILE>

—E, ——cert <CERTIFICATE[:PASSWORD]>

——color

——compressed

——connect—timeout <SECONDS>

——connect-to <HOST1:PORT1:HOST2:PORT2>

——continue-on-error

_b,

——cookie <FILE>

multiple CA certificates and must
be in PEM format.

Normally Hurl is built to use a
default file for this, so this option is
typically used to alter that default
file.

Client certificate file and password.
See also ——key.

Colorize debug output (the HTTP
response output is not colorized).

This is a cli-only option.

Request a compressed response
using one of the algorithms br,
gzip, deflate and automatically
decompress the content.

Maximum time in seconds that you
allow Hurl’s connection to take.

You can specify time units in the
connect timeout expression. Set
Hurl to use a connect timeout of 20
seconds with ——connect-timeout
20s or set it to 35,000 milliseconds
with ——connect-timeout 35000ms.
No spaces allowed.

See also -m,_——max-time.

For a request to the given
HOST1:PORT1 pair, connect to
HOST2:PORT2 instead. This
option can be used several times in
a command line.

See also ——resolve.

Continue executing requests to the
end of the Hurl file even when an
assert error occurs.

By default, Hurl exits after an
assert error in the HTTP response.

Note that this option does not affect
the behavior with multiple input
Hurl files.

All the input files are executed
independently. The result of one
file does not affect the execution of
the other Hurl files.

This is a cli-only option.

Read cookies from FILE (using the
Netscape cookie file format).

Combined with —c, -—cookie-jar,
you can simulate a cookie storage

—C, ——cookie—jar <FILE>

——curl <FILE>

——delay <MILLISECONDS>

——error—format <FORMAT>

—file-root <DIR>

——from-entry <ENTRY_NUMBER>

——glob <GLOB>

between successive Hurl runs.
This is a cli-only option.

Write cookies to FILE after running
the session.

The file will be written using the
Netscape cookie file format.

Combined with b, -—cookie, you
can simulate a cookie storage
between successive Hurl runs.

This is a cli-only option.

Export each request to a list of curl
commands.

This is a cli-only option.

Sets delay before each request
(aka sleep). The delay is not
applied to requests that have been
retried because of ——retry. See ——
retry—interval to space retried
requests.

You can specify time units in the
delay expression. Set Hurl to use a
delay of 2 seconds with ——delay
2s or set it to 500 milliseconds with
—-—delay 500ms. No spaces
allowed.

Control the format of error
message (short by default or long)

This is a cli-only option.

Set root directory to import files in
Hurl. This is used for files in
multipart form data, request body
and response output.

When it is not explicitly defined,
files are relative to the Hurl file’s
directory.

This is a cli-only option.

Execute Hurl file from
ENTRY_NUMBER (starting at 1).

This is a cli-only option.

Specify input files that match the
given glob pattern.

Multiple glob flags may be used.
This flag supports common Unix
glob patterns like *, ? and [].
However, to avoid your shell
accidentally expanding glob
patterns before Hurl handles them,
you must use single quotes or

-H, ——header <HEADER>

|

|
>
—~+
~+
el
I

——http3

——ignore—asserts

—i, ——include
-k, ——insecure
-4, ——ipvd

=6, _——ipvb

——jobs <NUM>

double quotes around each
pattern.

This is a cli-only option.

Add an extra header to include in
information sent. Can be used
several times in a command

Do not add newlines or carriage
returns

Tells Hurl to use HTTP version 1.0
instead of using its internally
preferred HTTP version.

Tells Hurl to use HTTP version 1.1.

Tells Hurl to use HTTP version 2.
For HTTPS, this means Hurl
negotiates HTTP/2 in the TLS
handshake. Hurl does this by
default.

For HTTP, this means Hurl
attempts to upgrade the request to
HTTP/2 using the Upgrade:
request header.

Tells Hurl to try HTTP/3 to the host
in the URL, but fallback to earlier
HTTP versions if the HTTP/3
connection establishment fails.
HTTP/3 is only available for
HTTPS and not for HTTP URLs.

Ignore all asserts defined in the
Hurl file.

This is a cli-only option.

Include the HTTP headers in the
output

This is a cli-only option.

This option explicitly allows Hurl to
perform “insecure” SSL
connections and transfers.

This option tells Hurl to use IPv4
addresses only when resolving
host names, and not for example
try IPv6.

This option tells Hurl to use IPv6
addresses only when resolving
host names, and not for example
try IPv4.

Maximum number of parallel jobs
in parallel mode. Default value
corresponds (in most cases) to the
current amount of CPUs.

—=json

—key <KEY>

—limit-rate <SPEED>

=L,

——location

——location-trusted

——max-filesize <BYTES>

—max—redirs <NUM>

-m,

——max—time <SECONDS>

See also ——parallel.
This is a cli-only option.

Output each Hurl file result to
JSON. The format is very closed to
HAR format.

This is a cli-only option.
Private key file name.

Specify the maximum transfer rate
you want Hurl to use, for both
downloads and uploads. This
feature is useful if you have a
limited pipe and you would like
your transfer not to use your entire
bandwidth. To make it slower than
it otherwise would be.

The given speed is measured in
bytes/second.

Follow redirect. To limit the amount
of redirects to follow use the ——
max—redirs option

Like =L, —-—location, but allows
sending the name + password to all
hosts that the site may redirect to.
This may or may not introduce a
security breach if the site redirects
you to a site to which you send
your authentication info (which is
plaintext in the case of HTTP Basic
authentication).

Specify the maximum size in bytes
of a file to download. If the file
requested is larger than this value,
the transfer does not start.

This is a cli-only option.

Set maximum number of
redirection-followings allowed

By default, the limit is set to 50
redirections. Set this option to -1 to
make it unlimited.

Maximum time in seconds that you
allow a request/response to take.
This is the standard timeout.

You can specify time units in the
maximum time expression. Set
Hurl to use a maximum time of 20
seconds with ——max-time 20s or
set it to 35,000 milliseconds with ——
max—time 35000ms. No spaces
allowed.

See also ——connect-timeout.

——negotiate

—n, ——netrc

——netrc—file <FILE>

——netrc—optional

——no—-color

——no-output

——noproxy_<HOST(S)>

——ntlm

-0, —output <FILE>

——parallel

——path-as-is

Tell Hurl to use Negotiate
(SPNEGO) authentication.

This is a cli-only option.
Scan the .netrc file in the user’s
home directory for the username

and password.

See also ——netrc-file and ——
netrc-optional.

Like ——netrc, but provide the path
to the netrc file.

See also ——netrc-optional.

Similar to ——netrc, but make the
.netrc usage optional.

See also ——netrc-file.

Do not colorize output.

This is a cli-only option.
Suppress output. By default, Hurl
outputs the body of the last
response.

This is a cli-only option.

Comma-separated list of hosts
which do not use a proxy.

Override value from Environment
variable no_proxy.

Tell Hurl to use NTLM
authentication

This is a cli-only option.

Write output to FILE instead of
stdout. Use ‘-* for stdout in
[Options] sections.

Run files in parallel.

Each Hurl file is executed in its own
worker thread, without sharing
anything with the other workers.
The default run mode is sequential.
Parallel execution is by default in —
—test mode.

See also ——jobs.

This is a cli-only option.

Tell Hurl to not handle sequences
of /../ or /./ in the given URL path.

Normally Hurl will squash or merge
them according to standards but

——pinnedpubkey <HASHES>

——progress—bar

=X, _——proxy_ <[PROTOCOL://]HOST[:PORT]>

——repeat <NUM>

——report-html <DIR>

——report-json <DIR>

——report—junit <FILE>

——report-tap <FILE>

with this option set you tell it not to
do that.

When negotiating a TLS or SSL
connection, the server sends a
certificate indicating its identity. A
public key is extracted from this
certificate and if it does not exactly
match the public key provided to
this option, Hurl aborts the
connection before sending or
receiving any data.

Display a progress bar in test
mode. The progress bar is
displayed only in interactive TTYs.
This option forces the progress bar
to be displayed even in non-
interactive TTYs.

This is a cli-only option.

Use the specified proxy.

Repeat the input files sequence
NUM times, -1 for infinite loop.
Given a.hurl, b.hurl, c.hurl as input,
repeat two

times will run a.hurl, b.hurl, c.hurl,
a.hurl, b.hurl, c.hurl.

Generate HTML report in DIR.

If the HTML report already exists, it
will be updated with the new test
results.

This is a cli-only option.

Generate JSON report in DIR.

If the JSON report already exists, it
will be updated with the new test
results.

This is a cli-only option.

Generate JUnit File.

If the FILE report already exists, it
will be updated with the new test
results.

This is a cli-only option.

Generate TAP report.

If the FILE report already exists, it
will be updated with the new test
results.

This is a cli-only option.

Provide a custom address for a

——resolve <HOST:PORT:ADDR>

——retry <NUM>

—retry—-interval <MILLISECONDS>

——secret <NAME=VALUE>

——ssl-no-revoke

——test

——to—-entry <ENTRY_ NUMBER>

specific host and port pair. Using
this, you can make the Hurl
requests(s) use a specified
address and prevent the otherwise
normally resolved address to be
used. Consider it a sort of
/etc/hosts alternative provided on
the command line.

Maximum number of retries, 0 for
no retries, -1 for unlimited retries.
Retry happens if any error occurs
(asserts, captures, runtimes etc...).

Duration in milliseconds between
each retry. Default is 1000 ms.

You can specify time units in the
retry interval expression. Set Hurl
to use a retry interval of 2 seconds
with ——retry-interval 2s or set
it to 500 milliseconds with ——
retry-interval 500ms. No
spaces allowed.

Define secret value to be redacted
from logs and report. When
defined, secrets can be used as
variable everywhere variables are
used.

This is a cli-only option.

(Windows) This option tells Hurl to
disable certificate revocation
checks. WARNING: this option
loosens the SSL security, and by
using this flag you ask for exactly
that.

This is a cli-only option.

Activate test mode: with this, the
HTTP response is not outputted
anymore, progress is reported for
each Hurl file tested, and a text
summary is displayed when all files
have been run.

In test mode, files are executed in
parallel. To run test in a sequential
way use ——job 1.

See also ——jobs.

This is a cli-only option.

Execute Hurl file to
ENTRY_NUMBER (starting at 1).
Ignore the remaining of the file. It is

useful for debugging a session.

This is a cli-only option.

——unix—socket <PATH>

-u, ——user <USER:PASSWORD>

-A, ——user—agent <NAME>

——variable <NAME=VALUE>

——variables—file <FILE>

-v,_—-verbose

——very-verbose

=h, —-help

=V, —-version

Environment

Environment variables can only be specified in lowercase.

(HTTP) Connect through this Unix
domain socket, instead of using the
network.

Add basic Authentication header to
each request.

Specify the User-Agent string to
send to the HTTP server.

This is a cli-only option.

Define variable (name/value) to be
used in Hurl templates.

Set properties file in which your
define your variables.

Each variable is defined as
name=value exactly as with —
variable option.

Note that defining a variable twice
produces an error.

This is a cli-only option.

Turn on verbose output on
standard error stream.
Useful for debugging.

Aline starting with >’ means data
sent by Hurl.

Aline staring with ‘<’ means data
received by Hurl.

A line starting with “” means
additional info provided by Hurl.

If you only want HTTP headers in
the output, =i, -—include might
be the option you’re looking for.

Turn on more verbose output on
standard error stream.

In contrast to ——verbose option,
this option outputs the full HTTP
body request and response on
standard error. In addition, lines
starting with “*’ are libcurl debug
logs.

Usage help. This lists all current
command line options with a short

description.

Prints version information

Using an environment variable to set the proxy has the same effect as using the -x,_-—proxy
option.

Variable Description
http_proxy
[PROTOCOL://] Sets the proxy server to use for HTTP.

<HOST>[:PORT]

https_proxy
[PROTOCOL://] Sets the proxy server to use for HTTPS.
<HOST>[:PORT]

all_proxy
[PROTOCOL://] Sets the proxy server to use if no protocol-specific proxy is set.
<HOST>[:PORT]

no_proxy <comma-—
separated list of List of host names that shouldn’t go through any proxy.
hosts>

Define variable (name/value) to be used in Hurl templates. This

HURL_name value is similar than ——variable and ——variables—file options.

When set to a non-empty string, do not colorize output (see ——

NO_COLOR .
no—color option).
Exit Codes
Value Description
0 Success.
1 Failed to parse command-line options.
2 Input File Parsing Error.
3 Runtime error (such as failure to connect to host).
4 Assert Error.
www

https://hurl.dev

See Also

curl(1) hurlfmt(1)

Samples

To run a sample, edit a file with the sample content, and run Hurl:

https://hurl.dev/

$ vi sample.hurl
GET https://example.org

$ hurl sample.hurl

By default, Hurl behaves like curl and outputs the last HTTP response’s entry. To have a test
oriented output, you can use ——test option:

$ hurl ——test sample.hurl

A particular response can be saved with [Options] section:

GET https://example.ord/cats/123

[Options]

output: catl23.txt # use — to output to stdout
HTTP 200

GET https://example.ord/dogs/567
HTTP 200

Finally, Hurl can take files as input, or directories. In the latter case, Hurl will search files with . hurt
extension recursively.

$ hurl ——test integration/*.hurl
$ hurl ——test .

You can check Hurl tests suite for more samples.

Getting Data

A simple GET:

GET https://example.org

Requests can be chained:

GET https://example.org/a
GET https://example.org/b
HEAD https://example.org/c
GET https://example.org/c

Doc

HTTP Headers

A simple GET with headers:

GET https://example.org/news
User-Agent: Mozilla/5.0

Accept: *x/x

Accept-Language: en-US,en;q=0.5

https://curl.se/
file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-entry
https://github.com/Orange-OpenSource/hurl/tree/master/integration/hurl/tests_ok

Accept-Encoding: gzip, deflate, br
Connection: keep-alive

Doc

Query Params
GET https://example.org/news
[Query]
order: newest

search: something to search
count: 100

GET https://example.org/news?order=newest&search=something%20to%20search&count=1

With [Query] section, params don’t need to be URL escaped.

Doc

Basic Authentication

GET https://example.org/protected
[BasicAuth]
bob: secret

Doc

This is equivalent to construct the request with a Authorization header:

Authorization header value can be computed with ‘echo -n 'bob:secret' | base64
GET https://example.org/protected
Authorization: Basic Ym9iOnN1Y3JldA==

Basic authentication section allows per request authentication. If you want to add basic
authentication to all the requests of a Hurl file you could use —u/--user option:

$ hurl ——user bob:secret login.hurl

——user option can also be set per request:

GET https://example.org/login
[Options]

user: bob:secret

HTTP 200

GET https://example.org/login
[Options]

user: alice:secret

HTTP 200

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Passing Data between Requests

Captures can be used to pass data from one request to another:

POST https://sample.org/orders
HTTP 201

[Captures]

order_id: jsonpath "$.order.id"

GET https://sample.org/orders/{{order_id}}
HTTP 200

Sending Data

Sending HTML Form Data

POST https://example.org/contact
[Form]

default: false

token: {{token}}

email: john.doe@rookie.org
number: 33611223344

Doc

Sending Multipart Form Data
POST https://example.org/upload
[Multipart]
fieldl: valuel
field2: file,example.txt;
One can specify the file content type:
field3: file,example.zip; application/zip

Doc

Multipart forms can also be sent with a multiline string_body:

POST https://example.org/upload
Content-Type: multipart/form-data; boundary="boundary"

——boundary
Content-Disposition: form-data; name="keyl"

valuel

——boundary

Content-Disposition: form-data; name="uploadl"; filename="data.txt"
Content-Type: text/plain

Hello World!

——boundary

Content-Disposition: form-data; name="upload2"; filename="data.html"
Content-Type: text/html

<div>Hello World!</div>
——boundary—-—

file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-capturing-response
file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-capturing-response

In that case, files have to be inlined in the Hurl file.

Doc

Posting a JSON Body

With an inline JSON:

POST https://example.org/api/tests

{
Ilidll: Il456ll’
"evaluate": true

Doc

With a local file:

POST https://example.org/api/tests
Content-Type: application/json
file,data.json;

Doc

Templating a JSON Body

PUT https://example.org/api/hits
Content-Type: application/json

{
"key0": "{{a_string}}",
"key1": {{a_bool}},
"key2": {{a_null}},
"key3": {{a_number}}

¥

Variables can be initialized via command line:

$ hurl ——variable a_string=apple \
—-variable a_bool=true \
——variable a_null=null \
——variable a_number=42 \
test.hurl

Resulting in a PUT request with the following JSON body:

{
""key@": "apple",
"keyl": true,
"key2": null,
""key3": 42
}
Doc

Templating a XML Body

file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-templates

Using templates with XML body is not currently supported in Hurl. You can use templates in XML
multiline string_body with variables to send a variable XML body:

POST https://example.org/echo/post/xml
T ixml
<?xml version="1.0" encoding="utf-8"?>
<Request>
<Login>{{login}}</Login>
<Password>{{password}}</Password>
</Request>

Doc

Using GraphQL Query

A simple GraphQL query:

POST https://example.org/starwars/graphql

““graphql
{
human(id: "1000") {
name
height(unit: FOOT)
¥

}

A GraphQL query with variables:

POST https://example.org/starwars/graphql
*“graphgl
query Hero($episode: Episode, $withFriends: Boolean!) {
hero(episode: $episode) {
name
friends @include(if: $withFriends) {
name
}
}
}

variables {
"episode": "JEDI",
"withFriends": false

F

GraphQL queries can also use Hurl templates.

Doc

Using Dynamic Datas

Functions like newluid and newDate can be used in templates to create dynamic datas:

A file that creates a dynamic email (i.e 0531f78f-7f87-44be—-a7f2-969alc4e6d97@test. com):
POST https://example.org/api/foo
‘ "name": "foo",

"email": "{{newUuid}}@test.com"

}

file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-templates
file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-request-graphql-body

Afile that creates a dynamic query parameter (i.e 2024-12-02T10:35:44.4617312):

GET https://example.org/api/foo
[Query]

date: {{newDate}}

HTTP 200

Testing Response

Responses are optional, everything after HTTP is part of the response asserts.

A request with (almost) no check:
GET https://foo.com

A status code check:
GET https://foo.com
HTTP 200

A test on response body

GET https://foo.com

HTTP 200

[Asserts]

jsonpath "$.state" == "running"

Testing Status Code

GET https://example.org/order/435
HTTP 200

Doc

GET https://example.org/order/435

Testing status code is in a 200-300 range
HTTP *

[Asserts]

status >= 200

status < 300

Doc

Testing Response Headers
Use implicit response asserts to test header values:
GET https://example.org/index.html
HTTP 200
Set-Cookie: theme=light
Set-Cookie: sessionToken=abcl123; Expires=Wed, 09 Jun 2021 10:18:14 GMT

Doc

Or use explicit response asserts with predicates:

GET https://example.org

HTTP 302

[Asserts]

header "Location" contains "www.example.net"

Doc

Implicit and explicit asserts can be combined:

GET https://example.org/index.html

HTTP 200

Set-Cookie: theme=1light

Set-Cookie: sessionToken=abcl123; Expires=Wed, 09 Jun 2021 10:18:14 GMT
[Asserts]

header "Location" contains "www.example.net"

Testing REST APIs

Asserting JSON body response (node values, collection count etc...) with JSONPath:

GET https://example.org/order

screencapability: low

HTTP 200

[Asserts]

jsonpath "$.validated" == true

jsonpath "$.userInfo.firstName" == "Franck"

jsonpath "$.userInfo.lastName" == "Herbert"

jsonpath "$.hasDevice" == false

jsonpath "$.links" count == 12

jsonpath "$.state" != null

jsonpath "$.order" matches "~order-\\d{8}$"

jsonpath "$.order" matches /~order-\d{8}$/ # Alternative syntax with regex lite
jsonpath "$.id" matches /(?i) [a-z]*/ # See syntax for flags <https://docs
jsonpath "$.created" isIsoDate

Doc

Testing HTML Response

GET https://example.org

HTTP 200

Content-Type: text/html; charset=UTF-8

[Asserts]

xpath "string(/html/head/title)" contains "Example" # Check title
xpath "count(//p)" == 2 # Check the number of p

xpath "//p" count == 2 # Similar assert for p

xpath "boolean(count(//h2))" == false # Check there is no h2

xpath "//h2" not exists # Similar assert for h2
xpath "string(//div[1])" matches /Hello.x/

Doc

Testing Set-Cookie Attributes

GET https://example.org/home

HTTP 200

[Asserts]

cookie "JSESSIONID" == "8400BAFE2F66443613DC38AE3D9D6239"

cookie "JSESSIONID[Value]" == "8400BAFE2F66443613DC38AE3D9D6239"

https://goessner.net/articles/JsonPath/

cookie "JSESSIONID[Expires]" contains "Wed, 13 Jan 2021"
cookie "JSESSIONID[Securel" exists

cookie "JSESSIONID[HttpOnlyl" exists

cookie "JSESSIONID[SameSite]" == "Lax"

Doc

Testing Bytes Content

Check the SHA-256 response body hash:
GET https://example.org/data.tar.gz
HTTP 200

[Asserts]
sha256 == hex,039058c6f2c0Ocb492c533b0addl4ef77ccOf78abccced5287d84ala2011cfh8l;

Doc
SSL Certificate

Check the properties of a SSL certificate:

GET https://example.org

HTTP 200

[Asserts]

certificate "Subject" == "CN=example.org"

certificate "Issuer" == "C=US, O=Let's Encrypt, CN=R3"

certificate "Expire-Date" daysAfterNow > 15
certificate "Serial-Number" matches /[\da-fl+/

Doc
Checking Full Body

Use implicit body to test an exact JSON body match:

GET https://example.org/api/cats/123

HTTP 200
{
"name" : "Purrsloud",
"species" : "Cat",
"favFoods" : ["wet food", "dry food", "any food"],
"birthYear" : 2016,
"photo" : "https://learnwebcode.github.io/json-example/images/cat-2.jpg"
¥
Doc

Or an explicit assert file:

GET https://example.org/index.html
HTTP 200

[Asserts]

body == file,cat.json;

Implicit asserts supports XML body:

GET https://example.org/api/catalog
HTTP 200
<?xml version="1.0" encoding="UTF-8"?>
<catalog>
<book id="bk101">
<author>Gambardella, Matthew</author>
<title>XML Developer's Guide</title>
<genre>Computer</genre>
<price>44.95</price>
<publish_date>2000-10-01</publish_date>
<description>An in-depth look at creating applications with XML.</descript
</book>
</catalog>

Doc

Plain text:

GET https://example.org/models
HTTP 200

Year,Make,Model,Description,Price

1997,Ford,E350,"ac, abs, moon",3000.00

1999, Chevy,"Venture ""Extended Edition""","",4900.00

1999, Chevy,"Venture ""Extended Edition, Very Large""",,5000.00

1996, Jeep,Grand Cherokee,"MUST SELL! air, moon roof, loaded",4799.00

o
o
9]

One line:

POST https://example.org/helloworld
HTTP 200
"Hello world!"

File:

GET https://example.org
HTTP 200
file,data.bin;

Doc

Testing Redirections

By default, Hurl doesn’t follow redirection so each step of a redirect must be run manually and can
be analysed:

GET https://example.org/stepl

HTTP 301

[Asserts]

header "Location" == "https://example.org/step2"

GET https://example.org/step2

HTTP 301

[Asserts]

header "Location" == "https://example.org/step3"

GET https://example.org/step3
HTTP 200

Doc

Using ——location and ——location-trusted (either with command line option or per request), Hurl
follows redirection and each step of the redirection can be checked.

GET https://example.org/stepl

[Options]

location: true

HTTP 200

[Asserts]

redirects count == 2

redirects nth @ location == "https://example.org/step2"
redirects nth 1 location == "https://example.org/step3"

GET https://example.org/stepl

[Options]

location-trusted: true

HTTP 200

[Asserts]

redirects last location == "https://example.org/step2"

Debug Tips
Verbose Mode
To get more info on a given request/response, use [Options] section:

GET https://example.org
HTTP 200

GET https://example.org/api/cats/123
[Options]
very-verbose: true
HTTP 200
—--verbose and ——very-verbose can be also used globally as command line options.

Doc

Error Format

$ hurl ——test ——error—format long *.hurl

file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-asserting-response

Output Response Body

Use ——output on a specific request to get the response body (- can be used as standard output):
GET https://foo.com/failure
[Options]
use — to output on standard output, foo.bin to save on disk

output: -
HTTP 200

GET https://foo.com/success
HTTP 200
Doc

Export curl Commands

$ hurl ———curl /tmp/curl.txt *.hurl

Doc
Using Proxy
Use ——proxy on a specific request or globally as command line option:

GET https://foo.com/a
HTTP 200

GET https://foo.com/b
[Options]
proxy: localhost:8888
HTTP 200

GET https://foo.com/c
HTTP 200

Reports

HTML Report

$ hurl ——test —--report-html build/report/ *.hurl

Doc

JSON Report

$ hurl ——test —-report-json build/report/ *.hurl

Doc

JUnit Report

$ hurl ——test —--report—junit build/report.xml *.hurl

Doc

TAP Report

$ hurl ——test —-report-tap build/report.txt *.hurl

Doc

JSON Output

A structured output of running Hurl files can be obtained with ——j son option. Each file will produce a
JSON export of the run.

$ hurl ——json *.hurl

Others
HTTP Version

Testing HTTP version (HTTP/1.0, HTTP/1.1, HTTP/2 or HTTP/3) can be done using implicit asserts:

GET https://foo.com
HTTP/3 200

GET https://bar.com
HTTP/2 200

Doc

Or explicit:

GET https://foo.com
HTTP 200

[Asserts]

version == "3"

GET https://bar.com
HTTP 200

[Asserts]

version == "2"
version toFloat > 1.1

Doc
IP Address

Testing the IP address of the response, as a string. This string may be IPv6 address:

GET https://foo.com

HTTP 200

[Asserts]

ip == "2001:0db8:85a3:0000:0000:8a2e:0370:733"
ip startsWith "2001"

ip isIpv6

Polling and Retry

Retry request on any errors (asserts, captures, status code, runtime etc...):

Create a new job

POST https://api.example.org/jobs
HTTP 201

[Captures]

job_id: jsonpath "$.id"

[Asserts]

jsonpath "$.state" == "RUNNING"

Pull job status until it is completed

GET https://api.example.org/jobs/{{job_id}}

[Options]

retry: 10 # maximum number of retry, -1 for unlimited
retry-interval: 500ms

HTTP 200

[Asserts]

jsonpath "$.state" == "COMPLETED"

Doc
Delaying Requests

Add delay for every request, or a particular request:

Delaying this request by 5 seconds (aka sleep)
GET https://example.org/turtle

[Options]

delay: 5s

HTTP 200

No delay!

GET https://example.org/turtle
HTTP 200

Doc

Skipping Requests

a, ¢, d are run, b is skipped
GET https://example.org/a

GET https://example.org/b
[Options]
skip: true

GET https://example.org/c

GET https://example.org/d

Doc

Testing Endpoint Performance

GET https://sample.org/helloworld

HTTP

[Asserts]

duration < 1000 # Check that response time is less than one second

file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#getting-started-manual-skip

Doc

Using SOAP APIs

POST https://example.org/InStock
Content-Type: application/soap+xml; charset=utf-8
SOAPAction: "http://www.w3.0rg/2003/05/soap—-envelope"
<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap—envelope" xmlns:m="htt
<soap:Header></soap:Header>
<soap:Body>
<m:GetStockPrice>
<m:StockName>G00G</m: StockName>
</m:GetStockPrice>
</soap:Body>
</soap:Envelope>
HTTP 200

Doc

Capturing and Using a CSRF Token
GET https://example.org
HTTP 200

[Captures]
csrf_token: xpath "string(//metal@name='_csrf_token']/@content)"

POST https://example.org/login?user=toto&password=1234
X-CSRF-TOKEN: {{csrf_token}}
HTTP 302

Doc

Redacting Secrets

Using command-line for known values:

$ hurl ——secret token=1234 file.hurl

POST https://example.org
X-Token: {{token}}

{
"name": "Alice",
"value": 100
}
HTTP 200
Doc

Using redact for dynamic values:

Get an authorization token:

GET https://example.org/token

HTTP 200

[Captures]

token: header "X-Token" redact

Send an authorized request:

POST https://example.org
X-Token: {{token}}

{
"name": "Alice",
"value": 100
}
HTTP 200
Doc

Checking Byte Order Mark (BOM) in Response Body

GET https://example.org/data.bin
HTTP 200

[Asserts]

bytes startsWith hex,efbbbf;

Doc

AWS Signature Version 4 Requests

Generate signed API requests with AWS Signature Version 4, as used by several cloud providers.

POST https://sts.eu-central-1.amazonaws.com/
[Options]

aws—sigv4: aws:amz:eu-central-1l:sts

[Form]

Action: GetCallerIdentity

Version: 2011-06-15

The Access Key is given per ——user, either with command line option or within the [Options]
section:

POST https://sts.eu-central-1.amazonaws.com/
[Options]

aws—sigv4: aws:amz:eu-central-1:sts

user: bob=secret

[Form]

Action: GetCallerIdentity

Version: 2011-06-15

Doc

Using curl Options

curl options (for instance ——resolve or ——connect-to) can be used as CLI argument. In this case,
they’re applicable to each request of an Hurl file.

$ hurl ——resolve foo.com:8000:127.0.0.1 foo.hurl

Use [Options] section to configure a specific request:

GET http://bar.com
HTTP 200

GET http://foo.com:8000/resolve
[Options]

https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html

resolve: foo.com:8000:127.0.0.1
HTTP 200
"Hello World!"

o
o
9}

Running Tests

Use --test Option

Hurl is run by default as an HTTP client, returning the body of the last HTTP response.

$ hurl hello.hurl
Hello World!

When multiple input files are provided, Hurl outputs the body of the last HTTP response of each file.

$ hurl hello.hurl assert_json.hurl
Hello World![

{ "id": 1, "name": "Bob"},

{ "id": 2, "name": "Bill"}
]

For testing, we are only interested in the asserts results, we don’t need the HTTP body response. To
use Hurl as a test tool with an adapted output, you can use ——test option:

$ hurl ——test hello.hurl assert_json.hurl
hello.hurl: Success (6 request(s) in 245 ms)
assert_json.hurl: Success (8 request(s) in 308 ms)

Executed files: 2

Executed requests: 10 (17.82/s)
Succeeded files: 2 (100.0%)
Failed files: 0 (0.0%)
Duration: 561 ms

Or, in case of errors:

$ hurl ——test hello.hurl error_assert_status.hurl
hello.hurl: Success (4 request(s) in 5 ms)
error: Assert status code
—-—> error_assert_status.hurl:9:6

I

| GET http://localhost:8000/not_found

| coo
HTTP 200

9 |
| ~~~ actual value is <404>
I

error_assert_status.hurl: Failure (1 request(s) in 2 ms)

Executed files:
Executed requests:
Succeeded files:
Failed files:

00.0
0.0
0.0

s)

o°

== 0N

(5 /
(5)
(5)

o°

Duration: 10 ms

In test mode, files are executed in parallel to speed-ud the execution. If a sequential run is needed,
you can use ——jobs 1 option to execute tests one by one.

$ hurl ——test ——jobs 1 *x.hurl

——repeat option can be used to repeat run files and do performance check. For instance, this call
will run 1000 tests in parallel:

$ hurl ——test —--repeat 1000 stress.hurl

Selecting Tests

Hurl can take multiple files into inputs:

$ hurl ——test test/integration/a.hurl test/integration/b.hurl test/integration/c

$ hurl ——test test/integration/*.hurl

Or you can simply give a directory and Hurl will find files with . hurl extension recursively:

$ hurl ——test test/integration/

Finally, you can use ——glob option to test files that match a given pattern:

$ hurl ——test -—glob "test/integration/*x/*.hurl"

Debugging
Debug Logs

If you need more error context, you can use ——error—format long_ option to print HTTP bodies for
failed asserts:

$ hurl ——test ——error-format long hello.hurl error_assert_status.hurl
hello.hurl: Success (4 request(s) in 6 ms)

HTTP/1.1 404

Server: Werkzeug/3.0.3 Python/3.12.4

Date: Wed, 10 Jul 2024 15:42:41 GMT

Content-Type: text/html; charset=utf-8

Content-Length: 207

Server: Flask Server

Connection: close

<!doctype html>
<html lang=en>
<title>404 Not Found</title>

<h1>Not Found</hl>
<p>The requested URL was not found on the server. If you entered the URL manuall

error: Assert status code
—-—> error_assert_status.hurl:9:6
I
| GET http://localhost:8000/not_found
| coo
9 | HTTP 200
| ~~~ actual value is <404>

error_assert_status.hurl: Failure (1 request(s) in 2 ms)

Executed files: 2

Executed requests: 5 (454.5/s)
Succeeded files: 1 (50.0%)
Failed files: 1 (50.0%)
Duration: 11 ms

Individual requests can be modified with [[0ptions] section]options to turn on logs for a particular
request, using verbose and very-verbose option.

With this Hurl file:

GET https://foo.com
HTTP 200

GET https://bar.com
[Options]
very-verbose: true
HTTP 200

GET https://baz.com
HTTP 200

Running hurl —-test . will output debug logs for the request to https://bar.com.

——verbose / ——very-verbose can also be enabled globally, for every requests of every tested files:

$ hurl —-test --very-verbose .

HTTP Responses

In test mode, HTTP responses are not displayed. One way to get HTTP responses even in test
mode is to use ——output option of [Options] section: ——output file allows to save a particular
response to a file, while ——output - allows to redirect HTTP responses to standard output.

GET http://foo.com
HTTP 200

GET https://bar.com
[Options]

output: -

HTTP 200

$ hurl ——test .
<html><head><meta http-equiv="content-type" content="text/html;charset=utf-8">
<title>301 Moved</TITLE></head><body>

<h1>301 Moved</hl>

The document has moved

here.
</body></html>

/tmp/test.hurl: Success (2 request(s) in 184 ms)

Executed files: 1
Executed requests: 2 (10.7/s)
1 (

Succeeded files: 100.0%)
Failed files: 0 (0.0%)
Duration: 187 ms

Generating Report

In the different reports, files are always referenced in the input order (which, as tests are executed in
parallel, can be different from the execution order).

HTML Report

Hurl can generate an HTML report by using the ——report-html DIR option.

If the HTML report already exists, the test results will be appended to it.

Test Report

Tue, 27 Dec 2022 12:36:52 +0100

Executed: 3 (100%)
Succeeded: 2 (66.7%)
Failed: 1 (33.3%)

File Status Duration

Users/jc/Documents/Dev/hurl/integration/tests_ok/assert_base64.hurl success 0.006

Users/jc/Documents/Dev/hurl/integration/tests_ok/assert_header.hurl success 0.007

Users/jc/Documents/Dev/hurl/integration/tests_ok/assert_json.hurl failure 0.01

The input Hurl files (HTML version) are also included and are easily accessed from the main page.

1 GET http://localhost:8000/assert-json
2 HTTP/1.0 200

3 [Asserts]

4 jsonpath "$.count" equals 5

5 Jjsonpath "$.count" == 5

6 Jjsonpath "$.count" equals 5.0

7 jsonpath "$.count" notEquals 4

8 jsonpath "$.count" != 4

9 jsonpath "$.count" greaterThan 1
10 jsonpath "$.count" greaterThan 1.0
11 isonnath "S.count" >= 1.0

JSON Report

A JSON report can be produced by using the ——report-json DIR. The report directory will contain
a report.json file, including each test file executed with ——json option and a reference to each
HTTP response of the run dumped to disk.

If the JSON report already exists, it will be updated with the new test results.

JUnit Report

A JUnit report can be produced by using the ——report-junit FILE option.

If the JUnit report already exists, it will be updated with the new test results.
TAP Report

A TAP report (Test Anything_Protocol) can be produced by using the ——report—tap FILE option.

If the TAP report already exists, it will be updated with the new test results.

Use Variables in Tests
To use variables in your tests, you can:
« use —-—variable option

e Uuse ——variables—file option
« define environment variables, for instance HURL_foo=bar

You will find a detailed description in the Injecting Variables section of the docs.

Frequently Asked Questions

General
Why “Hurl”?
The name Hurl is a tribute to the awesome curl, with a focus on the HTTP protocol. While it may

have an informal meaning not particularly elegant, other eminent tools have set a precedent in
naming.

Yet Another Tool, | already use X

We think that Hurl has some advantages compared to similar tools.

Hurl is foremost a command line tool and should be easy to use on a local computer, or in a CI/CD
pipeline. Some tools in the same space as Hurl (Postman for instance), are GUI oriented, and we
find it less attractive than CLI. As a command line tool, Hurl can be used to get HTTP data (like curl),

but also as a test tool for HTTP sessions, or even as documentation.

Having a text based file format is another advantage. The Hurl format is simple, focused on the
HTTP domain, can serve as documentation and can be read or written by non-technical people.

For instance putting JSON data with Hurl can be done with this simple file:

PUT http://localhost:3000/api/login

{
"username": 'xyz",
"password": 'xyz"
}
With curl:

curl ——header "Content-Type: application/json" \
——request PUT \
—-data '{"username": "xyz","password": "xyz"}' \
http://localhost:3000/api/login

https://testanything.org/
https://curl.haxx.se/
https://git.wiki.kernel.org/index.php/GitFaq#Why_the_.27Git.27_name.3F
https://www.postman.com/
https://curl.haxx.se/
file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-hurl-file
https://curl.haxx.se/

Karate, a tool combining API test automation, mocking, performance-testing, has similar features but
offers also much more at a cost of an increased complexity.

Comparing Karate file format:

Scenario: create and retrieve a cat

Given url 'http://myhost.com/vl/cats'

And request { name: 'Billie' }

When method post

Then status 201

And match response == { id: '#notnull', name: 'Billie }

Given path response.id

When method get
Then status 200

And Hurl:

Scenario: create and retrieve a cat

POST http://myhost.com/vl/cats

{ "name": "Billie" }

HTTP 201

[Captures]

cat_id: jsonpath "$.id"
[Asserts]

jsonpath "$.name" == "Billie"

GET http://myshost.com/v1l/cats/{{cat_id}}
HTTP 200

A key point of Hurl is to work on the HTTP domain. In particular, there is no JavaScript runtime, Hurl
works on the raw HTTP requests/responses, and not on a DOM managed by a HTML engine. For
security, this can be seen as a feature: let’s say you want to test backend validation, you want to be
able to bypass the browser or javascript validations and directly test a backend endpoint.

Finally, with no headless browser and working on the raw HTTP data, Hurl is also really reliable with
a very small probability of false positives. Integration tests with tools like Selenium can, in this
regard, be challenging to maintain.

Just use what is convenient for you. In our case, it’s Hurl!

Hurl is build on top of libcurl, but what is added?

Hurl has two main functionalities on top of curl:

1. Chain several requests:

With its captures, it enables to inject data received from a response into following requests.
CSREF tokens are typical examples in a standard web session.

2. Test HTTP responses:

With its asserts, responses can be easily tested.

Hurl benefits from the features of the 1ibcurl against it is linked. You can check libcur1l version
with hurl --version.

For instance on macQOS:

https://github.com/intuit/karate
https://www.selenium.dev/
https://curl.haxx.se/
file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-capturing-response
https://en.wikipedia.org/wiki/Cross-site_request_forgery
file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-asserting-response

$ hurl —-version

hurl 2.0.0 libcurl/7.79.1 (SecureTransport) LibreSSL/3.3.6 zlib/1.2.11 nghttp2/1
Features (libcurl): alt-svc AsynchDNS HSTS HTTP2 IPv6 Largefile libz NTLM NTLM_
Features (built-in): brotli

You can also check which libcurlis used.

On macOS:

$ which hurl
/opt/homebrew/bin/hurl
$ otool -L /opt/homebrew/bin/hurl:

On Linux:

/usr/1lib/1libxm12.2.dylib (compatibility version 10.0.0, current version
/System/Library/Frameworks/CoreFoundation. framework/Versions/A/CoreFound
/usr/lib/libcurl.4.dylib (compatibility version 7.0.0, current version 9
/usr/lib/libiconv.2.dylib (compatibility version 7.0.0, current version
/usr/1lib/libSystem.B.dylib (compatibility version 1.0.0, current version

$ which hurl
/root/.cargo/bin/hurl

$ 1dd /root/.cargo/bin/hurl
1dd /root/.cargo/bin/hurl

linux-vdso.so.1 (0x0000ffff8656a000)

1ibxm12.s0.2 => /usr/lib/aarch64-linux-gnu/libxm12.s0.2 (0x0000ffff85fe8
libcurl.so0.4 => /usr/lib/aarch64-linux—-gnu/libcurl.so.4 (0x0000ffff85f45
libgcc_s.so0.1 => /lib/aarch64-linux—-gnu/libgcc_s.so.1 (0x0000ffff85f2100

libkeyutils.so.1 => /lib/aarch64-linux—-gnu/libkeyutils.so.1 (0x0000ffff8
libffi.so0.7 => /usr/lib/aarch64-1linux—-gnu/libffi.so.7 (0x0000ffff82ebcool

Note that some Hurl features are dependent on libcurl capacities: for instance, if your libcurl
doesn’t support HTTP/2 Hurl won’t be able to send HTTP/2 request.

Why shouldn’t | use Hurl?

If you need a GUI. Currently, Hurl does not offer a GUI version (like Postman). While we think that it
can be useful, we prefer to focus for the time-being on the core, keeping something simple and fast.
Contributions to build a GUI are welcome.

I have a large numbers of tests, how to run just specific tests?

By convention, you can organize Hurl files into different folders or prefix them.

For example, you can split your tests into two folders critical and additional.

critical/testl.hurl
critical/test2.hurl
additional/testl.hurl
additional/test2.hurl

You can simply run your critical tests with

$ hurl ——test critical/*.hurl

https://www.postman.com/

How can | use my Hurl files outside Hurl?

Hurl file can be exported to a JSON file with hurlfmt. This JSON file can then be easily parsed for
converting a different format, getting ad-hoc information,...

For example, the Hurl file

GET https://example.org/api/users/1
User—Agent: Custom

HTTP 200

[Asserts]

jsonpath "$.name" == "Bob"

will be converted to JSON with the following command:

$ hurlfmt test.hurl ——out json | jq
{
"entries": [
{
"request": {
"method": "GET",
"url": "https://example.org/api/users/1",
"headers": [
{
"name": "User-Agent",
"value": "Custom"
}
1
+
"response": {
"version": "HTTP",
"status": 200,
"asserts": [
{
"query": {
"type'": "jsonpath",
"expr'": "$.name"
o
"predicate": {
"type': "==",
"value": "Bob"

Can | do calculation within a Hurl file?

Currently, the templating is very simple, only accessing variables. Calculations can be done
beforehand, before running the Hurl File.

For example, with date calculations, variables now and tomorrow can be used as param or expected
value.

$ TODAY=$(date '+%y%m%d')
$ TOMORROW=$(date '+%y%m%d' —d"+ldays")
$ hurl —-variable "today=$TODAY" —-variable '"tomorrow=$TOMORROW" test.hurl

You can also use environment variables that begins with HURL_ to inject data in an Hurl file. For
instance, to inject today and tomorrow variables:

$ export HURL_today=$(date '+%y%m%d')
$ export HURL_tomorrow=$(date '+%y%m%d' —d"+1ldays")
$ hurl test.hurl

You can also use filters to process HTTP responses in asserts and captures.

macOS

How can | use a custom libcurl (from Homebrew by instance)?

No matter how you’ve installed Hurl (using the precompiled binary for macOS or with Homebrew)
Hurl is linked against the built-in system libcurl. If you want to use another libcurl (for instance, if

you’ve installed curl with Homebrew and want Hurl to use Homebrew’s libcurl), you can patch Hurl
with the following command:

$ sudo install_name_tool —-change /usr/lib/libcurl.4.dylib PATH_TO_CUSTOM_LIBCURL

For instance:

/usr/local/opt/curl/lib/libcurl.4.dylib is installed by ‘brew install curl®
$ sudo install_name_tool -change /usr/lib/libcurl.4.dylib /usr/local/opt/curl/1il

file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-filters
https://brew.sh/

File Format

Hurl File

Character Encoding

Hurl file should be encoded in UTF-8, without a byte order mark at the beginning (while Hurl ignores
the presence of a byte order mark rather than treating it as an error)

File Extension

Hurl file extension is .hurl

Comments

Comments begin with # and continue until the end of line. Hurl file can serve as a documentation for
HTTP based workflows so it can be useful to be very descriptive.

A very simple Hurl file

with tasty comments...

GET https://www.sample.net

x—app: MY_APP # Add a dummy header

HTTP 302 # Check that we have a redirection

[Asserts]

header "Location" exists

header "Location" contains "login" # Check that we are redirected to the login

Special Characters in Strings
String can include the following special characters:
« The escaped special characters " (double quotation mark), \ (backslash), \b (backspace), \f

(form feed), \n (line feed), \r (carriage return), and \t (horizontal tab)
« An arbitrary Unicode scalar value, written as \u{n}, where n is a 1-8 digit hexadecimal number

GET https://example.org/api

HTTP 200

The following assert are equivalent:

[Asserts]

jsonpath "$.slideshow.title" == "A beautiful »!"
jsonpath "$.slideshow.title" == "A beautiful \u{2708}!"

In some case, (in headers value, etc..), you will also need to escape # to distinguish it from a
comment. In the following example:

GET https://example.org/api
x—token: BEEF \#STEACK # Some comment
HTTP 200

We’re sending a header x-token with value BEEF #STEACK

Entry

Definition

A Hurl file is a list of entries, each entry being a mandatory request, optionally followed by a
response.

Responses are not mandatory, a Hurl file consisting only of requests is perfectly valid. To sum up,
responses can be used to capture values to perform subsequent requests, or add asserts to HTTP
responses.

Example

First, test home title.

GET https://acmecorp.net

HTTP 200

[Asserts]

xpath "normalize-space(//head/title)" == "Hello world!"

Get some news, response description is optional
GET https://acmecorp.net/news

Do a POST request without CSRF token and check
that status code is Forbidden 403

POST https://acmecorp.net/contact

[Form]

default: false

email: john.doe@rookie.org

number: 33611223344

HTTP 403

Description
Options

Options specified on the command line apply to every entry in an Hurl file. For instance, with ——
location option, every entry of a given file will follow redirection:

$ hurl ——location foo.hurl

You can use an [[Options] section]options to set option only for a specified request. For instance,
in this Hurl file, the second entry will follow location (so we can test the status code to be 200
instead of 301).

GET https://google.fr
HTTP 301

GET https://google.fr
[Options]

location: true

HTTP 200

GET https://google.fr

file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-request
file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-response
file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-capturing-response
file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-asserting-response

HTTP 301

You can use the [Options] (#getting-started-manual-options) section to log a specific entry:

... previous entries

GET https://api.example.org

[Options]
very-verbose: true
HTTP 200
... next entries

Cookie storage

Requests in the same Hurl file share the cookie storage, enabling, for example, session based
scenario.

Redirects

By default, Hurl doesn’t follow redirection. To effectively run a redirection, entries should describe
each step of the redirection, allowing insertion of asserts in each response.

First entry, test the redirection (status code and 'Location' header)
GET https://example.org

HTTP 301

Location: https://www.example.org

Second entry, the 200 OK response
GET https://www.example.org
HTTP 200

Alternatively, one can use ——location /——location-trusted options to force redirection to be
followed. In this case, asserts are executed on the last received response. Optionally, the number of
redirections can be limited with ——max-redirs.

Running hurl —-location foo.hurl
GET https://example.org
HTTP 200

Finally, you can force redirection on a particular request with an [[Options] section]options and the
——location/--location-trusted options:

GET https://example.org
[Options]
location—trusted: true
HTTP 200

Redirections can be tested either by:

» running and asserting each step of redirection:

GET https://example.org/stepl

HTTP 301

[Asserts]

header "Location" == "https://example.org/step2"

GET https://example.org/step2

HTTP 301

[Asserts]

header "Location" == "https://example.org/step3"

GET https://example.org/step3
HTTP 200

e using ——location/-=location-trusted, testing each step with redirects query:

GET https://example.org/stepl

[Options]

location: true

HTTP 200

[Asserts]

redirects count ==

redirects nth @ location == "https://example.org/step2"
redirects nth 1 location == "https://example.org/step3"

url query can also be used to get the final effective URL:

GET https://example.org/stepl
[Options]

location: true

HTTP 200

[Asserts]

url == "https://example.org/step3"

Retry
Every entry can be retried upon asserts, captures or runtime errors. Retries allow polling scenarios

and effective runs under flaky conditions. Asserts can be explicit (with an [[Asserts]
section]asserts), or implicit (like headers or status code).

Retries can be set globally for every request (see ——retry and ——retry-interval), or activated on
a particular request with an [[Options] section]options.

For example, in this Hurl file, first we create a new job then we poll the new job until it’s completed:

Create a new job

POST http://api.example.org/jobs
HTTP 201

[Captures]

job_id: jsonpath "$.id"
[Asserts]

jsonpath "$.state" == "RUNNING"

Pull job status until it is completed

GET http://api.example.org/jobs/{{job_id}}

[Options]

retry: 10 # maximum number of retry, -1 for unlimited
retry-interval: 300ms

HTTP 200

[Asserts]

jsonpath "$.state" == "COMPLETED"

Control flow

In [Options] (#getting-started-manual-options) section, skip and repeat can be used to
control flow of execution:

file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-response-asserts
file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-response-headers
file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-response-version-status

o skip: true/false skip this request and execute the next one unconditionally,
o repeat: Nloop the request N times. If there are assert or runtime errors, the requests
execution is stopped.

This request will be played exactly 3 times
GET https://example.org/foo

[Options]

repeat: 3

HTTP 200

This request is skipped
GET https://example.org/foo
[Options]

skip: true

HTTP 200

Additionally, a delay can be inserted between requests, to add a delay before execution of a
request (aka sleep).

A 5 seconds delayed request
GET https://example.org/foo
[Options]

delay: 5s

HTTP 200

delay and repeat can also be used globally as command line options:

$ hurl ——delay 500ms —-repeat 3 foo.hurl

For complete reference, below is a diagram for the executed entries.

Entry o
NO to run? - A

Skip? S--YES---eem-- .

<

S

[P AP
o

Run HTTP
requests

\ 4

Eval errors

\ 4

YiES Eval captures

Retry? «-YES-- Errors?

NO
Increment
repeat index

<
m
(2]
v
'
'
us)
@
o
il
=l
>
1
4
o]
7
'
® —
53
=0
<o
5 3
2o
=1
% =

Request

Definition
Request describes an HTTP request: a mandatory method and URL, followed by optional headers.

Then, options, query parameters, form parameters, multipart form data, cookies, and basic
authentication can be used to configure the HTTP request.

Finally, an optional body can be used to configure the HTTP request body.

Example

GET https://example.org/api/dogs?id=4567
User—-Agent: My User Agent

Content-Type: application/json
[BasicAuth]

alice: secret

Structure
PUT https://sample.net Method and URL (mandatory)
accept: */x
x—-powered-by: Express HTTP request headers (optional)
user—-agent: Test

“Toptionsl T
[Query]
[Form] Options, query strings, form params, cookies, authentication ...
L (optional sections, unordered)
[BasicAuth]
[Cookies]
e HTTP request body (optional)

{

"type": "F00",
"value": 356789,
"ordered": true,
"index": 10

Headers, if present, follow directly after the method and URL. This allows Hurl format to ‘look like’
the real HTTP format. Contrary to HTTP headers, other parameters are defined in sections
([Cookies], [Queryl, [Form] etc...) These sections are not ordered and can be mixed in any way:

GET https://example.org/api/dogs
User—-Agent: My User Agent
[Query]

id: 4567

order: newest

[BasicAuth]

alice: secret

GET https://example.org/api/dogs
User—-Agent: My User Agent
[BasicAuth]

alice: secret

[Query]

id: 4567

order: newest

The last optional part of a request configuration is the request body. Request body must be the last
parameter of a request (after headers and request sections). Like headers, body have no explicit
marker:

file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-options

POST https://example.org/api/dogs?id=4567
User-Agent: My User Agent

{

"name": "Ralphy"

}

Description
Method

Mandatory HTTP request method, usually one of GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS,
TRACE and PATCH.

Other methods can be used like QUERY with the constraint of using only uppercase chars.

URL

Mandatory HTTP request URL.

URL can contain query parameters, even if using a guery parameters section is preferred.

A request with URL containing query parameters.
GET https://example.org/forum/questions/?search=Install%20Linux&order=newest

A request with query parameters section, equivalent to the first request.
GET https://example.org/forum/questions/

[Query]

search: Install Linux

order: newest

Query parameters in query parameter section are not URL encoded.

When query parameters are present in the URL and in a query parameters section, the resulting
request will have both parameters.

Headers

Optional list of HTTP request headers.

A header consists of a name, followed by a : and a value.

GET https://example.org/news

User—Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.14; rv:70.0) Gecko/2010010
Accept: *x/x

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

Headers directly follow URL, without any section name, contrary to query parameters, form
parameters or cookies

Note that a header usually doesn’t start with double quotes. If a header value starts with double
quotes, double quotes will be part of the header value:

PATCH https://example.org/file.txt
If-Match: "e@023aade"

If-Match request header will be sent will the following value "e0023aa4e" (started and ended with
double quotes).

Headers must follow directly after the method and URL.

Options

Options used to execute this request.

Options such as ——location, ——verbose, ——insecure can be used at the command line and

applied to every request of an Hurl file. An [Options] section can be used to apply option to only
one request (without passing options to the command line), while other requests are unaffected.

GET https://example.org
An options section, each option is optional and applied only to this request..
[Options]

aws—-sigv4: aws:amz:sts
cacert: /etc/cert.pem
cert: /etc/client-cert.pem
key: /etc/client-cert.key
compressed: true
connect-timeout: 20s
delay: 3s

http3: true

insecure: true

ipv6: true

limit-rate: 32000

generate AWS SigV4 Authorization header
custom certificate file

client authentication certificate

client authentication certificate key
request a compressed response

connect timeout

delay for this request (aka sleep)
use HTTP/3 protocol version

allow insecure SSL connections and transfers
use IPv6 addresses

limit this request to the specidied speed (bytes/s)
location: true # follow redirection for this request
max-redirs: 10 # maximum number of redirections
max-time: 30s # maximum time for a request/response
output: out.html # dump the response to this file
path-as-is: true # do not handle sequences of /../ or /./ in URL path
retry: 10 # number of retry if HTTP/asserts errors
retry-interval: 500ms # interval between retry

skip: false # skip this request

unix-socket: sock # use Unix socket for transfer

user: bob:secret # use basic authentication

proxy: my.proxy:8012 # define proxy (host:port where host can be an IP add
variable: country=Italy # define variable country

variable: planet=Earth # define variable planet

verbose: true # allow verbose output

very-verbose: true # allow more verbose output

Variable defined in an [0ptions] section are defined also for the next entries. This is the
exception, all other options are defined only for the current request.

Query parameters

Optional list of query parameters.

A query parameter consists of a field, followed by a : and a value. The query parameters section
starts with [Query]. Contrary to query parameters in the URL, each value in the query parameters
section is not URL encoded.

GET https://example.org/news

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.14; rv:70.0) Gecko/2010010
[Query]

order: newest

search: {{custom-search}}

count: 100

If there are any parameters in the URL, the resulted request will have both parameters.

Form parameters

A form parameters section can be used to send data, like HTML form.

This section contains an optional list of key values, each key followed by a : and a value. Key
values will be encoded in key-value tuple separated by ‘&’, with a ‘=’ between the key and the value,
and sent in the body request. The content type of the request is application/x-www-form-
urlencoded. The form parameters section starts with [Form].

POST https://example.org/contact
[Form]

default: false

token: {{token}}

email: john.doe@rookie.org
number: 33611223344

Form parameters section can be seen as syntactic sugar over body section (values in form
parameters section are not URL encoded.). A oneline string_body could be used instead of a forms
parameters section.

Run a POST request with form parameters section:
POST https://example.org/test

[Form]

name: John Doe

keyl: valuel

Run the same POST request with a body section:
POST https://example.org/test
Content-Type: application/x-www—form-urlencoded
“name=John%20Doe&keyl=valuel”

When both body section and form parameters section are present, only the body section is taken
into account.

Multipart Form Data

A multipart form data section can be used to send data, with key / value and file content (see
multipart/form-data on MDN).

The form parameters section starts with [Multipart].

POST https://example.org/upload
[Multipart]

fieldl: valuel

field2: file,example.txt;

One can specify the file content type:
field3: file,example.zip; application/zip

Files are relative to the input Hurl file, and cannot contain implicit parent directory (. .). You can use
——file-root option to specify the root directory of all file nodes.
Content type can be specified or inferred based on the filename extension:

e .gif: image/gif,

e .jpg: image/jpedg,
e .jpeg: image/jpeg,

https://developer.mozilla.org/en-US/docs/Learn/Forms
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST

e .png: image/png,

e .SvQg: image/svg+xml,

« .txt:text/plain,

e .htm: text/html,

¢ .html: text/html,

e .pdf:application/pdf,
e .xml:application/xml

By default, content type is application/octet-stream.

As an alternative to a [Multipart] section, multipart forms can also be sent with a multiline string
body:

POST https://example.org/upload
Content-Type: multipart/form-data; boundary="boundary"

——boundary
Content-Disposition: form-data; name="keyl"

valuel

——boundary

Content-Disposition: form-data; name="uploadl"; filename="data.txt"
Content-Type: text/plain

Hello World!

——boundary

Content-Disposition: form-data; name="upload2"; filename="data.html"
Content-Type: text/html

<div>Hello World!</div>
——boundary——

When using a multiline string body to send a multipart form data, files content must be inlined in
the Hurl file.

Cookies

Optional list of session cookies for this request.

A cookie consists of a name, followed by a : and a value. Cookies are sent per request, and are not
added to the cookie storage session, contrary to a cookie set in a header response. (for instance
Set—Cookie: theme=1light). The cookies section starts with [Cookies].

GET https://example.org/index.html
[Cookies]

theme: light

sessionToken: abc123

Cookies section can be seen as syntactic sugar over corresponding request header.

Run a GET request with cookies section:
GET https://example.org/index.html
[Cookies]

theme: light

sessionToken: abcl23

Run the same GET request with a header:
GET https://example.org/index.html
Cookie: theme=1light; sessionToken=abc123

Basic Authentication

A basic authentication section can be used to perform basic authentication.

Username is followed by a : and a password. The basic authentication section starts with
[BasicAuth]. Username and password are not base64 encoded.

Perform basic authentication with login “bob™ and password “secret’.
GET https://example.org/protected

[BasicAuth]

bob: secret

Spaces surrounded username and password are trimmed. If you really want a space in your
password (!!), you could use Hurl unicode literals \u{20}.

This is equivalent (but simpler) to construct the request with a Authorization header:

Authorization header value can be computed with “echo -n 'bob:secret' | base64
GET https://example.org/protected
Authorization: Basic Ym9iOnN1Y3JldA==

Basic authentication allows per request authentication. If you want to add basic authentication to all
the requests of a Hurl file you can use —u/--user option.

Body

Optional HTTP body request.

If the body of the request is a JSON string or a XML string, the value can be directly inserted without
any modification. For a text based body that is neither JSON nor XML, one can use multiline string
body that starts with *** and ends with ™" *. Multiline string body support “language hint” and can be
used to create GraphQL queries.

For a precise byte control of the request body, Base64 encoded string, hexadecimal string or
included file can be used to describe exactly the body byte content.

You can set a body request even with a GET body, even if this is not a common practice.

The body section must be the last section of the request configuration.

JSON body

JSON request body is used to set a literal JSON as the request body.

Create a new doggy thing with JSON body:
POST https://example.org/api/dogs

{
"id": o,
"name": "Frieda",
"picture": "images/scottish-terrier.jpeg",
"age": 3,
"breed": "Scottish Terrier",
"location": '"Lisco, Alabama"
+

JSON request body can be templatized with variables:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://www.json.org/
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Base64

Create a new catty thing with JSON body:
POST https://example.org/api/cats

{
"id": 42,
"lives": {{lives_count}},
"name": "{{ name }}"

¥

When using JSON request body, the content type application/json is automatically set.

JSON request body can be seen as syntactic sugar of multiline string body with json identifier:

Create a new doggy thing with JSON body:
POST https://example.org/api/dogs

““json

{
"id": o,
"name'": "Frieda",
"picture": "images/scottish-terrier.jpeg",
"age": 3,
"breed": "Scottish Terrier",
"location": "Lisco, Alabama"

}

XML body

XML request body is used to set a literal XML as the request body.

Create a new soapy thing XML body:
POST https://example.org/InStock
Content-Type: application/soap+xml; charset=utf-8
Content-Length: 299
SOAPAction: "http://www.w3.0rg/2003/05/soap—envelope"
<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap—envelope" xmlns:m="htt
<soap:Header></soap:Header>
<soap:Body>
<m:GetStockPrice>
<m:StockName>G00G</m: StockName>
</m:GetStockPrice>
</soap:Body>
</soap:Envelope>

XML request body can be seen as syntactic sugar of multiline string body with xml identifier:

Create a new soapy thing XML body:
POST https://example.org/InStock
Content-Type: application/soap+xml; charset=utf-8
Content-Length: 299
SOAPAction: "http://www.w3.0rg/2003/05/soap—envelope"
Tixml
<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap—envelope" xmlns:m="htt
<soap:Header></soap:Header>
<soap:Body>
<m:GetStockPrice>
<m:StockName>G00G</m: StockName>
</m:GetStockPrice>
</soap:Body>
</soap:Envelope>

Contrary to JSON body, the succinct syntax of XML body can not use variables. If you need to
use variables in your XML body, use a simple multiline string_body with variables.

GraphQL query

GraphQL query uses multiline string body with graphq1 identifier:

POST https://example.org/starwars/graphql

“graphgl
{
human(id: "1000") {
name
height(unit: FOOT)
¥

}

GraphQL query body can use GraphQL variables:

POST https://example.org/starwars/graphql
" graphqgl
query Hero($episode: Episode, $withFriends: Boolean!) {
hero(episode: $episode) {
name
friends @include(if: $withFriends) {
name
}
}
}

variables {
"episode": "JEDI",
"withFriends": false
+

GraphQL query, as every multiline string body, can use Hurl variables.

POST https://example.org/starwars/graphql

" graphql
{
human(id: "{{human_id}}") {
name
height(unit: FOOT)
¥

}

Hurl variables and GraphQL variables can be mixed in the same body.

Multiline string body

For text based body that are neither JSON nor XML, one can use multiline string, started and ending
with ** .

POST https://example.org/models

Year,Make,Model,Description,Price

https://graphql.org/learn/queries/#variables

1997,Ford,E350,"ac, abs, moon",3000.00

1999, Chevy,"Venture ""Extended Edition""","",4900.00

1999, Chevy,"Venture ""Extended Edition, Very Large""",,5000.00

1996, Jeep,Grand Cherokee,"MUST SELL! air, moon roof, loaded",4799.00

The standard usage of a multiline string is:

linel
line2
line3

is evaluated as “line1\nline2\nline3\n”.
Multiline string body can use language identifier, like json, xml or graphql. Depending on the

language identifier, an additional ‘Content-Type’ request header is sent, and the real body (bytes
sent over the wire) can be different from the raw multiline text.

POST https://example.org/api/dogs

“Tjson
{
"id": o,
"name": "Frieda",

Oneline string body
For text based body that do not contain newlines, one can use oneline string, started and ending

with *.

POST https://example.org/helloworld
"Hello world!"

Base64 body

Base64 body is used to set binary data as the request body.

Base64 body starts with base64, and end with ;. MIME’s Base64 encoding is supported (newlines
and white spaces may be present anywhere but are to be ignored on decoding), and = padding
characters might be added.

POST https://example.org

Some random comments before body

base64, TG9yZWAgaXBzdWAgZG9sb3Igc2 LOIGFtZXQsIGNvbnNT1Y3R1dHVYIG
FkaXBpc2NpbmcgZWxpdC4gSW4gbWFsZXN1YWRhLCBuaXNsIHZ1bCBkaWN@dwog
aGVuZHI1cml0LCB1c3QganVzdG8gYm1iZW5kdWaghbWVedXMs IG5 1YyBydXRydw
09dG9ydG9yIG1lhc3NhIGLkIG1ldHVzZLiA=;

Hex body

Hex body is used to set binary data as the request body.

Hex body starts with hex, and end with ;.

PUT https://example.org
Send a café, encoded in UTF-8
hex,636166c3a90a;

File body

To use the binary content of a local file as the body request, file body can be used. File body starts
with file, and ends with ;°

POST https://example.org
Some random comments before body
file,data.bin;

File are relative to the input Hurl file, and cannot contain implicit parent directory (. .). You can use
——file-root option to specify the root directory of all file nodes.

Response

Definition

Responses can be used to capture values to perform subsequent requests, or add asserts to HTTP
responses. Response on requests are optional, a Hurl file can just consist of a sequence of
requests.

A response describes the expected HTTP response, with mandatory version and status, followed by
optional headers, captures, asserts and body. Assertions in the expected HTTP response describe
values of the received HTTP response. Captures capture values from the received HTTP response
and populate a set of named variables that can be used in the following entries.

Example

GET https://example.org

HTTP 200

Last-Modified: Wed, 21 Oct 2015 07:28:00 GMT

[Asserts]

xpath "normalize-space(//head/title)" startsWith "Welcome"
xpath "//1i" count == 18

Structure

file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-request

HTTP 200 Version and status (mandatory if response present)
content-length: 206
accept-ranges: bytes HTTP response headers (optional)
user—agent: Test
“[Captures]
e Captures and asserts (optional sections, unordered)
[Asserts]
{
"type': "F0OO",
"value": 356789, HTTP response body (optional)
"ordered": true,
"index": 10
}

Capture and Assertion

With the response section, one can optionally capture value from headers, body, or add assert on
status code, body or headers.

Body compression

Hurl outputs the raw HTTP body to stdout by default. If response body is compressed (using br,
gzip, deflate), the binary stream is output, without any modification. One can use ——compressed
option to request a compressed response and automatically get the decompressed body.

Captures and asserts work automatically on the decompressed body, so you can request
compressed data (using Accept-Encoding header by example) and add assert and captures on the
decoded body as if there weren’t any compression.

Timings

HTTP response timings are exposed through Hurl structured output (see ——json), HTML report (see
——report-html) and JSON report (see ——report-json).

On each response, libcurl response timings are available:

- time_namelookup: the time it took from the start until the name resolving was completed. You
can use ——resolve to exclude DNS performance from the measure.

« time_connect: The time it took from the start until the TCP connect to the remote host (or
proxy) was completed.

« time_appconnect: The time it took from the start until the SSL/SSH/etc connect/handshake to
the remote host was completed. The client is then ready to send its HTTP GET request.

« time_starttransfer: The time it took from the start until the first byte was just about to be
transferred (just before Hurl reads the first byte from the network). This includes
time_pretransfer and also the time the server needed to calculate the result.

« time_total: The total time that the full operation lasted.

All timings are in microsecond.

file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-capturing-response
file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-asserting-response
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept-Encoding
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept-Encoding

s O0s
T DNS
DNS) Request \ DNS resolver
Lookup DNS / eg.1.1.1.1
/ Response
= time_namelookup 1.510s Web Server ‘
T s
TP | -
Handshake
/ SYN/ACK
= time_connect 1.757 s \
—_— ACK \
ClientHello \
ServerHello ——
SSL ol
Handshake - Certificate
\ .
ClientKeyExch,
ChangeCypherSpec
geLyp pec — L web
_ Server
ChangeCyperSpec
- time_appconnect 2.256 s -— Finished
~ time_pretransfer 2.259s \
HTTP GET \
Wait <
- time_starttransfer ~ 2.506 s _——
/ Response .
Data
Transfer
time_total 3.001s \
= FIN \

Courtesy of Cloudflare

Capturing Response

Captures

Captures are optional values that are extracted from the HTTP response and stored in a named
variable. These captures may be the response status code, part of or the entire the body, and
response headers.

Captured variables can be accessed through a run session; each new value of a given variable
overrides the last value.

Captures can be useful for using data from one request in another request, such as when working
with CSRF tokens. Variables in a Hurl file can be created from captures or injected into the session.

An example to show how to pass a CSRF token
from one request to another:

First GET request to get CSRF token value:

GET https://example.org

HTTP 200

Capture the CSRF token value from html body.

[Captures]

csrf_token: xpath "normalize-space(//meta[@name='_csrf_token']/@content)"

Do the login !
POST https://acmecorp.net/login?user=toto&password=1234

https://blog.cloudflare.com/a-question-of-timing/
https://en.wikipedia.org/wiki/Cross-site_request_forgery

X-CSRF-TOKEN: {{csrf_token}}
HTTP 302

Structure of a capture:

my_var : xpath "string(//h1)"

. J . J

variable query

A capture consists of a variable name, followed by : and a query. Captures section starts with
[Captures].

Query

Queries are used to extract data from an HTTP response.
A query can extract data from

« status line:
o status
o version

+ headers:
o header
o cookie

o body:
o body
o bytes
o xpath
o jsonpath
o regex
o sha256
o md5

« others:
o url
o redirects
o ip
o variable
o duration
o certificate

Extracted data can then be further refined using filters.

Status capture

Capture the received HTTP response status code. Status capture consists of a variable name,
followed by a :, and the keyword status.

GET https://example.org
HTTP 200

[Captures]

my_status: status

Version capture

Capture the received HTTP version. Version capture consists of a variable name, followed by a :,
and the keyword version. The value captured is a string:

file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-filters

GET https://example.org
HTTP 200

[Captures]
http_version: version

Header capture

Capture a header from the received HTTP response headers. Header capture consists of a variable

name, followed by a :, then the keyword header and a header name.

POST https://example.org/login
[Form]

user: toto

password: 12345678

HTTP 302

[Captures]

next_url: header "Location"

Cookie capture

Capture a Set-Cookie header from the received HTTP response headers. Cookie capture consists
of a variable name, followed by a :, then the keyword cookie and a cookie name.

GET https://example.org/cookies/set
HTTP 200

[Captures]

session-id: cookie "LSID"

Cookie attributes value can also be captured by using the following format: <cookie-name>
[cookie-attribute]. The following attributes are supported: Value, Expires, Max-Age, Domain,
Path, Secure, HttpOnly and SameSite

GET https://example.org/cookies/set

HTTP 200

[Captures]

valuel: cookie "LSID"

value2: cookie "LSID[Valuel" # Equivalent to the previous capture

expires: cookie "LSID[Expires]"
max-age: cookie "LSID[Max-Agel"
domain: cookie "LSID[Domain]"
path: cookie "LSID[Path]"

secure: cookie "LSID[Secure]"
http-only: cookie "LSID[HttpOnly]"
same-site: cookie "LSID[SameSite]"

Body capture

Capture the entire body (decoded as text) from the received HTTP response. The encoding used to
decode the body is based on the charset value in the Content-Type header response.

GET https://example.org/home
HTTP 200

[Captures]

my_body: body

If the Content-Type doesn’t include any encoding hint, a decode filter can be used to explicitly
decode the body response bytes.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

Our HTML response is encoded using GB 2312.

But, the 'Content-Type' HTTP response header doesn't precise any charset,
so we decode explicitly the bytes.

GET https://example.org/cn

HTTP 200

[Captures]

my_body: bytes decode "gb2312"

Bytes capture

Capture the entire body (as a raw bytestream) from the received HTTP response

GET https://example.org/data.bin
HTTP 200

[Captures]

my_data: bytes

XPath capture

Capture a XPath query from the received HTTP body decoded as a string. Currently, only XPath 1.0
expression can be used.

GET https://example.org/home

Capture the identifier from the dom node <div id="pet@">5646eaf23</div
HTTP 200

[Captures]

pet-id: xpath "normalize-space(//div[@id="'pet0@'])"

Open the captured page.
GET https://example.org/home/pets/{{pet-id}}
HTTP 200

XPath captures are not limited to node values (like string, or boolean); any valid XPath can be
captured and asserted with variable asserts.

Test that the XML endpoint return 200 pets
GET https://example.org/api/pets

HTTP 200

[Captures]

pets: xpath "//pets"
[Asserts]

variable "pets" count == 200

XPath expression can also be evaluated against part of the body with a xpath filter:

GET https://example.org/home_cn

HTTP 200

[Captures]

pet-id: bytes decode "gb2312" xpath "normalize-space(//div[@id='pet@'])"

JSONPath capture

Capture a JSSONPath query from the received HTTP body.
POST https://example.org/api/contact
[Form]

token: {{token}}
email: toto@rookie.net

https://en.wikipedia.org/wiki/XPath
https://goessner.net/articles/JsonPath/

HTTP 200
[Captures]
contact-id: jsonpath "$['id']"

Explain that the value selected by the JSONPath is coerced to a string when only one node is
selected.

As with XPath captures, JSONPath captures can be anything from string, number, to object and
collections. For instance, if we have a JSON endpoint that returns the following JSON:

"a_null": null,

"an_object": {
Ilidll: II123II

o

"a_list": [

w N -

15

"an_integer": 1,

"a float": 1.1,
"a_bool": true,
"a_string": "hello"

We can capture the following paths:

GET https://example.org/captures—json

HTTP 200

[Captures]

an_object: jsonpath "$['an_object']"
a_list: jsonpath "$['a_list']"
a_null: jsonpath "$['a_null']l"
an_integer: jsonpath "$['an_integer']"
a_float: jsonpath "$['a_float']"
a_bool: jsonpath "$['a_bool']"
a_string: jsonpath "$['a_string']"
all: jsonpath "$"

Regex capture

Capture a regex pattern from the HTTP received body, decoded as text.

GET https://example.org/helloworld

HTTP 200

[Captures]

id_a: regex "id_a:([0-9]+)"

id_b: regex "id_b:(\\d+)" # pattern using double quote
id_c: regex /id_c:(\d+)/ # pattern using forward slash
name: regex "Hello ([a-zA-Z]+)"

The regex pattern must have at least one capture group, otherwise the capture will fail. When the
pattern is a double-quoted string, metacharacters beginning with a backslash in the pattern (like \d,
\'s) must be escaped; literal pattern enclosed by / can also be used to avoid metacharacters
escaping.

The regex syntax is documented at https://docs.rs/regex/latest/regex/#syntax. For instance, one can
use flags to enable case-insensitive match:

https://docs.rs/regex/latest/regex/#syntax
https://docs.rs/regex/latest/regex/#grouping-and-flags

GET https://example.org/hello
HTTP 200

[Captures]

word: regex /(?i)hello (\w+)!/

SHA-256 capture

Capture the SHA-256 hash of the response body.

GET https://example.org/data.tar.gz
HTTP 200

[Captures]

my_hash: sha256

Like body assert, sha256 capture works after content encoding decompression (so the captured
value is not affected by Content-Encoding response header).

MDS5 capture

Capture the MD5 hash of the response body.

GET https://example.org/data.tar.gz
HTTP 200

[Captures]

my_hash: md5

Like sha256 asserts, md5 assert works after content encoding decompression (so the predicates
values are not affected by Content-Encoding response header)

URL capture

Capture the last fetched URL. This is most meaningful if you have told Hurl to follow redirection (see

[[Options] section]options or ——location option). URL capture consists of a variable name,
followed by a :, and the keyword url.

GET https://example.org/redirecting
[Options]

location: true

HTTP 200

[Captures]

landing_url: url

Redirects capture

Capture each step of redirection. This is most meaningful if you have told Hurl to follow redirection
(see [[Options]section]options or ——location option). Redirects capture consists of a variable
name, followed by a :, and the keyword redirects. Redirects query returns a collection so each
step of the redirection can be capture.

GET https://example.org/redirecting/1
[Options]

location: true

HTTP 200

[Asserts]

redirects count ==

[Captures]

stepl: redirects nth @ location
step2: redirects nth 1 location
step3: redirects nth 2 location

https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/MD5

IP address capture

Capture the IP address of the last connection. The value of the ip query is a string.

GET https://example.org/hello
HTTP 200

[Captures]

server_ip: ip

Variable capture

Capture the value of a variable into another.

GET https://example.org/helloworld
HTTP 200

[Captures]

in: body

name: variable "in"

Duration capture

Capture the response time of the request in ms.

GET https://example.org/helloworld
HTTP 200

[Captures]

duration_in_ms: duration

SSL certificate capture

Capture the SSL certificate properties. Certificate capture consists of the keyword certificate,
followed by the certificate attribute value.

The following attributes are supported: Subject, Issuer, Start-Date, Expire-Date and Serial-
Number.

GET https://example.org

HTTP 200

[Captures]

cert_subject: certificate "Subject"
cert_issuer: certificate "Issuer"
cert_expire_date: certificate "Expire-Date"
cert_serial_number: certificate "Serial-Number"

Redacting Secrets
When capturing data, you may need to hide captured values from logs and report. To do this,
captures can use secrets which are redacted from logs and reports, using ——secret option:

$ hurl —-secret pass=sesame-ouvre-toi file.hurl

If the secret value to be redacted is dynamic, or not known before execution, a capture can become
a secret using redact at the end of the query’s capture:

GET https://foo.com

HTTP 200

[Captures]

pass: header '"token" redact

Asserting Response

Asserts

Asserts are used to test various properties of an HTTP response. Asserts can be implicits (such as
version, status, headers) or explicit within an [Asserts] section. The delimiter of the request /
response is HTTP <STATUS—-CODE>: after this delimiter, you'll find the implicit asserts, then an
[Asserts] section with all the explicit checks.

GET https://example.org/api/cats

HTTP 200

Implicit assert on “Content-Type Header
Content-Type: application/json; charset=utf-8
[Asserts]

Explicit asserts section

bytes count == 120

header "Content-Type" contains "utf-8"
jsonpath "$.cats" count == 49

jsonpath "$.cats[@].name" == "Felix"
jsonpath "$.cats[0].lives" == 9

Body responses can be encoded by server (see Content—-Encoding HTTP header) but asserts in
Hurl files are not affected by this content compression. All body asserts (body, bytes, sha256 etc...)
work after content decoding.

Finally, body text asserts (body, jsonpath, xpath etc...) are also decoded to strings based on
Content-Type header so these asserts can be written with usual strings.

Structure

The asserts order in a Hurl file is:

« implicit asserts on version and status
« implicit asserts on headers

« explicit asserts

« implicit assert on body

HTTP 200 Version and status (mandatory if response present)
content-length: 206
accept-ranges: bytes HTTP response headers (optional)
user—agent: Test
[Captures]
. Captures and explicit asserts (optional sections, unordered)
[Asserts]
{
"type": "F0OO",
"value": 356789, HTTP response body (optional)
"ordered": true,
"index": 10

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Encoding
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type

Implicit asserts
Version - Status

Expected protocol version and status code of the HTTP response.

Protocol version is one of HTTP/1.0, HTTP/1.1, HTTP/2, HTTP/3 or HTTP; HTTP describes any
version. Note that there are no status text following the status code.

GET https://example.org/404.html
HTTP 404

Wildcard keywords HTTP and * can be used to disable tests on protocol version and status:

GET https://example.org/api/pets

HTTP x

Check that response status code is > 400 and <= 500
[Asserts]

status > 400

status <= 500

While HTTP/1.0, HTTP/1.1, HTTP/2 and HTTP/3 explicitly check HTTP version:

Check that our server responds with HTTP/2
GET https://example.org/api/pets
HTTP/2 200

Headers
Optional list of the expected HTTP response headers that must be in the received response.
A header consists of a name, followed by a : and a value.

For each expected header, the received response headers are checked. If the received header is
not equal to the expected, or not present, an error is raised. The comparison is case-insensitive for
the name: expecting a Content-Type header is equivalent to a content-type one. Note that the
expected headers list is not fully descriptive: headers present in the response and not in the
expected list doesn’t raise error.

Check that user toto is redirected to home after login.
POST https://example.org/login

[Form]

user: toto

password: 12345678

HTTP 302

Location: https://example.org/home

Quotes in the header value are part of the value itself.

This is used by the ETag Header ETag: W/"<etag_value>" ETag: "<etag_value>"

Testing duplicated headers is also possible.

For example with the Set-Cookie header:

Set-Cookie: theme=light

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag

Set-Cookie: sessionToken=abc123; Expires=Wed, 09 Jun 2021 10:18:14 GMT

You can either test the two header values:

GET https://example.org/index.html

Host: example.net

HTTP 200

Set-Cookie: theme=1light

Set-Cookie: sessionToken=abc123; Expires=Wed, 09 Jun 2021 10:18:14 GMT

Or only one:

GET https://example.org/index.html
Host: example.net

HTTP 200

Set-Cookie: theme=1light

If you want to test specifically the number of headers returned for a given header name, or if you
want to test header value with predicates (like startsWith, contains, exists)you can use the
explicit header assert.

Body

Optional assertion on the received HTTP response body. Body section can be seen as syntactic
sugar over body asserts (with == predicate). If the body of the response is a JSON string or a XML
string, the body assertion can be directly inserted without any modification. For a text based body
that is neither JSON nor XML, one can use multiline string that starts with *** and ends with " ".
For a precise byte control of the response body, a Base64 encoded string or an input file can be
used to describe exactly the body byte content to check.

Like explicit body assert, the body section is automatically decompressed based on the value of
Content—Encoding response header. So, whatever is the response compression (gzip, brotli,
etc...) body section doesn’t depend on the content encoding. For textual body sections (JSON, XML,
multiline, etc...), content is also decoded to string, based on the value of Content-Type response
header.

JSON body

Get a doggy thing:
GET https://example.org/api/dogs/{{dog-id}}

HTTP 200
{
"id": o,
"name": "Frieda",
"picture": "images/scottish-terrier.jpeg",
"age": 3,
"breed": "Scottish Terrier",
"location": '"Lisco, Alabama"
}

JSON response body can be seen as syntactic sugar of multiline string_body with json identifier:

Get a doggy thing:
GET https://example.org/api/dogs/{{dog-id}}

HTTP 200
“Tjson
{
"id": 0,
"name": "Frieda",

"picture": "images/scottish-terrier.jpeg",

https://www.json.org/
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Base64

"age": 3,
"breed": "Scottish Terrier",
"location": '"Lisco, Alabama"

XML body

GET https://example.org/api/catalog
HTTP 200
<?xml version="1.0" encoding="UTF-8"?>
<catalog>

<book id="bk101">

<author>Gambardella, Matthew</author>

<title>XML Developer's Guide</title>

<genre>Computer</genre>

<price>44.95</price>

<publish_date>2000-10-01</publish_date>

<description>An in-depth look at creating applications with XML.</descript

</book>
</catalog>

XML response body can be seen as syntactic sugar of multiline string body with xml identifier:

GET https://example.org/api/catalog
HTTP 200

S xml

<?xml

version="1.0" encoding="UTF-8"?>

<catalog>
<book id="bk101">

<author>Gambardella, Matthew</author>

<title>XML Developer's Guide</title>

<genre>Computer</genre>

<price>44.95</price>

<publish_date>2000-10-01</publish_date>

<description>An in-depth look at creating applications with XML.</descript

</book>
</catalog>

Multiline string body

GET https://example.org/models
HTTP 200

Year,Make,Model,Description,Price

1997,Ford,E350,"ac, abs, moon",3000.00

1999, Chevy,"Venture ""Extended Edition""","",4900.00

1999, Chevy,"Venture ""Extended Edition, Very Large""",,5000.00

1996, Jeep,Grand Cherokee,"MUST SELL! air, moon roof, loaded",4799.00

The standard usage of a multiline string is :

linel
line2
line3

Oneline string body

For text based response body that do not contain newlines, one can use oneline string, started and
ending with .

POST https://example.org/helloworld
HTTP 200
"Hello world!"

Base64 body

Base64 response body assert starts with base64, and end with ;. MIME’s Base64 encoding is
supported (newlines and white spaces may be present anywhere but are to be ignored on
decoding), and = padding characters might be added.

GET https://example.org

HTTP 200

base64, TG9yZWAgaXBzdWAgZG9sb3Igc2 LOIGFtZXQsIGNvbnNT1Y3R1dHVYIG
FkaXBpc2NpbmcgZWxpdC4gSWAgbWFsZXN1YWRhLCBuaXNsIHZ1bCBkaWN@dwdg
aGVuzZHJI1cml0LCB1c3QganVzdG8gYmizZw5kdWaghbWVedXMs IG5 1YyBydXRydw
09dG9ydG9yIG1lhc3NhIGLkIG1ldHVzLiA=;

File body

To use the binary content of a local file as the body response assert, file body can be used. File
body starts with file, and ends with ;"

GET https://example.org
HTTP 200
file,data.bin;

File are relative to the input Hurl file, and cannot contain implicit parent directory (. .). You can use —
—-file-root option to specify the root directory of all file nodes.

Explicit asserts

Optional list of assertions on the HTTP response within an [Asserts] section. Assertions can
describe checks on status code, on the received body (or part of it) and on response headers.

Structure of an assert:

jsonpath "$.book" contains "Dune"

. J J O\ J

query predicate predicate
type value

body matches N\d{4}-\d{2}-\d{2}/

\ J \. J J

query predicate predicate value
type
An assert consists of a query followed by a predicate. The format of the query is shared with
captures, and queries can extract data from

« status line:

o status
o version

« headers:
o header
o cookie

« others:
o url
o redirects
o ip
o variable
o duration
o certificate

Queries, in asserts and in captures, can be refined with filters, like [count]count to add tests on
collections sizes.

Predicates

Predicates consist of a predicate function and a predicate value. Predicate functions are:

Predicate Description Example

Query and
== predicate value are jsonpath "$.book" == "Dune"
equal

Query and
I= predicate value are jsonpath "$.color" != "red"
different

Query number or jsonpath "$.year" > 1978

> date is greater than

predicate value jsonpath "$.createdAt" toDate "%+" > {{

a_date }}

Query number or
N date is greater than , th s " 1978
= o >=
or equal to the Jsonpa year

predicate value

Query number or
< date is less than jsonpath "$.year" < 1978
that predicate value

Query number or
date is less than or . " "

<= jsonpath "$.year" <= 1978
equal to the

predicate value

Query starts with
the predicate value jsonpath "$.movie" startsWith "The"

file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-filters

startsWith

endsWith

contains

matches

exists

isBoolean

isCollection

isEmpty

isFloat

isInteger

isIsoDate

isNumber

isString

isIpv4

isIpv6

Value is string or a
binary content

Query ends with the
predicate value
Value is string or a
binary content

If query returns a
collection of string
or numbers, query
collection includes
the predicate value
(string or number)
If query returns a
string or a binary
content, query
contains the
predicate value
(string or bytes)

Part of the query
string matches the
regex pattern
described by the
predicate value

(see regex syntax)

Query returns a
value

Query returns a
boolean

Query returns a
collection

Query returns an
empty collection

Query returns a
float

Query returns an
integer

Query string returns
a RFC 3339 date
(YYYY-MM-
DDTHH:mm: ss.sssZ)

Query returns an
integer or a float

Query returns a
string

Query returns an
IPv4 address

Query returns an
IPv6 address

bytes startsWith hex,efbbbf;

jsonpath "$.movie" endsWith "Back"

bytes endsWith hex,ab23456;

jsonpath "$.movie" contains "Empire"

bytes contains hex,beef;

jsonpath "$.numbers" contains 42

jsonpath "$.release" matches "\\d{4}"
jsonpath "$.release" matches /\d{4}/
jsonpath "$.book" exists

jsonpath "$.succeeded" isBoolean
jsonpath "$.books" isCollection
jsonpath "$.movies" isEmpty

jsonpath "$.height" isFloat

jsonpath "$.count" isInteger

jsonpath "$.publication_date" isIsoDate
jsonpath "$.count" isNumber

jsonpath "$.name" isString

ip isIpvé4

ip isIpv6

https://docs.rs/regex/latest/regex/#syntax
https://www.rfc-editor.org/rfc/rfc3339

isUuid Query returns a ip isUuid

uuiD

Each predicate can be negated by prefixing it with not (for instance, not contains or not exists)

jsonpath "$.book" not contains "Dune"

. J \ J \ J

query predicate predicate
type value
A predicate value is typed, and can be a string, a boolean, a number, a bytestream, null or a
collection. Note that "true" is a string, whereas true is a boolean.

For instance, to test the presence of a h1 node in an HTML response, the following assert can be
used:

GET https://example.org/home

HTTP 200

[Asserts]

xpath "boolean(count(//h1))" == true

xpath "//h1" exists # Equivalent but simpler

As the XPath query boolean(count(//h1)) returns a boolean, the predicate value in the assert
must be either true or false without double quotes. On the other side, say you have an article node
and you want to check the value of some data attributes:

<article
id="electric-cars"
data-visible="true"

</article>
The following assert will check the value of the data-visible attribute:

GET https://example.org/home

HTTP 200

[Asserts]

xpath "string(//article/@data-visible)" == "true"

In this case, the XPath query string(//article/@data-visible) returns a string, so the predicate
value must be a string.

The predicate function == can be used with string, numbers or booleans; startWith and contains
can only be used with strings and bytes, while matches only works on string. If a query returns a
number, using a matches predicate will cause a runner error.

A really well tested web page...
GET https://example.org/home

HTTP 200

[Asserts]

header "Content-Type" contains "text/html"

header "Last-Modified" == "Wed, 21 Oct 2015 07:28:00 GMT"

xpath "//h1" exists # Check we've at least one hl
xpath "normalize-space(//h1)" contains "Welcome"

xpath "//h2" count == 13

xpath "string(//article/@data-id)" startsWith "electric"

https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_attributes

Status assert

Check the received HTTP response status code. Status assert consists of the keyword status
followed by a predicate function and value.

GET https://example.org
HTTP *

[Asserts]

status < 300

Version assert

Check the received HTTP version. Version assert consists of the keyword version followed by a
predicate function and value. The value returns by version is a string:

GET https://example.org
HTTP *x

[Asserts]

version == "2"

Header assert

Check the value of a received HTTP response header. Header assert consists of the keyword
header followed by the value of the header, a predicate function and a predicate value. Like headers
implicit asserts, the check is case-insensitive for the name: comparing a Content-Type header is
equivalent to a content-type one.

GET https://example.org

HTTP 302

[Asserts]

header "Location" contains "www.example.net"

header "Last-Modified" matches /\d{2} [a-z-A-Z]{3} \d{4}/

If there are multiple headers with the same name, the header assert returns a collection, so count,
contains can be used in this case to test the header list.

Let’s say we have this request and response:

GET /hello HTTP/1.1

Host: example.org

Accept: *x/x

User-Agent: hurl/2.0.0-SNAPSHOT

Response: (received 12 bytes in 11 ms)

HTTP/1.0 200 0K

Vary: Content-Type

Vary: User-Agent

Content-Type: text/html; charset=utf-8
Content-Length: 12

Server: Flask Server

Date: Fri, 07 Oct 2022 20:53:35 GMT

A ANNNNANANNANHX X*V VYV VYV

One can use explicit header asserts:

GET https://example.org/hello
HTTP 200

[Asserts]

header "Vary" count == 2

header "Vary" contains "User-—Agent"
header "Vary" contains "Content-Type"

Or implicit header asserts:

GET https://example.org/hello
HTTP 200

Vary: User-Agent

Vary: Content-Type

Cookie assert

Check value or attributes of a Set—Cookie response header. Cookie assert consists of the keyword
cookie, followed by the cookie name (and optionally a cookie attribute), a predicate function and
value.

Cookie attributes value can be checked by using the following format:<cookie—name>[cookie-
attributel. The following attributes are supported: Value, Expires, Max—Age, Domain, Path,
Secure, HttpOnly and SameSite.

GET http://localhost:8000/cookies/set
HTTP 200

Explicit check of Set-Cookie header value. If the attributes are

not in this exact order, this assert will fail.

Set-Cookie: LSID=DQAAAKEaem_vYg; Expires=Wed, 13 Jan 2021 22:23:01 GMT; Secure; |
Set-Cookie: HSID=AYQEVnDKrdst; Domain=localhost; Expires=Wed, 13 Jan 2021 22:23:
Set-Cookie: SSID=Ap4PGTEq; Domain=localhost; Expires=Wed, 13 Jan 2021 22:23:01 G

Using cookie assert, one can check cookie value and various attributes.

[Asserts]
cookie "LSID" == "DQAAAKEaem_vYg"
cookie "LSID[Value]" == "DQAAAKEaem_vYg"

cookie "LSID[Expires]" exists

cookie "LSID[Expires]" contains "Wed, 13 Jan 2021"
cookie "LSID[Max-Agel" not exists

cookie "LSID[Domain]" not exists

cookie "LSID[Path]" == "/accounts"

cookie "LSID[Secure]" exists

cookie "LSID[HttpOnly]" exists

cookie "LSID[SameSitel" == "Lax"

Secure and HttpOnly attributes can only be tested with exists or not exists predicates to
reflect the Set-Cookie header semantics (in other words, queries <cookie—-name>[HttpOnly]
and <cookie—-name>[Secure] don’t return boolean).

Body assert

Check the value of the received HTTP response body when decoded as a string. Body assert
consists of the keyword body followed by a predicate function and value.

GET https://example.org

HTTP 200

[Asserts]

body contains '"<hl>Welcome!</h1>"

The encoding used to decode the response body bytes to a string is based on the charset value in

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

the Content-Type header response.

Our HTML response is encoded with GB 2312 (see https://en.wikipedia.org/wiki/G
GET https://example.org/cn

HTTP 200

[Asserts]

header "Content-Type" == "text/html; charset=gb2312"

bytes of the response, without any text decoding:

bytes contains hex, c4e3bac3cac@bde7; # {RIFtH5R encoded in GB 2312

text of the response, decoded with GB 2312:

body contains "{RiFtHFR"

If the Content-Type response header doesn’t include any encoding hint, a decode filter can be used
to explicitly decode the response body bytes.

Our HTML response is encoded using GB 2312.

But, the 'Content-Type' HTTP response header doesn't precise any charset,
so we decode explicitly the bytes.

GET https://example.org/cn

HTTP 200

[Asserts]

header "Content-Type" == "text/html"

bytes contains hex,c4e3bac3cacObde7; # {R{Ftt5R encoded in GB2312

bytes decode "gb2312" contains "“{R{FtHF"

Body asserts are automatically decompressed based on the value of Content-Encoding response
header. So, whatever is the response compression (gzip, brotli) etc... asserts values don’t
depend on the content encoding.

Request a gzipped reponse, the “body"™ asserts works with ungzipped response
GET https://example.org

Accept-Encoding: gzip

HTTP 200

[Asserts]

header "Content-Encoding" == '"gzip"

body contains "<h1l>Welcome!</h1>"

Without content encoding, asserts remains identical
GET https://example.org

HTTP 200

[Asserts]

header "Content-Encoding" not exists

body contains "<hl>Welcome!</h1>"

Bytes assert

Check the value of the received HTTP response body as a bytestream. Body assert consists of the
keyword bytes followed by a predicate function and value.

GET https://example.org/data.bin
HTTP 200

[Asserts]

bytes startsWith hex,efbbbf;

bytes count == 12424

header "Content-Length" == "12424"

Like body assert, bytes assert works after content encoding decompression (so the predicates
values are not affected by Content-Encoding response header value).

XPath assert

Check the value of a XPath query on the received HTTP body decoded as a string (using the
charset value in the Content-Type header response). Currently, only XPath 1.0 expression can be
used. Body assert consists of the keyword xpath followed by a predicate function and value. Values
can be string, boolean or number depending on the XPath query.

Let’s say we want to check this HTML response:

$ curl —-v https://example.org

< HTTP/1.1 200 OK
< Content-Type: text/html; charset=UTF-8

<!doctype html>
<html>
<head>
<title>Example Domain</title>

</head>
<body>
<div>
<h1>Example</h1>
<p>This domain is for use in illustrative examples in documents. You may u:
<p>More information...<
</div>

</body>
</html>

With Hurl, we can write multiple XPath asserts describing the DOM content:

GET https://example.org

HTTP 200

Content-Type: text/html; charset=UTF-8

[Asserts]

xpath "string(/html/head/title)" contains "Example" # Check title

xpath "count(//p)" == 2 # Check the number of <p>
xpath "//p" count == 2 # Similar assert for <p>
xpath "boolean(count(//h2))" == false # Check there is no <h2>
xpath "//h2" not exists # Similar assert for <h2>

XML Namespaces are also supported. Let’s say you want to check this XML response:

<?xml version="1.0"7>
<!-— both namespace prefixes are available throughout -—>
<bk:book xmlns:bk="'urn:loc.gov:books'
xmlns:isbn="urn:ISBN:0-395-36341-6"'>
<bk:title>Cheaper by the Dozen</bk:title>
<isbn:number>1568491379</isbn:number>
</bk:book>

This XML response can be tested with the following Hurl file:

GET http://localhost:8000/assert-xpath

HTTP 200

[Asserts]

xpath "string(//bk:book/bk:title)" == "Cheaper by the Dozen"

xpath "string(//x[name()="bk:book']/*x[name()="bk:title'])" == "Cheaper by the Do
xpath "string(//*x[local-name()="book']/*x[local-name()="title'])" == "Cheaper by

xpath "string(//bk:book/isbn:number)" == '"1568491379"

https://en.wikipedia.org/wiki/XPath

xpath "string(//x[name()="bk:book']/*x[name()="'isbn:number'])" == '"1568491379"
xpath "string(//*x[local-name()="book"']/*x[local-name()="number'])" == "1568491379

The XPath expressions string(//bk:book/bk:title) and string(//bk:book/isbn:number) are
written with bk and isbn namespaces.

For convenience, the first default namespace can be used with _

JSONPath assert

Check the value of a JSONPath query on the received HTTP body decoded as a JSON document.
JSONPath assert consists of the keyword jsonpath followed by a predicate function and value.

Let’s say we want to check this JSON response:

curl -v http://httpbin.org/json

< HTTP/1.1 200 OK
< Content-Type: application/json

{
"slideshow": {
"author": "Yours Truly",
"date": '"date of publication",
"slides": [
{
"title": "Wake up to WonderWidgets!",
"type": "all"
i
15
"title": "Sample Slide Show"
}
¥

With Hurl, we can write multiple JSONPath asserts describing the DOM content:

GET http://httpbin.org/json

HTTP 200

[Asserts]

jsonpath "$.slideshow.author" == "Yours Truly"

jsonpath "$.slideshow.slides[@].title" contains "Wonder"
jsonpath "$.slideshow.slides" count == 2

jsonpath "$.slideshow.date" != null

jsonpath "$.slideshow.slides[x].title" contains "Mind Blowing!"

Explain that the value selected by the JSONPath is coerced to a string when only one node is
selected.

In matches predicates, metacharacters beginning with a backslash (like \d, \'s) must be escaped.
Alternatively, matches predicate support JavaScript-like Regular expression syntax to enhance the
readability:

GET https://example.org/hello
HTTP 200
[Asserts]

Predicate value with matches predicate:

https://goessner.net/articles/JsonPath/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

jsonpath "$.date" matches "~\\d{4}-\\d{2}-\\d{2}$"
jsonpath "$.name" matches "Hello [a-zA-Z]+!"

Equivalent syntax:
jsonpath "$.date" matches /~\d{4}-\d{2}-\d{2}$/
jsonpath "$.name" matches /Hello [a-zA-Z1+!/

Regex assert

Check that the HTTP received body, decoded as text, matches a regex pattern.

GET https://example.org/hello

HTTP 200

[Asserts]

regex "~(\\d{4}-\\d{2}-\\d{2})$" == "2018-12-31"
Same assert as previous using regex literals
regex /~(\d{4}-\d{2}-\d{2})$/ == "2018-12-31"

The regex pattern must have at least one capture group, otherwise the assert will fail. The assertion
is done on the captured group value. When the regex pattern is a double-quoted string,
metacharacters beginning with a backslash in the pattern (like \d, \'s) must be escaped; literal
pattern enclosed by / can also be used to avoid metacharacters escaping.

The regex syntax is documented at https://docs.rs/regex/latest/regex/#syntax. For instance, once
can use flags to enable case-insensitive match:

GET https://example.org/hello

HTTP 200

[Asserts]

regex /(?i)hello (\w+)!/ == "World"

SHA-256 assert

Check response body SHA-256 hash.

GET https://example.org/data.tar.gz

HTTP 200

[Asserts]

sha256 == hex,039058c6f2c0cb492c533b0add14ef77ccOf78abccced5287d84a1a2011cfb81;

Like body assert, sha256 assert works after content encoding decompression (so the predicates
values are not affected by Content-Encoding response header). For instance, if we have a
resource a.txt on a server with a given hash abcdef, sha256 value is not affected by Content-
Encoding:

Without content encoding compression:
GET https://example.org/a.txt

HTTP 200

[Asserts]

sha256 == hex,abcdef;

With content encoding compression:
GET https://example.org/a.txt
Accept-Encoding: brotli

HTTP 200

[Asserts]

header "Content-Encoding" == "brotli"
sha256 == hex,abcdef;

https://docs.rs/regex/latest/regex/#syntax
https://docs.rs/regex/latest/regex/#grouping-and-flags
https://en.wikipedia.org/wiki/SHA-2

MD5 assert

Check response body MD5 hash.

GET https://example.org/data.tar.gz

HTTP 200

[Asserts]

md5 == hex,ed076287532e86365e841e92bfc50d8c;

Like sha256 asserts, md5 assert works after content encoding decompression (so the predicates
values are not affected by Content-Encoding response header)

URL assert
Check the last fetched URL. This is most meaningful if you have told Hurl to follow redirection (see

[[0ptions]section]options or ——location option). URL assert consists of the keyword ur1 followed
by a predicate function and value.

GET https://example.org/redirecting
[Options]

location: true

HTTP 200

[Asserts]

url == "https://example.org/redirected"

Redirects assert

Check each step of redirection. This is most meaningful if you have told Hurl to follow redirection
(see [[Options]section]options or ——location option). Redirects assert consists of the keyword
redirects followed by a predicate function and value. The redirects query returns a collection of
redirections that can be tested with a location filter:

GET https://example.org/redirecting/1

[Options]

location: true

HTTP 200

[Asserts]

redirects count == 3

redirects nth @ location == "https://example.org/redirecting/2"
redirects nth 1 location == "https://example.org/redirecting/3"
redirects nth 2 location == "https://example.org/redirected"

IP address assert

Check the IP address of the last connection. The value of the ip query is a string.

Predicates isIpv4 and isIpv6 are available to check if a particular string matches an IPv4 or
IPv6 address and can use with ip queries.

GET https://example.org/hello
HTTP 200

[Asserts]

ip isIpv4

ip not isIpv6

ip == "172.16.45.87"

Variable assert

https://en.wikipedia.org/wiki/MD5

Test that the XML endpoint return 200 pets
GET https://example.org/api/pets

HTTP 200

[Captures]

pets: xpath "//pets"
[Asserts]

variable "pets" count == 200

Duration assert
Check the total duration (sending plus receiving time) of the HTTP transaction.

GET https://example.org/helloworld

HTTP 200

[Asserts]

duration < 1000 # Check that response time is less than one second
SSL certificate assert

Check the SSL certificate properties. Certificate assert consists of the keyword certificate,
followed by the certificate attribute value.

The following attributes are supported: Subject, Issuer, Start-Date, Expire-Date and Serial-
Number.

GET https://example.org

HTTP 200

[Asserts]

certificate "Subject" == "CN=example.org"

certificate "Issuer" == "C=US, O=Let's Encrypt, CN=R3"

certificate "Expire-Date" daysAfterNow > 15
certificate "Serial-Number" matches " [0-9af]+"

Filters

Definition

Captures and asserts share a common structure: query. A query is used to extract data from an
HTTP response; this data can come from the HTTP response body, the HTTP response headers or
from the HTTP meta-information (like duration for instance)...

In this example, the query jsonpath "$.books[@0].name" is used in a capture to save data and in
an assert to test the HTTP response body.

Capture:

name : jsonpath "$.books[0].name"

—/ \ J

variable query

Assert:

file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-capturing-response
file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-asserting-response

jsonpath "$.books[0].name" == "Dune"

query predicate

In both case, the query is exactly the same: queries are the core structure of asserts and captures.

Sometimes, you want to process data extracted by queries: that’s the purpose of filters.

Filters are used to transform value extracted by a query and can be used in asserts and captures to
refine data. Filters can be chained, allowing for fine-grained data extraction.

jsonpath "$.name" split "," nth 0 == "Herbert"

Example

query 2 filters predicate

GET https://example.org/api

HTTP 200
[Captures]

name: jsonpath "$.user.id" replaceRegex /\d/ "x"

[Asserts]

header "x-servers"
header "x-servers"
header "x-servers"
jsonpath "$.books"

Description

Filter

base64Decode

base64Encode

base64UrlSafeDecode

base64UrlSafeEncode

daysAfterNow

daysBeforeNow

split "," count == 2
split "," nth @ == "recl"
split "," nth 1 == "rec3"
count == 12

Description

Decodes a [Base64 encoded
string] into bytes.

Encodes bytes into [Base64
encoded string].

Decodes a Base64 encoded
string into bytes (using [Base64
URL safe encoding]).

Encodes bytes into Base64
encoded string (using [Base64
URL safe encoding]).

Counts the number of items in a
collection.

Returns the number of days
between now and a date in the
future.

Returns the number of days
between now and a date in the

Input

string

bytes

string

bytes

collection

date

date

Output

bytes

string

bytes

string

number

number

number

decode

first

format

htmlEscape

htmlUnescape

jsonpath

last

location

regex

replace

replaceRegex

v
el
E:

toDate

toFloat

toHex

tolnt

toString

urlDecode

past.

Decodes bytes to string using
encoding.

Returns the first element from a
collection.

Formats a date to a string given
[a specification format].

Converts the characters &, < and
> to HTML-safe sequence.

Converts all named and numeric
character references (e.g. >,
>, >) to the
corresponding Unicode
characters.

Evaluates a [JSONPath]
expression.

Returns the last element from a
collection.

Returns the target location URL
of a redirection.

Returns the element from a
collection at a zero-based index,
accepts negative indices for
indexing from the end of the
collection.

Extracts regex capture group.
Pattern must have at least one

capture group.

Replaces all occurrences of old
string with new string.

Replaces all occurrences of a
pattern with new string.

Splits to a list of strings around
occurrences of the specified

delimiter.

Converts a string to a date given
[a specification format].

Converts value to float number.

Converts bytes to hexadecimal
string.

Converts value to integer
number.

Converts value to string.

Replaces %xx escapes with
their single-character equivalent.

bytes

collection

date

string

string

string

collection

response

collection

string

string

string

string

string

string \

bytes

string \

any

string

string

any

string

string

string

any

any

string

any

string

string

string

string

date

number

string

number

string

string

file:///Users/jc/Documents/Dev/hurl-dev/sites/hurl.dev/_site/docs/standalone/hurl-7.0.0.html#file-format-filters-toDate

Percent-encodes all the
characters which are not
urlEncode included in unreserved chars string
(see [RFC3986]) with the
exception of forward slash (/).

Returns the value of a query

urlQueryParam strin
v parameter in a URL. 9
xpath Evaluates a [XPath] expression. string
base64Decode

Decodes a Base64 encoded string into bytes.

GET https://example.org/api

HTTP 200

[Asserts]

jsonpath "$.token" base64Decode == hex,3c3c3f3f3f3e3e;

base64Encode

Encodes bytes into Base64 encoded string.

GET https://example.org/api

HTTP 200

[Asserts]

bytes base64Encode == "PDw/Pz8+Pg==""

base64UrlSafeDecode

Decodes a Base64 encoded string into bytes (using Base64 URL safe encoding).

GET https://example.org/api

HTTP 200

[Asserts]

jsonpath "$.token" base64UrlSafeDecode == hex,3c3c3f3f3f3e3e;

base64UrISafeEncode

Encodes bytes into Base64 encoded string (using Base64 URL safe encoding).

GET https://example.org/api

HTTP 200

[Asserts]

bytes base64UrlSafeEncode == "PDw_Pz8-Pg"

count

Counts the number of items in a collection.
GET https://example.org/api
HTTP 200

[Asserts]
jsonpath "$.books" count == 12

string

string

string

https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc4648#section-5

daysAfterNow
Returns the number of days between now and a date in the future.
GET https://example.org
HTTP 200
[Asserts]
certificate "Expire-Date" daysAfterNow > 15
daysBeforeNow
Returns the number of days between now and a date in the past.
GET https://example.org
HTTP 200
[Asserts]
certificate "Start-Date" daysBeforeNow < 100

decode
Decodes bytes to string using encoding.
The 'Content-Type' HTTP response header does not precise the charset 'gb2312'

so body must be decoded explicitly by Hurl before processing any text based as
GET https://example.org/hello_china

HTTP 200
[Asserts]
header "Content-Type" == "text/html"
Content-Type has no encoding clue, we must decode ourselves the body response.
bytes decode "gb2312" xpath "string(//body)" == "{RiFtHHE"
first

Returns the first element from a collection.

GET https://example.org

HTTP 200

[Asserts]

jsonpath "$.books" first == "Dune"

format

Formats a date to a string given a specification format.

GET https://example.org

HTTP 200

[Asserts]

cookie "LSID[Expires]" format "%a, %d %b %Y %H:%M:%S" == "Wed, 13 Jan 2021 22:23

htmIEscape

Converts the characters &, < and > to HTML-safe sequence.

GET https://example.org/api
HTTP 200

https://docs.rs/chrono/latest/chrono/format/strftime/index.html

[Asserts]
jsonpath "$.text" htmlEscape == "a > b"
htmlUnescape

Converts all named and numeric character references (e.g. >, >, >) to the
corresponding Unicode characters.

GET https://example.org/api

HTTP 200

[Asserts]

jsonpath "$.escaped_html[1]" htmlUnescape == "Foo © bar ="

jsonpath

Evaluates a JSONPath expression.

GET https://example.org/api

HTTP 200

[Captures]

books: xpath "string(//body/@data-books)"

[Asserts]

variable "books" jsonpath "$[0].name" == "Dune"

variable "books" jsonpath "$[0].author" == "Franck Herbert"
last

Returns the last element from a collection.

GET https://example.org

HTTP 200

[Asserts]

jsonpath "$.books" last == "Les Misérables"

location

Returns the target URL location of a redirection; the returned URL is always absolute, contrary to the
Location header from which it’s originated that can be absolute or relative.

GET https://example.org/stepl

[Options]

location: true

HTTP 200

[Asserts]

redirects count ==

redirects nth @ location == "https://example.org/step2"
redirects nth 1 location == "https://example.org/step3"

nth

Returns the element from a collection at a zero-based index, accepts negative indices for indexing
from the end of the collection.

GET https://example.org/api

HTTP 200

[Asserts]

jsonpath "$.books" nth 2 == "Children of Dune"

https://goessner.net/articles/JsonPath/

regex

Extracts regex capture group. Pattern must have at least one capture group.

GET https://example.org/foo

HTTP 200

[Captures]

paraml: header "headerl"

param2: header "header2" regex "Hello (.x)!"
param3: header "header2" regex /Hello (.x)!/
param3: header "header2" regex /(?i)Hello (.x)!/

The regex syntax is documented at https://docs.rs/regex/latest/regex/#syntax.

replace

Replaces all occurrences of old string with new string.

GET https://example.org/foo

HTTP 200

[Captures]

url: jsonpath "$.url" replace "http://" "https://"

[Asserts]

jsonpath "$.ips" replace ", " "|" == "192.168.2.1|10.0.0.20|10.0.0.10"

replaceRegex

Replaces all occurrences of a pattern with new string.

GET https://example.org/foo

HTTP 200

[Captures]

url: jsonpath "$.id" replaceRegex /\d/ "x"

[Asserts]

jsonpath "$.message" replaceRegex "Bl[aoilb" '"Dude" == "Welcome Dude!"

split
Splits to a list of strings around occurrences of the specified delimiter.
GET https://example.org/foo
HTTP 200
[Asserts]
jsonpath "$.ips" split ", " count ==
toDate
Converts a string to a date given a specification format.
GET https:///example.org
HTTP 200

[Asserts]
header "Expires" toDate "%a, %d %b %Y %H:%M:%S GMT" daysBeforeNow > 1000

ISO 8601 / RFC 3339 date and time format have shorthand format %+:

GET https://example.org/api/books

https://docs.rs/regex/latest/regex/#syntax
https://docs.rs/chrono/latest/chrono/format/strftime/index.html

HTTP 200

[Asserts]

jsonpath "$.published" == "2023-01-23T18:25:43.5117"

jsonpath "$.published" toDate "%Y-%m-%dT%H:%M:%S%.fZ" format "%A" == "Monday"

jsonpath "$.published" toDate "S%+" format "%A" == "Monday" # %+ can be used to pi
toFloat

Converts value to float number.

GET https://example.org/foo
HTTP 200

[Asserts]

jsonpath "$.pi" toFloat == 3.14

toHex

Converts bytes to hexadecimal string.

GET https://example.org/foo

HTTP 200

[Asserts]

bytes toHex == "d188d0b5d0bbddbbd18b"

toint
Converts value to integer number.
GET https://example.org/foo
HTTP 200
[Asserts]
jsonpath "$.id" toInt == 123
toString

Converts value to string.

GET https://example.org/foo

HTTP 200

[Asserts]

jsonpath "$.count" toString == "42"

urlDecode
Replaces %xx escapes with their single-character equivalent.

GET https://example.org/foo

HTTP 200

[Asserts]

jsonpath "$.encoded_url" urlDecode == "https://mozilla.org/?x=wenns"
urlEncode

Percent-encodes all the characters which are not included in unreserved chars (see REC3986) with
the exception of forward slash (/).

https://www.rfc-editor.org/rfc/rfc3986

GET https://example.org/foo

HTTP 200

[Asserts]

jsonpath "$.url" urlEncode == "https%3A//mozilla.org/%3Fx%3D%D1%88%D0%B5%D0%BB%D!

urlQueryParam

Returns the value of a query parameter in a URL.

GET https://example.org/foo

HTTP 200

[Asserts]

jsonpath "$.url" urlQueryParam "x" == "wenns"

xpath

Evaluates a XPath expression.

GET https://example.org/hello_gb2312

HTTP 200

[Asserts]

bytes decode 'gb2312" xpath "string(//body)" == "{R&FttFE"

Templates

Variables

In Hurl file, you can generate value using two curly braces, i.e {{my_variable}}. For instance, if
you want to reuse a value from an HTTP response in the next entries, you can capture this value in
a variable and reuse it in a placeholder.

In this example, we capture the value of a CSRF token from the body of the first response, and
inject it as a header in the next POST request:

GET https://example.org

HTTP 200

[Captures]

csrf_token: xpath "string(//metal@name='_csrf_token']/@content)"

Do the login !

POST https://acmecorp.net/login?user=toto&password=1234
X-CSRF-TOKEN: {{csrf_token}}

HTTP 302

In this second example, we capture the body in a variable index, and reuse this value in the query
jsonpath "$.errors[{{index}}].id":

GET https://example.org/api/index
HTTP 200

[Captures]

index: body

GET https://example.org/api/status

https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/Cross-site_request_forgery

HTTP 200
[Asserts]
jsonpath "$.errors[{{index}}].id" == "error"

Functions

Besides variables, functions can be used to generate dynamic values. Current functions are:

Function Description
newUuid Generates an UUID v4 random string
newDate Generates an REC 3339 UTC date string, at the current time

In the following example, we use newDate to generate a dynamic query parameter:

GET https://example.org/api/foo
[Query]

date: {{newDatel}}

HTTP 200

We run a GET request to https://example.org/api/foo?

date=2024%2D12%2D02T10%3A35%3A44%2E461731Z where the date query parameter value is 2024~
12-02T10:35:44.461731Z URL encoded.

In this second example, we use newUuid function to generate an email dynamically:

POST https://example.org/api/foo
{

"name": "foo",

"email": "{{newUuid}}@test.com"

i

When run, the request body will be:

{
"name": "foo",
"email": "0531f78f-7f87-44be-a7f2-969alc4eb6d97@test.com"
}
Types

Values generated from function and variables are typed, and can be either string, bool, number,
null or collections. Depending on the value type, templates can be rendered differently. Let’s say
we have captured an integer value into a variable named count:

GET https://sample/counter

HTTP 200
[Captures]
count: jsonpath "$.results[0]"

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://www.rfc-editor.org/rfc/rfc3339

The following entry:

GET https://sample/counter/{{count}}
HTTP 200

[Asserts]
jsonpath "$.id" == "{{count}}"

will be rendered at runtime to:

GET https://sample/counter/458
HTTP 200

[Asserts]
jsonpath "$.id" == "458"

resulting in a comparison between the JSONPath expression and a string value.

On the other hand, the following assert:

GET https://sample/counter/{{count}}
HTTP 200

[Asserts]
jsonpath "$.index" == {{count}}

will be rendered at runtime to:

GET https://sample/counter/458

HTTP 200
[Asserts]
jsonpath "$.index" == 458

resulting in a comparison between the JSONPath expression and an integer value.

So if you want to use typed values (in asserts for instances), you can use {{my_var}}. If you're
interested in the string representation of a variable, you can surround the variable with double

quotes , as in "{{my_var}}".

When there is no possible ambiguities, like using a variable in an URL, or in a header, you can

omit the double quotes. The value will always be rendered as a string.

Injecting Variables
Variables can be injected in a Hurl file:

o by using ——variable option

e by using ——variables-file option

« by defining environment variables, for instance HURL_foo=bar
« by defining variables in an [[Options] section]options

Lets’ see how to inject variables, given this test.hurt:

GET https://{{host}}/{{id}}/status
HTTP 304

GET https://{{host}}/health
HTTP 200
variable option

Variable can be defined with command line option:

$ hurl ——variable host=example.net —-variable id=1234 test.hurl

variables-file option

We can also define all injected variables in a file:

$ hurl —-variables—-file vars.env test.hurl

where vars.env is

host=example.net
id=1234

Environment variable

We can use environment variables in the form of HURL_name=value:

$ export HURL_host=example.net
$ export HURL_id=1234
$ hurl test.hurl

Options sections

We can define variables in [Options] section. Variables defined in a section are available for the
next requests.

GET https://{{host}}/{{id}}/status
[Options]

variable: host=example.net
variable: id=1234

HTTP 304

GET https://{{host}}/health
HTTP 200
Secrets

Secrets are variables which value is redacted from standard error logs (for instance using ——very—
verbose) and reports. Secrets are injected through command-line with ——secret option:

$ hurl ——secret token=FooBar test.hurl

Values are redacted by exact matching: if a secret value is transformed, and you want to redact also

the transformed value, you can add as many secrets as there are transformed values. Even if a
secret is not used as a variable, all secrets values will be redacted from messages and logs.

$ hurl —-secret token=FooBar \
——secret token_alt_0=FO00BAR \
——secret token_alt_1=foobar \
test.hurl

Secrets are not redacted from HTTP responses outputted on standard output as Hurl considers
the standard output as the correct unaltered output of a run. With this call $ hurl —-secret
token=FooBar test.hurl, the HTTP response is outputted unaltered and FooBar can appear in
the HTTP response. Options that transforms Hurl output on standard output, like ——include or —
—json works the same. JSON report also saves each unaltered HTTP response on disk so extra
care must be taken when secrets are in the HTTP response body.

Templating Body

Variables and functions can be used in JSON body:

PUT https://example.org/api/hits

{
"key@": "{{a_string}}",
"key1": {{a_bool}},
"key2": {{a_null}},
"key3": {{a_number}},
"key4": "{{newDatel}}"
}

Note that we’re writing a kind of JSON body directly without any delimitation marker. For the
moment, XML body can’t use variables directly. In order to templatize a XML body, you can use
multiline string_body with variables and functions. The multiline string body allows to templatize any
text based body (JSON, XML, CSV etc...):

Multiline string body delimited by ":

PUT https://example.org/api/hits
Content-Type: application/json

{
"key@": "{{a_string}}",
"key1": {{a_bool}},
"key2": {{a_null}},
"key3": {{a_number}},
"key4: "{{newDatel}}"

Variables can be initialized via command line:

$ hurl ——variable a_string=apple ——variable a_bool=true --variable a_null=null -

Resulting in a PUT request with the following JSON body:

llkeyQH : llapplell)

"keyl": true,

"key2": null,
""key3": 42,
"key4": "2024-12-02T13:39:45.936643Z"
}
Grammar
Definitions

Short description:

« operator | denotes alternative,
« operator * denotes iteration (zero or more),
« operator + denotes iteration (one or more),

Syntax Grammar

General

hurl-file
entryx
1t

entry(used by hurl-file)
request
response?

request(used by entry)

1t
method sp value-string 1t
headerx
reguest-sectionx
body?

response(used by entry)
1t
version sp status 1t
headerx
response-sectionx
body?

method(used by request)
[A-Z1+

version(used by response)
HTTP/1.0
|[HTTP/1.1
|[HTTP/2
|HTTP

status(used by response)
[0-9]+

header(used by request, response)
1t
key-value 1t

body (used by request, response)
1tx
bytes 1t

Sections

request-section(used by request)
basic—auth-section
|query-string—params—section
| form—params—-section
[multipart-form—-data-section
| cookies—section
|options—section

response-section(used by response)
captures—section
|asserts—section

query-string-params-section(used by request-section)
1t
([QueryStringParams] | [Query]) 1t
key—-valuex

form-params-section(used by request-section)
1tx
([FormParams] | [Form]) 1t
key-valuex

multipart-form-data-section(used by request-section)
1tx
([MultipartFormDatal | [Multipart]) 1t
multipart-form—-data—-paramx*

cookies-section(used by request-—section)
1tx
[Cookies] 1t
key-valuex

captures-section(used by response-section)
1t
[Captures] 1t
capturex

asserts-section(used by response-section)
1tx
[Asserts] 1t
assertx

basic-auth-section(used by request-section)
1t
[BasicAuth] 1t
key-valuex

options-section(used by request-section)
1tx
[Options] 1t
optionx

key-value(used by header, guery-string—params-section, form-—params-—
section, cookies—section, basic—auth-section, multipart-form-data—param)
key-string : value-string

multipart-form-data-param(used by multipart-form-data-section)
filename-param|key-value

filename-param(used by multipart-form-data-param)
Ttk
key-string : filename-value 1t

filename-value(used by filename-param)
file, filename ; (filename-content—type)?

filename-content-type(used by filename-value)
value-string

capture(used by captures—section)
1t

key-string : query (sp filter)* (sp redact)? 1t

assert(used by asserts—section)
1t
query (sp filter)* sp predicate 1t

option(used by options—section)
1t
(aws—sigv4—-option|ca—certificate-option|client—-certificate—
option|client-key—option|compressed—option|connect-to-option]|connect-
timeout-option|delay-option|follow-redirect—option|follow-redirect-
trusted-option|header—option|httpl@-option|httpll-option|http2-
option|http3-option|insecure—option|ipv4—option|ipv6—option|limit-rate—
option|max-redirs—-option|max—time-option|netrc-option|netrc-file—
option|netrc—optional-option|output-option|path-as—is—option|pinned-
public—-key-option|proxy—-option|repeat-option|resolve-option|retry-
option|retry—-interval-option|skip-option|unix-socket-option|user—
option|variable-option|verbose-option|very-verbose-option)

aws-sigv4-option(used by option)
aws—-sigv4 : value-string 1t

ca-certificate-option(used by option)
cacert : filename 1t

client-certificate-option(used by option)
cert : filename—password 1t

client-key-option(used by option)
key : value-string lt

compressed-option(used by option)
compressed : boolean-option 1t

connect-to-option(used by option)
connect-to : value-string 1t

connect-timeout-option(used by option)
connect-timeout : duration-option 1t

delay-option(used by option)
delay : duration-option 1t

follow-redirect-option(used by option)
location : boolean—option 1t

follow-redirect-trusted-option(used by option)
location-trusted : boolean-option 1t

header-option(used by option)
header : value-string 1t

httplo-option(used by option)
httpl.0 : boolean-option 1t

httpll-option(used by option)

httpl.1 : boolean-option 1t

http2-option(used by option)
http2 : boolean-option 1t

http3-option(used by option)
http3 : boolean-option 1t

insecure-option(used by option)
insecure : boolean—option 1t

ipv4-option(used by option)
ipv4 : boolean-option 1t

ipv6-option(used by option)
ipv6 : boolean—option 1t

limit-rate-option(used by option)
limit-rate : integer—option 1t

max-redirs-option(used by option)
max-redirs : integer—option 1t

max—time—option(used by option)
max-time : integer—option 1t

netrc-option(used by option)
netrc : boolean-option 1t

netrc-file-option(used by option)
netrc-file : value-string 1t

netrc-optional-option(used by option)
netrc-optional : boolean-option 1t

output-option(used by option)
output : value-string 1t

path-as-is-option(used by option)
path-as—-is : boolean-option 1t

pinned-public-key-option(used by option)
pinnedpubkey : value-string 1t

proxy-option(used by option)
proxy : value-string 1t

resolve-option(used by option)
resolve : value-string 1t

repeat-option(used by option)
repeat : integer-—-option 1t

retry-option(used by option)
retry : integer—option 1t

retry-interval-option(used by option)
retry-interval : duration-option 1t

skip-option(used by option)
skip : boolean-option 1t

unix-socket-option(used by option)
unix-socket : value-string 1t

user-option(used by option)
user : value-string 1t

variable-option(used by option)

variable : variable-definition 1t

verbose-option(used by option)
verbose : boolean-option 1t

very-verbose-option(used by option)
very-verbose : boolean-option 1t

variable-definition(used by variable-option)
variable—name = variable-value

boolean-option(used by compressed-option, follow-redirect-option, follow-
redirect—trusted—option, httpl@-option, httpll-option, http2-option, http3-
option, insecure-option, ipv4-option, ipv6-option, netrc—option, netrc—optional-

option, path-—as-is—option, skip—option, verbose-option, very-verbose—option)
boolean|placeholder

integer-option(used by limit-rate—option, max-redirs—option, max—time—

option, repeat-option, retry-option)
integer|placeholder

duration-option(used by connect-timeout-option, delay-option, retry—interval-
option)
(integer duration-unit?)|placeholder

duration-unit(used by duration-option)
ms|s|m

variable-value(used by variable-definition)
nutl
|boolean
| integer
| float
| key=string
|guoted-string

Query

query(used by capture, assert)

status—query

|version—query

|url-query

| ip—query,

|header—query

|certificate—query

| cookie—query.

|body—query.

| xpath—query

| isonpath-query.

| regex—query.

|variable—query

|duration—query

|bytes—query

| sha256-query.

|md5—query,

status—query(used by query)
status

version-query(used by gquery)
version

url-query(used by guery)
url

ip-query(used by guery)
ip

header-query(used by query)
header sp quoted-string

certificate-query(used by query)
certificate sp (Subject|Issuer|Start-Date|Expire-Date|Serial-Number)

cookie-query(used by guery)
cookie sp quoted-string

body-query(used by query)
body

xpath-query(used by gquery)
xpath sp quoted-string

jsonpath-query(used by query)
jsonpath sp quoted-string

regex-query (used by gquery)
regex sp (quoted-string]|regex)

variable-query(used by query)
variable sp quoted-string

duration-query(used by query)
duration

sha256-query(used by gquery)
sha256

md5-query(used by query)
md5

bytes-query(used by query)
bytes

Predicates

predicate(used by assert)
(not sp)? predicate-func

predicate-func(used by predicate)
equal-predicate
|[not-equal-predicate
|greater—predicate
|greater-or—equal-predicate
| less—predicate
| less—or—equal-predicate
|start-with—-predicate
|end-with-predicate
|contain-predicate
[match-predicate
|exist-predicate
| is—empty-predicate
|include-predicate
|integer—-predicate
|float-predicate
|boolean-predicate
|string—predicate
|collection-predicate
|date-predicate
|iso-date-predicate
|is—ipv4-predicate

|is—ipv6-predicate
|is—uuid-predicate

equal-predicate(used by predicate—func)
== sp predicate-value

not-equal-predicate(used by predicate—func)
!= sp predicate-value

greater-predicate(used by predicate-func)
> sp (number|gquoted-string|placeholder)

greater-or-equal-predicate(used by predicate-func)
>= sp sp*x (number|guoted-string|placeholder)

less—-predicate(used by predicate-func)
< sp (number|quoted-string]|placeholder)

less-or-equal-predicate(used by predicate-func)
<= sp (number|quoted-string|placeholder)

start-with-predicate(used by predicate-func)
startsWith sp (quoted-string|oneline-hex|oneline-base64)

end-with-predicate(used by predicate-func)
endsWith sp (quoted-string|oneline-hex|oneline-base64)

contain-predicate(used by predicate—func)
contains sp quoted-string

match-predicate(used by predicate—func)
matches sp (quoted-string]|regex)

exist-predicate(used by predicate—func)
exists

is-empty-predicate(used by predicate-func)
isEmpty

include-predicate(used by predicate-func)
includes sp predicate-value

integer-predicate(used by predicate-func)
isInteger

float-predicate(used by predicate-func)
isFloat

boolean-predicate(used by predicate-func)
isBoolean

string-predicate(used by predicate-func)
isString

collection-predicate(used by predicate-func)
isCollection

date-predicate(used by predicate-func)
isDate

iso-date-predicate(used by predicate—func)
isIsoDate

is-ipv4-predicate(used by predicate-func)
isIpv4

is-ipv6-predicate(used by predicate-func)
isIpv6

is-uuid-predicate(used by predicate—func)
isUuid

predicate-value(used by equal-predicate, not-equal-predicate, include-predicate)
boolean
[multiline-string
[null
| number
|oneline-string
|oneline-base64
|[oneline-file
|oneline-hex
|guoted-string
|placeholder

Bytes

bytes(used by body)
json-value
| xml
[multiline-string
|oneline-string
|oneline-base64
|oneline-file
|oneline-hex

xml(used by bytes)
< To Be Defined >

oneline-base64(used by start-with-predicate, end-with-predicate, predicate—
value, bytes)
base64, [A-Z0-9+-= \nl+ ;

oneline-file(used by predicate-value, bytes)
file, filename ;

oneline-hex(used by start-with-predicate, end-with-predicate, predicate-
value, bytes)
hex, hexdigitx ;

Strings

quoted-string(used by variable-value, header—query, cookie—query, xpath—
guery, jsonpath—query, regex—query, variable—query, greater—predicate, greater-or—
equal-predicate, less—predicate, less—or—equal-predicate, start-with-

predicate, end-with-predicate, contain—predicate, match-predicate, predicate-—

value, format-filter, jsonpath-filter, regex—filter, replace-filter, replace-regex—

filter, split-filter, to-date-filter, url-query-param-filter, xpath-filter)
" (quoted-string-content|placeholder)* "

quoted-string-content(used by guoted-string)
(quoted—string-text|quoted-string—escaped-char)x*

quoted-string-text(used by guoted-string-content)
~["\\1+

quoted-string-escaped-char(used by quoted-string-content)
\ ("I\|\b|\F|\n|\r|\t]\u unicode-char)

key-string(used by key-value, filename-param, capture, variable-value)
(key-string—content |placeholder)+

key-string-content(used by key-string)

(key—string—text|key-string—escaped—char)x*

key-string-text(used by key-string-content)
(alphanum|_|-|.[[|T|@[$)+

key-string-escaped-char(used by key-string-content)
\ (#]:|\N\b[\FI\n|\r|\t|\u unicode-char)

value-string(used by request, key-value, filename-content-type, aws-sigvé4-
option, client-key-option, connect-to-option, header—option, netrc—file-
option, output-option, pinned-public-key-option, proxy-option, resolve-

option, unix-socket-option, user-option)
(value-string-content|placeholder)*

value-string-content(used by value-string)
(value-string-text|value-string-escaped-char)x*

value-string-text(used by value-string-content)
~[#\N\\ 1+

value-string-escaped-char(used by value-string-content)
\ (#|\\b|\f[\n|\r|\t|\u unicode-char)

oneline-string(used by predicate-value, bytes)
(oneline-string-content|placeholder)* °

oneline-string-content(used by oneline-string)
(oneline-string—text|oneline-string—escaped-char)*

oneline-string-text(used by oneline-string-content)
~[#ANM\\] ~°

oneline-string-escaped-char(used by oneline-string-content)
\ ("]#[\|b]|f|u unicode-char)

multiline-string(used by predicate-value, bytes)
multiline-string—type? (, multiline-string-attribute)x 1t
(multiline-string-content|placeholder)* 1t

multiline-string-type(used by multiline-string)
base64
| hex
|json
[xml

|graphql

multiline-string-attribute(used by multiline-string)
escape
|[novariable

multiline-string-content(used by multiline-string)
(multiline-string-text|multiline-string—escaped-char)x*

multiline-string-text(used by multiline-string-content)
~I\\T+ ~7 70

multiline-string-escaped-char(used by multiline-string-content)
\ (\|b|f|n|r|t]" |u unicode-char)

filename(used by filename-value, ca-certificate—option, oneline-file)
(filename—-content |placeholder)x*

filename-content(used by filename)
(filename-text |filename-escaped-char)*

filename-text(used by filename-content)
~L#;{F \n\r\\1+

filename-escaped-char(used by filename-content)
N (\[b|f|n|r|t|#];]| [{]}|u unicode-char)

filename-password(used by client-certificate-option)
(filename—password-content|placeholder)x*

filename-password-content(used by filename-password)
(filename—password-text |filename—-password-escaped-char)*

filename-password-text(used by filename-password-content)
~[#; {3 \n\r\\1+

filename-password-escaped-char(used by filename-password-content)
N\ (\|b[f|n]r|t]#]|;| |{]}|:|]u unicode-char)

unicode-char(used by quoted-string—escaped—char, key-string-escaped-char, value-
string—escaped-char, oneline-string—escaped-char, multiline-string—escaped—
char, filename-escaped-char, filename-password-escaped-char)

{ hexdigit+ }

JSON

json-value(used by bytes, json—key-value, json-array)

placeholder

| ison-object

|jison-array

|ison-string

| ison-number

|boolean

|null

json-object(used by json-value)
{ json-key-value (, json-key-value)x }

json-key-value(used by json-object)
json-string : json-value

json-array(used by json-value)
[json-value (, json-value)x*]

json-string(used by json-value, json-key-value)
" (json-string-content|placeholder)x*

json-string-content(used by json-string)
json-string-text|json-string—escaped-char

json-string-text(used by json-string-content)
~["\\1]

json-string-escaped-char(used by json-string-content)
\ ("I\|b|f|n|r|t]u hexdigit hexdigit hexdigit hexdigit)

json-number (used by json-value)
[-1? json-integer fraction? exponent?

json-integer(used by json-number)
0][1-9] digit*

Expression

placeholder(used by boolean—option, integer—option, duration-option, greater—
predicate, greater—or—equal-predicate, less-predicate, less—or—equal-

predicate, predicate-value, quoted-string, key-string, value-string, oneline—

string, multiline-string, filename, filename-password, json-value, json-—

string, nth-filter)
{{ expr }}

expr(used by placeholder)
(variable—-name|function) (sp filter)x

variable-name(used by variable-definition, expr)
[A-Za-z] [A-Za-z_-0-9]x*

Function

function(used by expr)
env-function
|now-function
|uuid—function

env-function(used by function)
getEnv

now-function(used by function)
newDate

uuid-function(used by function)
newlUuid

Filter

filter(used by capture, assert, expr)
base64-decode-filter
|base64-encode-filter
|base64-url-safe-decode-filter
|base64-url-safe-encode-filter
|count-filter
|days—after—now-filter
|days—before-now-filter
|decode-filter
[first-filter
|format-filter
|[html-escape-filter
|[html-unescape-filter
| jsonpath-filter
| last-filter
| location-filter
|[nth—-filter
| regex-filter
|replace-filter
|replace-regex—filter
|split-filter
|to—date-filter
|to-float-filter
|to-hex-filter
|to-int-filter
|to—string-filter
|url-decode-filter
|url-encode-filter
|url-query-param—filter
|xpath-filter

base64-decode-filter(used by filter)
base64Decode

base64-encode-filter(used by filter)
base64Encode

base64-url-safe-decode-filter(used by filter)
base64UrlSafeDecode

base64-url-safe-encode-filter(used by filter)
base64UrlSafeEncode

count-filter(used by filter)
count

days-after-now-filter(used by filter)
daysAfterNow

days-before-now-filter(used by filter)
daysBeforeNow

decode-filter(used by filter)
decode

first-filter(used by filter)
first

format-filter(used by filter)
format sp quoted-string

html-escape-filter(used by filter)
htmlEscape

html-unescape-filter(used by filter)
htmlUnescape

jsonpath-filter(used by filter)
jsonpath sp quoted-string

last-filter(used by filter)
last

location-filter(used by filter)
location

nth-filter(used by filter)
nth sp (integer|placeholder)

regex-filter(used by filter)
regex sp (quoted-string]|regex)

replace-filter(used by filter)
replace sp quoted-string sp quoted-string

replace-regex-filter(used by filter)
replaceRegex sp (guoted-string|regex) sp guoted-string

split-filter(used by filter)
split sp guoted-string

to-date-filter(used by filter)
toDate sp quoted-string

to-float-filter(used by filter)
toFloat

to-hex-filter(used by filter)
toHex

to-int-filter(used by filter)
tolnt

to-string-filter(used by filter)
toString

url-decode-filter(used by filter)
urlDecode

url-encode-filter(used by filter)
urlEncode

url-query-param-filter(used by filter)
urlQueryParam sp gquoted-string

xpath-filter(used by filter)
xpath sp quoted-string

Lexical Grammar

boolean(used by boolean—option, variable-value, predicate-value, json-value)
true|false

null(used by variable-value, predicate-value, json-value)
null

alphanum(used by key-string—text)
[A-Za-z0-9]

integer(used by integer—option, duration-option, variable-value, nth-
filter, float, number)
digit+

float(used by variable-value, number)
integer fraction

number (used by greater-predicate, greater—-or—equal-predicate, less-—
predicate, less—or—equal-predicate, predicate-value)
integer|float

digit(used by json-integer, integer, fraction, exponent)
[0-9]

hexdigit(used by oneline-hex, unicode-char, json-string-—escaped-char)
[0-9A-Fa-f]

fraction(used by json-number, float)
. digit+

exponent(used by json-number)
(e|]E) (+]-)7 digit+

sp(used by request, response, capture, assert, header—query, certificate-
guery, cookie—query, xpath-query, jsonpath-query, regex—query, variable-
query, predicate, equal-predicate, not-equal-predicate, greater—predicate, greater-
or—equal-predicate, less-predicate, less—or-equal-predicate, start-with-
predicate, end-with-predicate, contain-predicate, match-predicate, include-
predicate, expr, format-filter, jsonpath-filter, nth-filter, regex—filter, replace-
filter, replace-regex—filter, split-filter, to-date-filter, url-query-param-
filter, xpath-filter, 1t)

[\t]

1t(used by hurl-file, request, response, header, body, query-string—params—
section, form—params—section, multipart—form-data—section, cookies—

section, captures—section, asserts—section, basic—auth-section, options-—

section, filename-param, capture, assert, option, aws—sigv4-option, ca-certificate-
option, client-certificate—option, client—key—option, compressed-option, connect-
to-option, connect-timeout—option, delay—option, follow-redirect-option, follow-—
redirect-trusted-option, header—option, httpl@-option, httpll-option, http2-
option, http3-option, insecure-option, ipv4-option, ipv6-option, limit-rate-—
option, max-redirs—option, max-time—option, netrc—option, netrc-file-option, netrc—
optional-option, output—option, path-—-as—is—-option, pinned-public-key-option, proxy-—

option, resolve-option, repeat-option, retry-option, retry-—interval-option, skip—
option, unix-socket-option, user—option, variable-option, verbose-option, very-
verbose—option, multiline-string)

spx comment? [\n]?

comment (used by 1t)
~[\n]x

regex(used by regex—query, match-predicate, regex—filter, replace-regex—filter)
/ regex-—content /

regex-content(used by regex)
(regex—text | regex—escaped-char)*

regex-text(used by regex—content)
~[\n\/1+

regex-escaped-char(used by regex-content)
\ ~[\n]

Resources

License

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross—-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,

excluding those notices that do not pertain to any part of

the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one

of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and

do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed

as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,

except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright 2021 Hurl

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

