HIBERNATE - Relational
Persistence for Idiomatic Java

1

Hibernate Reference
Documentation

3.6.10.Final

by Gavin King, Christian Bauer, Max Rydahl Andersen,
Emmanuel Bernard, Steve Ebersole, and Hardy Ferentschik

and thanks to James Cobb (Graphic Design) and Cheyenne Weaver (Graphic Design)

[l (=] = Vo7 < T Xi

I T (0] - S SPP 1
1.1. Part 1 - The first Hibernate Applicationcooviiiiiiiiiiiiin e 1
N O T T U] o PP PP 1
B I = {1) o =T 3
1.1.3. The Mapping file ..o e e 4
1.1.4. Hibernate configurationoovciiiuiiiiiiiiice e 7
1.1.5. Building With MavVENoiiiiiiii e 9
1.1.6. Startup and hEIPEIS ... 9
1.1.7. Loading and storing ODJECESoiiiiiiiiiie e 10

1.2. Part 2 - Mapping aSSOCIALIONScciuuuieiiiiiie et 13
1.2.1. Mapping the Person Classcccciiiiiiiiiii i 13
1.2.2. A unidirectional Set-based assocCiationcccoeviiiiiiiiiiinii s 14
1.2.3. Working the asS0Ciationcccccuiiiiiiiiiiiici e 15
1.2.4. Collection Of VAIUESiiiiiiiiieei e 17
1.2.5. Bi-directional aSSOCIAtIONSuvieiiiiiiieeiiiiie et e e 19
1.2.6. Working bi-directional linksScccoiiiiiiiii e 19

1.3. Part 3 - The EventManager web applicationccccooiiiiiiiiiiiiiciiie e, 20
1.3.1. Writing the basiC SEIVIEtiiiiiiiiii e 20
1.3.2. Processing and renNderingcc.ceeiuuieiiiieeiii e e e e e e 22
1.3.3. Deploying and tESTINGccuuuiiiiiiieieiii et 23

Jid. SUMIMIAIY ittt et e e e et e e e e e e e e e e e e e e e et an 24
B AN o] o 1 (=T o] AU = 25
N T O Y= o T PP 25
2.1.1. Minimal arChit@CtUreccuuiiiiieii e e 25
2.1.2. Comprehensive arChiteCtUreccoiiiiiiiiii e 26
2.1.3. BASIC APIS oo 27

b Y) G] (=T [= LT o 28
A T ©0] 01 1) ([= ST =211 o] o 28
G T 0 1 To [U1 = Lo I 31
3.1. Programmatic CONfIQUIALIONuuuiiiiiiieiiii et 31
3.2. Obtaining @ SeSSIONFACIONYcivviiiiiiciie e 32
3.3. IDBC CONMNECLIONS ...iiiiiiitieei et e et e e e e e e et e e e e e et neean e e eneeeens 32
3.4. Optional configuration ProPertieScccuuiiiiiieiiii e e e e e 34
O 1 @ R I =1 £ 42
3.4.2. Outer JOiN FELCNINGcovviiii e e 43
3.4.3. BINAIY SIMEAMS ...uuiiiiiii ettt et e e e e e eaeans 43
3.4.4. Second-level and qUEry Cachecooviiiiiiii i 43
3.4.5. Query Language SUDSHILULIONcoeuuiiiiiiiiieii e 43
3.4.6. Hibernate StatiStiCSviiiiiiiiiiii e 44

I ST Moo o111 HE PSP SPPPTPPN 44
3.6. Implementing a NamiNgSIrategyceevuuiiiiiiieiiiieiii e e e e e e 45
3.7. Implementing a PersisterClassProvidercooviiiiiiiiiiii e 45
3.8. XML configuration fil@cooouiiiiiii e 46

HIBERNATE - Relational Persis...

3.9. Java EE Application Server integrationcoooveeuiiieiiiinieiiisee e 47
3.9.1. Transaction strategy configurationccooeeviieiiiieiiii e e a7
3.9.2. INDI-bound SeSSIONFACIOIYcccuuiiiiiiiiieiiii e 49
3.9.3. Current Session context management with JTAcoociiiiiiiiineeieeeeenn, 49
3.9.4. IMX dePIOYMENT ...ttt 50

A, PerSISTENT ClAaSSES ..iiiiiiiiiiiiii ettt ettt e et e et e e e e e e e e et e e e e et 53

4.1. A simple POJO eXamMPIEcoouuiiiiiiiiei e 53
4.1.1. Implement a no-argument CONSITUCTONivviiiiii e e e e e 54
4.1.2. Provide an identifier Propertycoouuoi oo 55
4.1.3. Prefer non-final classes (semi-optional)cccoooiiiiiiiiiiiii e, 55
4.1.4. Declare accessors and mutators for persistent fields (optional) 56

4.2, Implementing INNEMTANCEoouiiiii e 56

4.3. Implementing equals() and hashCode()oveiiiiiiiiiiii e 57

N V7 = Va1 ol 4T Yo 1= £ PP 58

A5, TUPHZELS oot 60

4.6. EntityNAmMERESOIVEIS ... ccviiiiii et e e e 61

5. BaSIC O/R MAPPING ..ieeiiiiiiiiii ettt ettt e 65

5.1. Mapping decClarationcccouiiiiiiiiiii e 65
L 0 O 1 1] PP 68
Lo 2 o 1= o 1= SRR 73
5.1.3. Optimistic locking properties (OPtioNaAl)covvevuiiriiiiiiiiei e 91
D i, PO PIY ettt 94
5.1.5. Embedded objects (aka COMPONENLS)ccuuuiiiiiiiieiiiiiiieeiii e 103
5.1.6. INNEMLANCE SIrAtEOYuiivvniiiii i e e e e e e e e e e 106
5.1.7. Mapping one to one and one to many associationscccovevvvevennnnnn. 117
L R T - LT] = | T PR 126
L0 TR L o SRR 127
LN O = o] 1= 3 1= 129
5.1.11. Some hbm.Xxml SPECIfiCItIEScc.uiiiiiiiiiiiii e 130

5.2, HIDEINALE tYPES ...ieiniiii e 134
5.2.1. ENtitiesS @nd VAIUESoiieieiiii e 134
5.2.2. BASIC VAIUE tYPES ..ueiiiiiiiii it 135
5.2.3. CUSIOM VAIUE TYPES ..ovenieiiiiiii et 137

5.3. Mapping a class more than ONCEecciiiiiii i 138

5.4. SQL quoted identifierscooouuiiiiiiiiee e 139

5.5. Generated PrOPEITIESccuuiiiiiieiiiei e et e e e e e e e e e e et e et e e e e eeas 139

5.6. Column transformers: read and Write €XPreSSIONScccevuvveeiiiiieeeiiiiieeeeiineeeens 140

5.7. Auxiliary database ODJECESiiiiiiiiii e 141

LT IV 012 S PPN 143

B.1. VaAlUB Y PES iittiiiii it 143
6.1.1. BASIC VAIUE TYPES ..eeiiiieiiiiii ettt ettt 143
6.1.2. COMPOSITE TYPES ovvuiiiiieii e e e e e e e et e e e eanaees 149
6.1.3. COlIECLION LYPES ...ttt eaaans 149

LS = 01112 1/ = PN 150

6.3. Significance of type CALEQOIIESc.uui i 150

B.4. CUSTOM LY DS ouitiiitiit ettt e e e e et e e e e 150
6.4.1. Custom types using org.hibernate.type.Typeccoeveeviiiiiiiiiiiiiiineeeenen, 150
6.4.2. Custom types using org.hibernate.usertype.USerTypeccocevevevinnennnnns 152
6.4.3. Custom types using org.hibernate.usertype.CompositeUserType 153

LSRR T Y/ o L= (= To 1) {5 PN 155

7. COllECtiON MAPPING «etuiiiiitiiee ittt e et e e et e e e et e e e eet e e eenbnaaeees 157

7.1. Persistent COIECLIONSoiiieiiiiiiiii e e eaens 157

7.2. HOW t0 Map COIIECLIONSiiiiiiiiiieii e 158
7.2.1. Collection fOreign KEYSuiiiiiiiiiii i e 162
7.2.2. Indexed COIECHIONScveveiiiiie e e 162
7.2.3. Collections of basic types and embeddable objectsccooveviiiennnns 168

7.3. Advanced colleCtion MAaPPINGScccuuuuereriieieii e 170
7.3.1. Sorted COlIECHIONSiiiiiii e 170
7.3.2. Bidirectional assoCIatioNSoviiiiiiiieiie e 171
7.3.3. Bidirectional associations with indexed collectionscccooveviiiniens 176
7.3.4. Ternary asSOCIAtIONSccuuuiiiiiuiieeiiiiee et e e e ettt e e e e e 177
7.3.5. USING AN <idDag>oiiiniiiiiciie e 178

7.4. ColleCtion eXaMPIES ...t 179

8. ASSOCIAION MAPPINGS oiiiiiiiieiiii e e e e e e e et e e e e e et e et e eaaaaa 185

S 200 I 1o o To 11 o3 1T o I PPN 185

8.2. Unidirectional aSSOCIAtIONSccuuuiiiiiiiiieiiii e 185
8.2. 1. MANY-T0-0NE ..ottt e 185
I @ L 1= (0 o] o [P TPTPT 185
8.2.3. ONE-LO-MANY .ittieiieiit et ettt et e 186

8.3. Unidirectional associations with join tablescc.cccoiiiiiiiii 187
8.3. 1. ONE-LO-MANY irtiieiieiit ettt ettt e e e e e 187
8.3.2. MaANY-T0-0NE ittt 188
ST TG T @ T =T (0 Eo] [PTP 188
8.3.4, MaANY-TO-TNANY ...iiiiiiii e 189

8.4. Bidirectional aSSOCIAtIONSc.uiiiiiieiiiee i 190
8.4.1. one-to-many / MaNY-t0-0NEieiuuieeiiieeiiie e ee e e e e e e ean e enes 190
S R @ T = (0 R o] [PP 191

8.5. Bidirectional associations with join tablescc.ccoiiiiiii 192
8.5.1. one-to-many / Many-10-0NE€oiiiiuiiiieiiiii et 192
8.5.2. ONE 10 ONE oot e e 193
8.5.3. MaNY-t0-MANY ...eoniiiiieii e 193

8.6. More complex association MAPPINGS ...ccuueierieiieeriiieriee e e e e e e raaeeanaens 194

9. COMPONENT MAPPING tertnetiiiteieii ettt et ettt e et e et et e e e e e eaa s 197

9.1. Dependent ODJECLSiiiiiiii i 197

9.2. Collections of dependent ODJECEScoiiiiiiiiiiii 199

9.3. Components as Map INAICESccvuiiiiiieiiiii e e e e 200

9.4. Components as composite Identifiersoooooiiiiiiiii e 200

9.5. DYNAMIC COMPONENES ...uuiiiiiiiiiiiii e et e et e e e e e e et e e e e et e e et e e e e e s ta e e aaneeennaas 202

HIBERNATE - Relational Persis...

10. INNEritANCEe MAPPING oeiriniiiiii e e ettt e ettt e e ettt e e e e eat e e eeraaeaeen 205
10.1. The three Strategiesccvvuiiiiii e e 205
10.1.1. Table per class hierarChyccooiiiiiiiiiiii e 205
10.1.2. Table per SUDCIASSccouuieiiiiiii e 206
10.1.3. Table per subclass: using a disCriminatorcccovveviiiiiieiiiiinneeeeninnn. 206
10.1.4. Mixing table per class hierarchy with table per subclass 207
10.1.5. Table per CoNCrete Classcccouiiiiiiiiiiiii e 208
10.1.6. Table per concrete class using implicit polymorphismcccooceevn 209
10.1.7. Mixing implicit polymorphism with other inheritance mappings 210

0 2 I 1 g = o 1 PRSP 210
11. Working With ODJECIS ..o e 213
11.1. Hibernate ODJECE StAtESccuuiiiiiiiiie e e e e e 213
11.2. Making 0DjJECtS PEISISIENTvuniiiiiiiii e 213
11.3. Loading @n ODJECT ...vviiii i 214
R S @ TH =T oY/ o Vo PSP SPPRTR 216
11.4.1. EXECULING QUEIIES ..cevuiiiii et e et e e e e e e e e et e et r e et e e et e e et e e s e e eaneees 216
11.4.2. Filtering COIECLIONS ...coouuniiiiiii e 220
I TR O 11 =T T T [0 1= 1= 221
11.4.4. Queries iN NAtIVE SQLuuiiiiieii e e 221
11.5. Modifying Persistent ODJECScciiuiiiiiiiii e 222
11.6. Modifying detached ODJECESoouuiiiiii e 222
11.7. AUtOmMALIC State AELECHIONiieveiiiieiie e e 223
11.8. Deleting persistent ODJECESoouuuiiiiiii e 224
11.9. Replicating object between two different datastorescccccoeveviiiiiineeinnennnn. 225
11.20. Flushing the SESSIONoiiiiiiiii e 225
11.11. TranSitive PEISISIENCE ...c.uuiiiiiiiii e e e 226
11.22. USING METAGALA .. .eevveneiiitieeeiiie ettt ettt ettt ettt e e e e eaaa e e eanans 229
R =T Lo o a1 YA =T o T 231
12.1. Making persistent entities read-0nlyccooooiiiiiniiiii 231
12.1.1. Entities of immutable ClasSesccoviviiiiiiiiii 232
12.1.2. Loading persistent entities as read-onlycccoooveiiiiiiiiiiiineiiee 232
12.1.3. Loading read-only entities from an HQL query/criteriacccocceuuveees 233
12.1.4. Making a persistent entity read-onlyccoooviiiiiiiiiiiii 234
12.2. Read-only affect on Property tyPe ... eeei i 235
12.2.1. SIMPIE PIrOPEITIES .vuieiiiii e 236
12.2.2. Unidirectional assoCIatioNSoveeiiiiiieeiiiiiieeeiiiine e 237
12.2.3. Bidirectional assSoCIiatiONsc.uiviiuiiiiiiiiiiie e 238

13. Transactions and CONCUITENCY ...ccuuieiiiieiiiieeiiiee e e e e e e e e e e e e e e et e e aaeeaanaas 241
13.1. Session and tranSaCtioN SCOPESccvuuivieiiiieiiii ettt 241
1301, UNQt OF WOTK o 241
13.1.2. LONQG CONVEISALIONS .. .cevvuieiiiii it e ettt e e et e et e e e e e e 242
13.1.3. Considering object IdeNntitycccuieiiiieiiiie e 243
13.1.4. COMMON ISSUES ...etuietiietiieeii ettt e e e e e et s e et e e et e e et ae e e eeenaeeeneeenneeennss 244
13.2. Database transaction demarCationcooeeveueiieeriiinneeiiiiie e e e e e e 245

Vi

13.2.1. Non-managed enVIFONMENTcceuuuiiiieiiieeeiiie e 246

R B U T oo T N I NPT 247
13.2.3. Exception handlingooveieeiiiiiiii e 248
13.2.4. Transaction tIMEOULoovvuuiieiiiiii ettt r e e e eae s 249
13.3. Optimistic CONCUITENCY CONLIONciiiiiieiiiii et 250
13.3.1. Application version Checkingccooiiiiiiiiiiiiii e 250
13.3.2. Extended session and automatic VErsioningccooeveevineeiiiinneeeninnnnn. 251
13.3.3. Detached objects and automatic Versioningcccccoevevvieeviiieviiieennnnens 252
13.3.4. Customizing automatic VErSioNiNGcccuuuvererrinieiiiineeeeiiineeeeeiineeeeens 252
13.4. PeSSIMISHIC IOCKING ..covuiiiiiiiiieei e e e e e e e e e aaeees 253
13.5. Connection release MOAESvieuiiiiieie e een 254
14, INTErCEPLOrS ANU EVENTS ..uiiiiiiiii e e e e e e e e e e et e e et e ean s 257
I I [01 (=T (o] =T] (o] = PP 257
T4.2. EVENE SYSBIM ettt ettt e e 259
14.3. Hibernate declarative SECUNLYc..uiiiiiiiiieiii e 260
15, BatCh PrOCESSING ovuiiiiii e e e e 263
T 2 7= (o o T TS o P 263
15.2. BatCh UPAALES ...ovniiiiiii e e e 264
15.3. The StatelessSession iNterfacec.cooviiiiiiiiiii e 264
15.4. DML-StYlE OPEIatiONSuuiiiiiiiii et e e e e e e e et e e e e eaas 265
16. HQL: The Hibernate QUery LanQUAageccc.uuiiiiiiiniieiiiiieeeiii e et et e e e e e 269
16.1. CASE SENSIIVILY t.uiiiiiiiii e e e e e e e e e e e e e e e e et e e et e e anaees 269
16.2. The frOM ClAUSEuniiiiiie et e e ean e 269
16.3. ASSOCIAtIONS AN JOINS ...civiiiiiiieiiii e e e e e e e e e e aaas 270
16.4. FOrMS Of JOIN SYNTAX ..ciiitiiieiiiiii ettt 271
16.5. Referring to identifier Propertycocveuiiiiii i 272
16.6. The SEIECTE CIAUSEceviiiiieeeie e e e e e e eanaees 272
16.7. Aggregate fUNCHIONSc..uiiiiii i e e e e e e e e e aaeees 274
16.8. POlyMOIPhiC QUETIESiiiiiiii et 274
16.9. The WRHEIE ClAUSEvuniiiiiii e 275
16.20. EXPIrESSIONS ...iiiitiieeteii ettt e e ettt e ettt e et e et e e e e bt e et e et e 277
16.11. The order DY CIAUSEccuuiiiiicii e e 281
16.12. The group DY CIAUSEoouuiiiiii e 281
T ST o To [1= =P 282
16.14. HQL ©XAMPIES ...ttt ettt e et e e e s 283
16.15. Bulk update and deletecooouiiiiiiiiii 285
16.16. TIPS & THCKS oeeiiiiiii et e 285
G T A e ¢ 0 o To] 1= o | £ R 286
16.18. ROW Value CONSIIUCLON SYNTAXcevvvinieiiiiieeeiiis e et e 287
R O 41 (=T - RO 11 =T g = P 289
17.1. Creating a Criteria iNStANCEccocuuiiiiiiiii e 289
17.2. Narrowing the result Setcciiiii i 289
17.3. Ordering the FESUILSociiiiiiiiii e 290
17.4. ASSOCIALIONS ...iiiiitiieeeii e ettt e et e et e e e et e e e e et e e e e et e e e eeteaeeeart e aaees 291

Vii

HIBERNATE - Relational Persis...

17.5. Dynamic association fetChingooviiiiiiiii 292
17.6. EXAMPIE QUEIIES ...ouiiiii i e e 292
17.7. Projections, aggregation and groUpingc..uoveeierineeierinneeieine et e i 293
17.8. Detached queries and SUDQUETIEScoouiiiiiiiiiiicie e 295
17.9. Queries by natural iIdentifierooooiiiiiiii 295
18, NALIVE SQL oiiiiiiiiiie i e e et e e et e e e e et e e e et e e et e e e ar e aanes 297
18.1. USING @ SQLQUETY .ouuiiiiiiii ettt ettt e e e et e et e e e e s 297
S S o | = T o [1= =P 297
18.1.2. BNt QUETIES ... 298
18.1.3. Handling associations and collectionsccccoviiiiiiiiiiieiiiieee e 298
18.1.4. Returning multiple entitiesooiiiiiiiiiiii e 299
18.1.5. Returning non-managed entitieSccooeiuiiiiiiiiiiii e 301
18.1.6. Handling iNNErtaNCecoouuiiiiiiiiie e 301
18.1.7. PAr@mMELEIS ...cuiieiiiiiei ettt et e 301
18.2. Named SQL QUETIESuuiiiiiiieiiiii ettt e ettt e e et e e et e e e et e e eeni e eeees 302
18.2.1. Using return-property to explicitly specify column/alias names 308
18.2.2. Using stored procedures for QUEIYINGcccouuvveiiiiinieiiiiiieeeeeineeeeiineeees 309
18.3. Custom SQL for create, update and deletecooveiiiiiiiiiiiin e, 310
18.4. Custom SQL fOr 108diNgcocuuniiiiiiieei e 313
S 1) (=Y T g Yo o = 315
19.1. HIbernate filtersooeu i 315
b2 TG\ IRV F= T o 11 o 319
20.1. Working wWith XIML dataooieiiiiiiiiiiieiii e 319
20.1.1. Specifying XML and class mapping togetherccoccoeveiiiiiiiineinne, 319
20.1.2. Specifying only an XML MapPing «....ccoeeveieiiiiieeeiineeeee e 320
20.2. XML mapping Metadatalccuuiiiiiieiiiieiiii e e e e 320
20.3. Manipulating XML ALccovutiiieiiiie e 322
21. IMProving PerfOrMaNCEuuiiii e e e e e e e e e e e eaaeees 325
21.1. FetChing SHrAatEOIESuuiiiiiiietiii ettt et eaeans 325
21.1.1. Working with lazy assocCiationsccoceuiiieiiieeiiiiecii e e 326
21.1.2. Tuning fetCh Srategiesoveiiiiiiiieiii e 326
21.1.3. Single-ended assOCiation ProXi€Sccccuieiiiieeiiieeeiiieriiee e e eeenns 327
21.1.4. Initializing collections and ProXiesccoveveeuiiieiiiinieniii e 329
21.1.5. Using batch fetChingcccooiiiiiiii e 331
21.1.6. Using subselect fetchingccoouiiiiiii e 331
21.1.7. Fetch ProfileSsc..ociiiiii e 332
21.1.8. Using lazy property fetChingccooviiiiiiiiiiii e, 334
21.2. The Second LeVel CAChEciiiiiiiiiiiiii e 334
21.2.1. CaCh@ MAPPINGS - .ieetinieiiitie ettt et e e et e et e e et eeeeaa e eeees 335
21.2.2. Strategy: read ONIYcoiiiiiii e 338
21.2.3. Strategy: read/WIEovoiiiiii e 338
21.2.4. Strategy: NONStriCt read/WItecocoviiiiiiiiii e 338
21.2.5. Strategy: transactionalcooveiiiiiiiiiiii 338
21.2.6. Cache-provider/concurrency-strategy compatibilityccooeevneennnn. 338

viii

21.3. Managing the Caches ... 339

21.4. The QUEIY CaAChEuiiiiiii e e aens 340
21.4.1. Enabling quUEry CAChINGuiiiiiiiiieiiiie e 341

21.4.2. QUErY CaChe IBUIONSiviiiiii e e e e e e e 342

21.5. Understanding Collection performanceoooouuiiieiiiiiiieiiiiineci e 342

A IS 0 R = V(o (o] 1 1)V PP 342

21.5.2. Lists, maps, idbags and sets are the most efficient collections to update... 343

21.5.3. Bags and lists are the most efficient inverse collections 343

21.5.4. ONe SOt deleteuoveeiiiiie e 344

21.6. MONItoring PErfOrMANCEuuiiiiiieiii i e e e aeaas 344
21.6.1. Monitoring @ SESSIONFACIONYc..uiiiiiiiiieiiiii et 344

21.8.2. MELIICS .unieeiiiiie ettt e e e 345

72 o Yo £=Y=] Al €U [o = 347
22.1. Automatic SChema generationccccuuiiiiiiieiii e e eaaas 347
22.1.1. Customizing the SChEeM@ccoiiiiiiiiiii e 347

22.1.2. RUNNING the 100iiiii e 350

22.1.3. PIOPEITIES .uieiiiiiie ettt ettt e e e 351

b S U L= g o A o | 351

22.1.5. Incremental schema UPdatescooviviiiiiiiiiiiiee e 352

22.1.6. Using Ant for incremental schema updatesc.cccoeviiiiiiiiiecineeenns 352

22.1.7. Schema validationoooeuiiiiiiiii e 353

22.1.8. Using Ant for schema validationcccooveiiiiiiiiiin e, 353

23. Additional MOAUIES ...cvuiiiiee e e 355
23.1. BeaN Validationcccouuiiiiiiiiiei i 355
23.1.1. Adding Bean Validationccoouuiiiiiiiiieiiec e 355

b T N @do 110 [-1 1o o I 355

23.1.3. Catching VIOIAtIONSoiiiiiiiiiiiii e 357

23.1.4. Database SChEMAoiiiiiiiiiii e 357

23.2. HIbernate SearChco.oiiiiiiii e 358

G T T B 1= Yo o] o T o S 358

23.2.2. Integration with Hibernate ANNOtationsccooevvviiiiiiiiiniiiii e, 358

24, Example: Parent/Child ... e 359
24.1. A note about COIIECLIONSieuiiiiiiee e 359
24.2. Bidirectional One-t0-ManYcccouiiiiiiiiiiiiie e e e e e 359
24.3. Cascading life CYCIEiiii e 361
24.4. Cascades and UNSaVed-VAlUEcooeviiiiiiiiiiiiie e 362
T @] o Tor 11T o I PN 363

25. Example: Weblog AppliCation ..o 365
25.1. PersiStENt ClASSESuuiiieiiiiiiieii et 365
25.2. HIibernate MappinNgScouueiiiieiiiiieei e e e e e e e e e e an s 366
25.3. HIDErnate Codeuiiiiiiiiii e 368

26. Example: Various MappingS ..o eiiieiiiiieii e e e e e e e e e e et e e et e e e eeens 373
26.1. EMPIOYEITEMPIOYEE ...ttt 373
26.2. AULNOIIWOTK ..oveiciii et e et eeaa s 375

HIBERNATE - Relational Persis...

26.3. CustomMer/Order/ProAUCToouuiiiiiiee e e e e e e e e ees 377
26.4. Miscellaneous example MapPiNgScccuiieiiiieiiiierii e e e e e 379
26.4.1. "Typed" 0ne-t0-0Ne aSSOCIALIONccevvviieiiiiie e 379

26.4.2. Composite KeY eXamMPIEcovniiiiiiiii e 379

26.4.3. Many-to-many with shared composite key attributecc.c.occiiiiies 381

26.4.4. Content based diSCriminationccoveviiiiiieiiiiinie e 382

26.4.5. Associations on alternate KeYscooeuiiiiiiiiiiiiiiiie e 383

P = 1= T B o - ol £ o = PP 385
28. Database Portability ConSiderationscooviiiiiiiiiiiiiie e 389
28.1. Portability BASICSuuiiiinieiiiieiiiei et 389

B2 T 1 - 1= o S P 389
28.3. DialeCt TESOIULION ...evviiiiiiii e e e e 389
28.4. Identifier geNEIAtiONcouuuiiiiiiii e 390
28.5. Database fUNCLIONScouuiiiiiii et e e 391
28.6. TYPE MAPPINGS -..neeeetneetieti ettt et e e et e e e e e e et e e et e e e eab e e eeaa e e eenanns 391
RETEIEINCES ... ettt et 393

Preface

Working with both Object-Oriented software and Relational Databases can be cumbersome
and time consuming. Development costs are significantly higher due to a paradigm mismatch
between how data is represented in objects versus relational databases. Hibernate is an Object/
Relational Mapping solution for Java environments. The term Object/Relational Mapping refers
to the technique of mapping data from an object model representation to a relational data model
representation (and visa versa). See http://en.wikipedia.org/wiki/Object-relational_mapping for a
good high-level discussion.

@ Note

While having a strong background in SQL is not required to use Hibernate, having
a basic understanding of the concepts can greatly help you understand Hibernate
more fully and quickly. Probably the single best background is an understanding of
data modeling principles. You might want to consider these resources as a good
starting point:

Hibernate not only takes care of the mapping from Java classes to database tables (and from
Java data types to SQL data types), but also provides data query and retrieval facilities. It can
significantly reduce development time otherwise spent with manual data handling in SQL and
JDBC. Hibernate’s design goal is to relieve the developer from 95% of common data persistence-
related programming tasks by eliminating the need for manual, hand-crafted data processing
using SQL and JDBC. However, unlike many other persistence solutions, Hibernate does not hide
the power of SQL from you and guarantees that your investment in relational technology and
knowledge is as valid as always.

Hibernate may not be the best solution for data-centric applications that only use stored-
procedures to implement the business logic in the database, it is most useful with object-
oriented domain models and business logic in the Java-based middle-tier. However, Hibernate
can certainly help you to remove or encapsulate vendor-specific SQL code and will help with the
common task of result set translation from a tabular representation to a graph of objects.

If you are new to Hibernate and Object/Relational Mapping or even Java, please follow these
steps:

1. Read Chapter 1, Tutorial for a tutorial with step-by-step instructions. The source code for the
tutorial is included in the distribution in the doc/ ref erence/ tut ori al / directory.

2. Read Chapter 2, Architecture to understand the environments where Hibernate can be used.

Xi

http://en.wikipedia.org/wiki/Object-relational_mapping
http://www.agiledata.org/essays/dataModeling101.html
http://en.wikipedia.org/wiki/Data_modeling

Preface

. View the eg/ directory in the Hibernate distribution. It contains a simple standalone application.

Copy your JDBC driver to the | i b/ directory and edit et ¢/ hi ber nat e. properti es, specifying
correct values for your database. From a command prompt in the distribution directory, type
ant eg (using Ant), or under Windows, type bui | d eg.

. Use this reference documentation as your primary source of information. Consider reading

[JPwH]if you need more help with application design, or if you prefer a step-by-step tutorial. Also
visit http://caveatemptor.hibernate.org and download the example application from [JPwH].

. FAQs are answered on the Hibernate website.
. Links to third party demos, examples, and tutorials are maintained on the Hibernate website.

. The Community Area on the Hibernate website is a good resource for design patterns and

various integration solutions (Tomcat, JBoss AS, Struts, EJB, etc.).

There are a number of ways to become involved in the Hibernate community, including

Trying stuff out and reporting bugs. See http://hibernate.org/issuetracker.html details.

Trying your hand at fixing some bugs or implementing enhancements. Again, see http://
hibernate.org/issuetracker.html details.

http://hibernate.org/community.html list a few ways to engage in the community.
» There are forums for users to ask questions and receive help from the community.

* There are also IRC [http://en.wikipedia.org/wiki/Internet_Relay Chat] channels for both user
and developer discussions.

Helping improve or translate this documentation. Contact us on the developer mailing list if you
have interest.

Evangelizing Hibernate within your organization.

Xii

http://caveatemptor.hibernate.org
http://hibernate.org/issuetracker.html
http://hibernate.org/issuetracker.html
http://hibernate.org/issuetracker.html
http://hibernate.org/community.html
http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://en.wikipedia.org/wiki/Internet_Relay_Chat

Chapter 1.

Tutorial

Intended for new users, this chapter provides an step-by-step introduction to Hibernate, starting
with a simple application using an in-memory database. The tutorial is based on an earlier tutorial
developed by Michael Gloegl. All code is contained in the t ut ori al s/ web directory of the project
source.

e | Important

This tutorial expects the user have knowledge of both Java and SQL. If you have
a limited knowledge of JAVA or SQL, it is advised that you start with a good
introduction to that technology prior to attempting to learn Hibernate.

@ Note

The distribution contains another example application under the tutori al / eg
project source directory.

1.1. Part 1 - The first Hibernate Application

For this example, we will set up a small database application that can store events we want to
attend and information about the host(s) of these events.

@ Note

Although you can use whatever database you feel comfortable using, we will use
[http://hsqldb.org/] (an in-memory, Java database) to avoid describing
installation/setup of any particular database servers.

1.1.1. Setup

The first thing we need to do is to set up the development environment. We will be using
the "standard layout" advocated by alot of build tools such as Maven [http://maven.org].
Maven, in particular, has a good resource describing this layout [http://maven.apache.org/guides/
introduction/introduction-to-the-standard-directory-layout.html]. As this tutorial is to be a web
application, we will be creating and making use of src/ mai n/j ava, src/ mai n/ resources and
src/ mai n/ webapp directories.

We will be using Maven in this tutorial, taking advantage of its transitive dependency management
capabilities as well as the ability of many IDEs to automatically set up a project for us based on
the maven descriptor.

http://hsqldb.org/
http://hsqldb.org/
http://maven.org
http://maven.org
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

Chapter 1. Tutorial

<proj ect xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schen®- i nst ance"
xsi : schemaLocati on="http://maven. apache. org/ POM 4. 0.0 http:// maven. apache. or g/ xsd/
maven-4. 0. 0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupl d>or g. hi bernate. tutorial s</ groupl d>
<artifact!ld>hibernate-tutorial</artifactld>
<versi on>1. 0. 0- SNAPSHOT</ ver si on>
<name>Fi rst Hi bernate Tutorial </ nane>

<bui | d>
<l-- we dont want the version to be part of the generated war file name -->
<final Nane>${artifactld}</final Name>

</ bui | d>

<dependenci es>
<dependency>
<groupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-core</artifactld>
</ dependency>

<l-- Because this is a web app, we al so have a dependency on the servlet api. -->
<dependency>

<gr oupl d>j avax. ser vl et </ gr oupl d>

<artifactld>servlet-api</artifactld>
</ dependency>

<!-- Hibernate uses slf4j for |ogging, for our purposes here use the sinple backend -->
<dependency>

<groupl d>org. sl f 4j </ gr oupl d>

<artifactld>slf4j-sinple</artifactld>
</ dependency>

<!-- Hibernate gives you a choice of bytecode providers between cglib and javassist -->
<dependency>
<gr oupl d>j avassi st </ gr oupl d>
<artifactld>j avassist</artifactld>
</ dependency>
</ dependenci es>

</ proj ect>

Tip

It is not a requirement to use Maven. If you wish to use something else to build
this tutorial (such as Ant), the layout will remain the same. The only change is
that you will need to manually account for all the needed dependencies. If you
use something like Ivy [http://ant.apache.org/ivy/] providing transitive dependency
management you would still use the dependencies mentioned below. Otherwise,
you'd need to grab all dependencies, both explicit and transitive, and add them
to the project's classpath. If working from the Hibernate distribution bundle, this

http://ant.apache.org/ivy/
http://ant.apache.org/ivy/

The first class

would mean hi ber nat 3. j ar, all artifacts in the I i b/ r equi r ed directory and all
files from either the | i b/ byt ecode/ cgli b orli b/ byt ecode/ j avassi st directory;

additionally you will need both the servlet-api jar and one of the slf4j logging
backends.

Save this file as pom xm in the project root directory.

1.1.2. The first class

Next, we create a class that represents the event we want to store in the database; it is a simple
JavaBean class with some properties:

package org. hi bernate.tutorial.donain;
inport java.util.Date;

public class Event {
private Long id;

private String title;
private Date date;

public Event() {}

public Long getld() {
return id;

}

private void setld(Long id) {
this.id =id;
}

public Date getDate() {
return date;

}

public void setDate(Date date) {
this.date = date;

}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;
}

This class uses standard JavaBean naming conventions for property getter and setter methods,
as well as private visibility for the fields. Although this is the recommended design, it is not

Chapter 1. Tutorial

required. Hibernate can also access fields directly, the benefit of accessor methods is robustness
for refactoring.

The i d property holds a unique identifier value for a particular event. All persistent entity classes
(there are less important dependent classes as well) will need such an identifier property if we want
to use the full feature set of Hibernate. In fact, most applications, especially web applications, need
to distinguish objects by identifier, so you should consider this a feature rather than a limitation.
However, we usually do not manipulate the identity of an object, hence the setter method should
be private. Only Hibernate will assign identifiers when an object is saved. Hibernate can access
public, private, and protected accessor methods, as well as public, private and protected fields
directly. The choice is up to you and you can match it to fit your application design.

The no-argument constructor is a requirement for all persistent classes; Hibernate has to create
objects for you, using Java Reflection. The constructor can be private, however package or public
visibility is required for runtime proxy generation and efficient data retrieval without bytecode
instrumentation.

Save this file to the src/ mai n/ j ava/ or g/ hi ber nat e/ t ut ori al / domai n directory.

1.1.3. The mapping file

Hibernate needs to know how to load and store objects of the persistent class. This is where
the Hibernate mapping file comes into play. The mapping file tells Hibernate what table in the
database it has to access, and what columns in that table it should use.

The basic structure of a mapping file looks like this:

<?xm version="1.0"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DTD 3. 0//EN"
"http://ww. hi bernate. org/ dt d/ hi ber nat e- mappi ng- 3. 0. dt d" >

<hi ber nat e- mappi ng package="org. hi bernate. tutorial.domain">

[...]

</ hi ber nat e- mappi ng>

Hibernate DTD is sophisticated. You can use it for auto-completion of XML mapping elements
and attributes in your editor or IDE. Opening up the DTD file in your text editor is the easiest
way to get an overview of all elements and attributes, and to view the defaults, as well as some
comments. Hibernate will not load the DTD file from the web, but first look it up from the classpath
of the application. The DTD file is included in hi bernate-core.jar (it is also included in the
hi ber nat e3. j ar, if using the distribution bundle).

The mapping file

£ Important

We will omit the DTD declaration in future examples to shorten the code. It is, of
course, not optional.

Between the two hi ber nat e- mappi ng tags, include a cl ass element. All persistent entity classes
(again, there might be dependent classes later on, which are not first-class entities) need a
mapping to a table in the SQL database:

<hi ber nat e- mappi ng package="org. hi bernate.tutorial.domai n">
<cl ass nane="Event" tabl e="EVENTS">
</ cl ass>

</ hi ber nat e- mappi ng>

So far we have told Hibernate how to persist and load object of class Event to the table EVENTS.
Each instance is now represented by a row in that table. Now we can continue by mapping the
unique identifier property to the tables primary key. As we do not want to care about handling
this identifier, we configure Hibernate's identifier generation strategy for a surrogate primary key
column:

<hi ber nat e- mappi ng package="org. hi bernate. tutorial.domain">

<cl ass nane="Event" tabl e="EVENTS">
<id name="id" col um="EVENT_| D">
<generator class="native"/>

</id>

</ cl ass>

</ hi ber nat e- mappi ng>

The i d element is the declaration of the identifier property. The name="i d" mapping attribute
declares the name of the JavaBean property and tells Hibernate to use the get 1 d() and set 1 d()
methods to access the property. The column attribute tells Hibernate which column of the EVENTS
table holds the primary key value.

The nested gener at or element specifies the identifier generation strategy (aka how are identifier
values generated?). In this case we choose nat i ve, which offers a level of portability depending
on the configured database dialect. Hibernate supports database generated, globally unique, as
well as application assigned, identifiers. Identifier value generation is also one of Hibernate's many
extension points and you can plugin in your own strategy.

Chapter 1. Tutorial

Tip

Q

nati ve is no longer consider the best strategy in terms of portability. for further
discussion, see Section 28.4, “Identifier generation”

Lastly, we need to tell Hibernate about the remaining entity class properties. By default, no
properties of the class are considered persistent:

<hi ber nat e- mappi ng package="org. hi bernate. tutorial.donmain">

<cl ass nane="Event" tabl e="EVENTS">
<id name="id" col um="EVENT_I D'>
<generator class="native"/>
</id>
<property nanme="date" type="tinestanp" col um="EVENT_DATE"/>
<property name="title"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Similar to the i d element, the nane attribute of the property element tells Hibernate which
getter and setter methods to use. In this case, Hibernate will search for get Dat e() , set Dat e(),
getTitle() andsetTitle() methods.

(3

The titl e mapping also lacks a t ype attribute. The types declared and used in the mapping files
are not Java data types; they are not SQL database types either. These types are called Hibernate
mapping types, converters which can translate from Java to SQL data types and vice versa. Again,
Hibernate will try to determine the correct conversion and mapping type itself if the t ype attribute
is not present in the mapping. In some cases this automatic detection using Reflection on the
Java class might not have the default you expect or need. This is the case with the dat e property.
Hibernate cannot know if the property, which is of j ava. uti | . Dat e, should map to a SQL dat e,
ti mest anp, orti me column. Full date and time information is preserved by mapping the property
with a ti mest anp converter.

Hibernate configuration

Tip

Hibernate makes this mapping type determination using reflection when the
mapping files are processed. This can take time and resources, so if startup
performance is important you should consider explicitly defining the type to use.

Save this mapping file as src/main/resources/org/ hibernate/tutorial/domain/
Event . hbm xm .

1.1.4. Hibernate configuration

At this point, you should have the persistent class and its mapping file in place. It is now time to
configure Hibernate. First let's set up HSQLDB to run in "server mode"

(3

We will utilize the Maven exec plugin to launch the HSQLDB server by running: mvn exec: j ava
- Dexec. mai nCl ass="org. hsql db. Server" -Dexec. args="-database.0 file:target/data/
tutorial" You will see it start up and bind to a TCP/IP socket; this is where our application will
connect later. If you want to start with a fresh database during this tutorial, shutdown HSQLDB,
delete all files in the t ar get / dat a directory, and start HSQLDB again.

Hibernate will be connecting to the database on behalf of your application, so it needs to know
how to obtain connections. For this tutorial we will be using a standalone connection pool (as
opposed to a j avax. sql . Dat aSour ce). Hibernate comes with support for two third-party open
source JDBC connection pools: c3p0 [https://sourceforge.net/projects/c3p0] and proxool [http://
proxool.sourceforge.net/]. However, we will be using the Hibernate built-in connection pool for
this tutorial.

¥

For Hibernate's configuration, we can use a simple hi bernate. properties file, a more
sophisticated hi ber nat e. cf g. xm file, or even complete programmatic setup. Most users prefer
the XML configuration file:

<?xm version='"1.0" encoding="utf-8" ?>
<! DOCTYPE hi ber nat e-confi gurati on PUBLI C
"-// H bernate/ H bernate Configuration DID 3.0//EN'

https://sourceforge.net/projects/c3p0
https://sourceforge.net/projects/c3p0
http://proxool.sourceforge.net/
http://proxool.sourceforge.net/
http://proxool.sourceforge.net/

Chapter 1. Tutorial

"http://ww. hi bernate. org/dtd/ hi bernate-configuration-3.0.dtd">
<hi ber nat e- confi gurati on>
<sessi on-factory>
<!-- Database connection settings -->
<property nanme="connection. driver_cl ass">org. hsql db. jdbcDriver</property>
<property nanme="connection. url">jdbc: hsql db: hsql : //1 ocal host </ property>
<property name="connection. user name">sa</ property>

<property nanme="connecti on. password"></ property>

<I'-- JDBC connection pool (use the built-in) -->
<property nanme="connecti on. pool _si ze">1</ property>

<l-- SQ dialect -->
<property nanme="di al ect " >org. hi bernat e. di al ect. HSQLDi al ect </ property>

<!-- Enabl e Hibernate's automatic session context managenent -->
<property nanme="current_sessi on_context_cl ass">t hread</ property>

<!-- Disable the second-level cache -->
<property nane="cache. provi der _cl ass" >or g. hi ber nat e. cache. NoCachePr ovi der </ property>

<!-- Echo all executed SQ. to stdout -->
<property name="show_sql ">t rue</property>

<l-- Drop and re-create the database schemn on startup -->
<property nanme="hbnRddl . aut 0" >updat e</ pr operty>

<mappi ng resource="org/ hi bernate/tutorial/donmain/Event.hbm xm "/ >

</ session-factory>

</ hi ber nat e- confi gurati on>

(3

You configure Hibernate's Sessi onFact ory. SessionFactory is a global factory responsible for
a particular database. If you have several databases, for easier startup you should use several
<sessi on- f act or y> configurations in several configuration files.

The first four pr operty elements contain the necessary configuration for the JDBC connection.
The dialect property element specifies the particular SQL variant Hibernate generates.

Tip

Q

In most cases, Hibernate is able to properly determine which dialect to use. See
Section 28.3, “Dialect resolution” for more information.

Building with Maven

Hibernate's automatic session management for persistence contexts is particularly useful in this
context. The hbn2ddl . aut o option turns on automatic generation of database schemas directly
into the database. This can also be turned off by removing the configuration option, or redirected
to a file with the help of the SchemaExport Ant task. Finally, add the mapping file(s) for persistent
classes to the configuration.

Save this file as hi ber nat e. cf g. xnl into the src/ mai n/ r esour ces directory.

1.1.5. Building with Maven

We will now build the tutorial with Maven. You will need to have Maven installed; it is available
from the Maven download page [http://maven.apache.org/download.html]. Maven will read the /
pom xm file we created earlier and know how to perform some basic project tasks. First, lets run
the conpi | e goal to make sure we can compile everything so far:

[hi bernateTutorial]$ nmvn conpile
[INFQ Scanning for projects...

LA O e R R LT T
[INFQ Building First H bernate Tutorial

[I NFQ task-segnent: [conpile]

Y 0 e T

[INFQ [resources:resources]

[INFQ Using default encoding to copy filtered resources.

[INFQ [conpiler:conpile]

[INFQ Conpiling 1 source file to /home/stevel/projects/sandbox/ hi bernateTutorial/target/classes

[INEG] ===c====sc=sssccssccssscssssesssssssscsssssssssssscsasscasssaasoaoscanoas
[INFO BU LD SUCCESSFUL

N e, P S S S S
[INFQ Total tine: 2 seconds

[INFQ Finished at: Tue Jun 09 12:25:25 CDT 2009
[INFQ Final Menory: 5M 547M

[INEG) ===c==sss=sssccssccmescssssesscssssscssssssssscosasasscaassaassaasaaaoas

1.1.6. Startup and helpers

It is time to load and store some Event objects, but first you have to complete the
setup with some infrastructure code. You have to startup Hibernate by building a global
or g. hi ber nat e. Sessi onFactory object and storing it somewhere for easy access in
application code. A or g. hi ber nat e. Sessi onFact ory is used to obtain or g. hi ber nat e. Sessi on
instances. A org. hi bernate. Sessi on represents a single-threaded unit of work. The
or g. hi ber nat e. Sessi onFact ory is a thread-safe global object that is instantiated once.

We will create a Hi ber nat eUt i | helper class that takes care of startup and makes accessing the
or g. hi ber nat e. Sessi onFact ory more convenient.

package org. hibernate.tutorial.util;

inmport org. hi bernate. Sessi onFactory;
inmport org. hi bernate. cfg. Configuration;

http://maven.apache.org/download.html
http://maven.apache.org/download.html

Chapter 1. Tutorial

public class HibernateUtil {
private static final SessionFactory sessionFactory = buil dSessi onFactory();

private static SessionFactory buil dSessi onFactory() {

try {
/| Create the SessionFactory from hi bernate.cfg.xm
return new Configuration().configure().buil dSessionFactory();

}

catch (Throwabl e ex) {
/1 Make sure you log the exception, as it m ght be swal |l owed
Systemerr.println("Initial SessionFactory creation failed." + ex);
throw new ExceptionlnlnitializerError(ex);

}

public static SessionFactory getSessionFactory() {
return sessionFactory;

}

Save this code as src/ mai n/ j ava/ org/ hi bernate/tutorial /util/H bernateltil.java

This class not only produces the global or g. hi ber nat e. Sessi onFact ory reference in its static
initializer; it also hides the fact that it uses a static singleton. We might just as well have looked up
the or g. hi ber nat e. Sessi onFact ory reference from JNDI in an application server or any other
location for that matter.

If you give the or g. hi ber nat e. Sessi onFact ory a hame in your configuration, Hibernate will try
to bind it to JNDI under that name after it has been built. Another, better option is to use a JMX
deployment and let the JMX-capable container instantiate and bind a Hi ber nat eSer vi ce to JNDI.
Such advanced options are discussed later.

You now need to configure a logging system. Hibernate uses commons logging and provides two
choices: Log4j and JDK 1.4 logging. Most developers prefer Log4j: copy | og4j . properti es from
the Hibernate distribution in the et ¢/ directory to your sr ¢ directory, next to hi ber nat e. cf g. xm .
If you prefer to have more verbose output than that provided in the example configuration, you
can change the settings. By default, only the Hibernate startup message is shown on stdout.

The tutorial infrastructure is complete and you are now ready to do some real work with Hibernate.
1.1.7. Loading and storing objects
We are now ready to start doing some real work with Hibernate. Let's start by writing an

Event Manager class with a mai n() method:

package org. hibernate.tutorial;

import org. hi bernate. Sessi on;

10

Loading and storing objects

inport java.util.*;

inmport org.hibernate.tutorial.donain.Event;
inport org.hibernate.tutorial.util.H bernateltil;

public class Event Manager {

public static void main(String[] args) {
Event Manager ngr = new Event Manager () ;

if (args[0].equal s("store")) {
ngr. creat eAndSt or eEvent ("My Event", new Date());
}

Hi bernateUtil . get Sessi onFactory().close();
}

private void createAndStoreEvent(String title, Date theDate) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
sessi on. begi nTransaction();

Event theEvent = new Event();
theEvent.setTitle(title);

t heEvent . set Dat e(t heDat e) ;
sessi on. save(theEvent);

sessi on. get Transaction().commt();

In cr eat eAndSt or eEvent () we created a new Event object and handed it over to Hibernate. At
that point, Hibernate takes care of the SQL and executes an | NSERT on the database.

A org.hibernate.Session is designed to represent a single unit of work (a single atomic piece of
work to be performed). For now we will keep things simple and assume a one-to-one granularity
between a Hibernate org.hibernate.Session and a database transaction. To shield our code from
the actual underlying transaction system we use the Hibernate or g. hi ber nat e. Transacti on
API. In this particular case we are using JDBC-based transactional semantics, but it could also
run with JTA.

What does sessi onFact ory. get Current Sessi on() do? First, you can call it as many times
and anywhere you like once you get hold of your org. hi bernat e. Sessi onFactory. The
get Current Sessi on() method always returns the "current" unit of work. Remember that we
switched the configuration option for this mechanism to "thread" in our src/ mai n/ r esour ces/
hi ber nat e. cf g. xm ? Due to that setting, the context of a current unit of work is bound to the
current Java thread that executes the application.

e | Important

Hibernate offers three methods of current session tracking. The "thread" based
method is not intended for production use; it is merely useful for prototyping and

11

Chapter 1. Tutorial

tutorials such as this one. Current session tracking is discussed in more detail later

on.

A org.hibernate.Session begins when the first call to get Current Sessi on() is made for the
current thread. It is then bound by Hibernate to the current thread. When the transaction ends,
either through commit or rollback, Hibernate automatically unbinds the org.hibernate.Session
from the thread and closes it for you. If you call get Cur r ent Sessi on() again, you get a new
org.hibernate.Session and can start a new unit of work.

Related to the unit of work scope, should the Hibernate org.hibernate.Session be used to execute
one or several database operations? The above example uses one org.hibernate.Session for one
operation. However this is pure coincidence; the example is just not complex enough to show
any other approach. The scope of a Hibernate org.hibernate.Session is flexible but you should
never design your application to use a new Hibernate org.hibernate.Session for every database
operation. Even though it is used in the following examples, consider session-per-operation an
anti-pattern. A real web application is shown later in the tutorial which will help illustrate this.

See Chapter 13, Transactions and Concurrency for more information about transaction handling
and demarcation. The previous example also skipped any error handling and rollback.

To run this, we will make use of the Maven exec plugin to call
our class with the necessary classpath setup: nwn exec: j ava -
Dexec. mai nCl ass="org. hi bernate. tutorial . Event Manager" -Dexec.args="store"

@ Note

You may need to perform mvn conpi | e first.

You should see Hibernate starting up and, depending on your configuration, lots of log output.
Towards the end, the following line will be displayed:

[java] Hibernate: insert into EVENTS (EVENT_DATE, title, EVENT_ID) values (?, ?, ?)

This is the | NSERT executed by Hibernate.

To list stored events an option is added to the main method:

if (args[0].equal s("store")) {
ngr . cr eat eAndSt or eEvent ("My Event", new Date());
}
else if (args[0].equals("list")) {
Li st events = ngr.listEvents();
for (int i =0; i < events.size(); i++) {
Event theEvent = (Event) events.get(i);
System out . printl n(
"Event: " + theEvent.getTitle() + " Time: " + theEvent.getDate()

12

Part 2 - Mapping associations

AnewlistEvents() nethod is al so added:

private List listEvents() {
Sessi on session = HibernateUtil.getSessionFactory().getCurrentSession();
sessi on. begi nTransaction();
List result = session.createQuery("fromEvent").list();
sessi on. get Transaction().comit();
return result;

Here, we are using a Hibernate Query Language (HQL) query to load all existing Event objects
from the database. Hibernate will generate the appropriate SQL, send it to the database and
populate Event objects with the data. You can create more complex queries with HQL. See
Chapter 16, HQL: The Hibernate Query Language for more information.

Now we can call our new functionality, again using the Maven exec plugin: mvn exec:java -
Dexec. mai nC ass="org. hi bernate. tutorial . Event Manager" -Dexec.args="list"

1.2. Part 2 - Mapping associations

So far we have mapped a single persistent entity class to a table in isolation. Let's expand on that
a bit and add some class associations. We will add people to the application and store a list of
events in which they participate.

1.2.1. Mapping the Person class

The first cut of the Per son class looks like this:

package org. hi bernate.tutorial.donain;
public class Person {

private Long id;

private int age;

private String firstname;

private String |astnane;

public Person() {}

d"

/| Accessor nethods for all properties, private setter for '

Save this to a file named sr c/ mai n/ j ava/ or g/ hi ber nat e/ t ut ori al / donai n/ Per son. j ava

13

Chapter 1. Tutorial

Next, create the new mapping file as sr c/ mai n/ r esour ces/ or g/ hi ber nat e/ t ut ori al / donai n/
Per son. hbm xni

<hi ber nat e- mappi ng package="org. hi bernate. tutorial.donmain">

<cl ass nane="Person" tabl e=" PERSON' >

<id name="id" col um="PERSON_| D' >
<generator class="native"/>

</id>
<property nanme="age"/>
<property nanme="firstname"/>
<property nanme="| ast nane"/ >

</ cl ass>

</ hi ber nat e- mappi ng>

Finally, add the new mapping to Hibernate's configuration:

<mappi ng resource="org/ hi bernate/tutorial/domain/Event. hbm xm "/ >
<mappi ng resource="org/ hi bernate/tutorial/donain/Person. hbm xm "/ >

Create an association between these two entities. Persons can participate in events, and events
have participants. The design questions you have to deal with are: directionality, multiplicity, and
collection behavior.

1.2.2. A unidirectional Set-based association

By adding a collection of events to the Per son class, you can easily navigate to the events for a
particular person, without executing an explicit query - by calling Per son#get Event s. Multi-valued
associations are represented in Hibernate by one of the Java Collection Framework contracts;
here we choose aj ava. util. Set because the collection will not contain duplicate elements and
the ordering is not relevant to our examples:

public class Person {
private Set events = new HashSet();
public Set getEvents() {

return events;

public void setEvents(Set events) {
this.events = events;

14

Working the association

Before mapping this association, let's consider the other side. We could just keep this
unidirectional or create another collection on the Event , if we wanted to be able to navigate it from
both directions. This is not necessary, from a functional perspective. You can always execute an
explicit query to retrieve the participants for a particular event. This is a design choice left to you,
but what is clear from this discussion is the multiplicity of the association: "many" valued on both
sides is called a many-to-many association. Hence, we use Hibernate's many-to-many mapping:

<cl ass name="Person" tabl e="PERSON' >
<id name="id" col um="PERSON_| D' >
<generator class="native"/>
</id>
<property name="age"/>
<property nanme="firstname"/>
<property nanme="| ast nane"/ >

<set nanme="events" tabl e="PERSON_EVENT" >

<key col utm="PERSON_I| D"/ >

<many-to-many col um="EVENT_I D" cl ass="Event"/>
</set>

</cl ass>

Hibernate supports a broad range of collection mappings, a set being most common. For a many-
to-many association, or n:m entity relationship, an association table is required. Each row in this
table represents a link between a person and an event. The table name is decalred using thet abl e
attribute of the set element. The identifier column name in the association, for the person side, is
defined with the key element, the column name for the event's side with the col um attribute of
the nany-t o- many. You also have to tell Hibernate the class of the objects in your collection (the
class on the other side of the collection of references).

The database schema for this mapping is therefore:

| |

| EVENTS [| PERSON EVENT | | |
[| | | | PERSON |
	[[
*EVENT_ID	<-->	*EVENT_ID		
EVENT_DATE		*PERSON I D	<-->	*PERSON_ID
TITLE				AGE [
[l		FIRSTNAME		
LASTNAME				

|

1.2.3. Working the association

Now we will bring some people and events together in a new method in Event Manager :

15

Chapter 1. Tutorial

private void addPer sonToEvent (Long personld, Long eventld) {
Sessi on session = Hibernateltil.getSessi onFactory().getCurrentSession();
sessi on. begi nTransaction();

Person aPerson = (Person) session.|oad(Person.class, personld);
Event anEvent = (Event) session.|oad(Event.class, eventld);
aPer son. get Event s() . add(anEvent);

session. get Transaction().comit();

After loading a Person and an Event, simply modify the collection using the normal collection
methods. There is no explicit call to updat e() or save() ; Hibernate automatically detects that the
collection has been modified and needs to be updated. This is called automatic dirty checking. You
can also try it by modifying the name or the date property of any of your objects. As long as they are
in persistent state, that is, bound to a particular Hibernate or g. hi ber nat e. Sessi on, Hibernate
monitors any changes and executes SQL in a write-behind fashion. The process of synchronizing
the memory state with the database, usually only at the end of a unit of work, is called flushing. In
our code, the unit of work ends with a commit, or rollback, of the database transaction.

You can load person and event in different units of work. Or you can modify an object outside of
aorg. hi ber nat e. Sessi on, when it is not in persistent state (if it was persistent before, this state
is called detached). You can even modify a collection when it is detached:

private voi d addPer sonToEvent (Long personld, Long eventld) {
Sessi on session = Hibernateltil.getSessi onFactory().getCurrentSession();
sessi on. begi nTransaction();

Person aPerson = (Person) session
.createQuery("select p fromPerson p left join fetch p.events where p.id = :pid")
.set Paraneter ("pid", personld)
.uniqueResult(); // Eager fetch the collection so we can use it detached
Event anEvent = (Event) session.|oad(Event.class, eventld);
session. get Transaction().comit();
/1 End of first unit of work
aPer son. get Event s(). add(anEvent); // aPerson (and its collection) is detached
/1 Begin second unit of work
Sessi on session2 = Hi bernateltil.getSessi onFactory().getCurrent Session();
sessi on2. begi nTransacti on();

session2. updat e(aPerson); // Reattachnent of aPerson

session2. get Transaction().comit();

16

Collection of values

The call to updat e makes a detached object persistent again by binding it to a new unit of work,
so any modifications you made to it while detached can be saved to the database. This includes
any modifications (additions/deletions) you made to a collection of that entity object.

This is not much use in our example, but it is an important concept you can incorporate into
your own application. Complete this exercise by adding a new action to the main method of the
Event Manager and call it from the command line. If you need the identifiers of a person and an
event - the save() method returns it (you might have to modify some of the previous methods
to return that identifier):

else if (args[O0].equal s("addpersontoevent")) {
Long eventld = ngr.creat eAndSt oreEvent ("My Event", new Date());
Long personld = ngr.creat eAndSt or ePer son(" Foo", "Bar");
ngr . addPer sonToEvent (personld, eventld);
Systemout. println("Added person " + personld + " to event " + eventld);

This is an example of an association between two equally important classes : two entities. As
mentioned earlier, there are other classes and types in a typical model, usually "less important".
Some you have already seen, like an i nt or ajava.l ang. String. We call these classes value
types, and their instances depend on a particular entity. Instances of these types do not have
their own identity, nor are they shared between entities. Two persons do not reference the same
first name object, even if they have the same first name. Value types cannot only be found in the
JDK, but you can also write dependent classes yourself such as an Addr ess or Monet ar y Amount
class. In fact, in a Hibernate application all JDK classes are considered value types.

You can also design a collection of value types. This is conceptually different from a collection of
references to other entities, but looks almost the same in Java.

1.2.4. Collection of values

Let's add a collection of email addresses to the Person entity. This will be represented as a
java.util.Set ofjava.lang. String instances:

private Set enmil Addresses = new HashSet ();

public Set getEmail Addresses() {
return email Addr esses;

}

public void setEmail Addresses(Set email Addresses) {
this. emni | Addresses = emai | Addr esses;

}

The mapping of this Set is as follows:

17

Chapter 1. Tutorial

<set nanme="enmi | Addresses" tabl e=" PERSON_EMAI L_ADDR' >
<key col um="PERSON_I| D"/ >
<el enent type="string" col um="EMAI L_ADDR"/>
</set>

The difference compared with the earlier mapping is the use of the el ement part which tells
Hibernate that the collection does not contain references to another entity, but is rather a collection
whose elements are values types, here specifically of type st ri ng. The lowercase name tells you
it is a Hibernate mapping type/converter. Again the t abl e attribute of the set element determines
the table name for the collection. The key element defines the foreign-key column name in the
collection table. The col unm attribute in the el enent element defines the column name where the
email address values will actually be stored.

Here is the updated schema:

| |

| EVENTS | | PERSON_EVENT | | |
| | | | PERSON | | [
I				PERSON_ENAI L_ADDR		
*EVENT ID	<-->	*EVENT_ID				
EVENT_DATE		*PERSON_I D	<-->	*PERSON_ID	<-->	*PERSON_ID
TITLE				AGE		*EMAI L_ADDR
1 | FIRSTNAME | [|

| LASTNAME |

|

You can see that the primary key of the collection table is in fact a composite key that uses both
columns. This also implies that there cannot be duplicate email addresses per person, which is
exactly the semantics we need for a set in Java.

You can now try to add elements to this collection, just like we did before by linking persons and
events. It is the same code in Java:

private void addEnail ToPerson(Long personld, String enail Address) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
sessi on. begi nTransaction();

Person aPerson = (Person) session. | oad(Person.class, personld);
/1 adding to the emnil Address collection might trigger a lazy |load of the collection

aPer son. get Emai | Addr esses() . add(enai | Addr ess) ;

session. get Transaction().comit();

18

Bi-directional associations

This time we did not use a fetch query to initialize the collection. Monitor the SQL log and try to
optimize this with an eager fetch.

1.2.5. Bi-directional associations

Next you will map a bi-directional association. You will make the association between person and
event work from both sides in Java. The database schema does not change, so you will still have
many-to-many multiplicity.

@ Note

A relational database is more flexible than a network programming language, in
that it does not need a navigation direction; data can be viewed and retrieved in
any possible way.

First, add a collection of participants to the Event class:

private Set participants = new HashSet ();

public Set getParticipants() {
return participants;

}

public void setParticipants(Set participants) {
this.participants = participants;

}
Now map this side of the association in Event . hbm xm .

<set name="partici pants" tabl e="PERSON _EVENT" inverse="true">
<key colum="EVENT_I D'/ >
<many-to- many col um="PERSON_| D' cl ass="Person"/>

</ set>

These are normal set mappings in both mapping documents. Notice that the column names in
key and many-t o- many swap in both mapping documents. The most important addition here is
the i nverse="true" attribute in the set element of the Event's collection mapping.

What this means is that Hibernate should take the other side, the Per son class, when it needs to
find out information about the link between the two. This will be a lot easier to understand once
you see how the bi-directional link between our two entities is created.

1.2.6. Working bi-directional links

First, keep in mind that Hibernate does not affect normal Java semantics. How did we create
a link between a Person and an Event in the unidirectional example? You add an instance of

19

Chapter 1. Tutorial

Event to the collection of event references, of an instance of Per son. If you want to make this
link bi-directional, you have to do the same on the other side by adding a Per son reference to
the collection in an Event . This process of "setting the link on both sides" is absolutely necessary
with bi-directional links.

Many developers program defensively and create link management methods to correctly set both
sides (for example, in Per son):

protected Set getEvents() {
return events;

}

protected void set Events(Set events) {
this.events = events;

}

public void addToEvent (Event event) {
this.getEvents().add(event);
event.getPartici pants().add(this);
}

public void renmoveFronEvent (Event event) {
this. get Events().renove(event);
event.getPartici pants().renove(this);

The get and set methods for the collection are now protected. This allows classes in the same
package and subclasses to still access the methods, but prevents everybody else from altering
the collections directly. Repeat the steps for the collection on the other side.

What about the i nver se mapping attribute? For you, and for Java, a bi-directional link is simply
a matter of setting the references on both sides correctly. Hibernate, however, does not have
enough information to correctly arrange SQL | NSERT and UPDATE statements (to avoid constraint
violations). Making one side of the association i nver se tells Hibernate to consider it a mirror
of the other side. That is all that is necessary for Hibernate to resolve any issues that arise
when transforming a directional navigation model to a SQL database schema. The rules are
straightforward: all bi-directional associations need one side as inverse. In a one-to-many
association it has to be the many-side, and in many-to-many association you can select either side.

1.3. Part 3 - The EventManager web application

A Hibernate web application uses Sessi on and Tr ansact i on almost like a standalone application.
However, some common patterns are useful. You can now write an Event Manager Ser vl et . This
servlet can list all events stored in the database, and it provides an HTML form to enter new events.

1.3.1. Writing the basic servlet

First we need create our basic processing servlet. Since our servlet only handles HTTP GET
requests, we will only implement the doGet () method:

20

Writing the basic servlet

package org. hibernate.tutorial.web;
/] 1nports
public class Event Manager Servl et extends H tpServlet {

protected void doGet (
Ht t pSer vl et Request request,
Ht t pSer vl et Response response) throws Servl et Exception, | CException {

Si npl eDat eFor mat dat eFormatter = new Si npl eDat eFor mat ("dd. MM yyyy");

try {
/1 Begin unit of work
Hi bernateUtil . get Sessi onFactory().get Current Session(). begi nTransaction();

/] Process request and render page...

/1 End unit of work
Hi bernateUtil . get Sessi onFactory().get Current Session().getTransaction().conmit();

}
catch (Exception ex) {
Hi bernatelUtil . get Sessi onFactory().get Current Session().getTransaction().rollback();
if (ServletException.class.islnstance(ex)) {
throw (Servl et Exception) ex;

}
el se {
throw new Servl et Exception(ex);

Save this servlet as src/ mai n/j aval or g/ hi bernat e/ tutori al / web/
Event Manager Servl et . j ava

The pattern applied here is called session-per-request. When a request hits the servlet, a
new Hibernate Session is opened through the first call to get Current Sessi on() on the
Sessi onFactory. A database transaction is then started. All data access occurs inside a
transaction irrespective of whether the data is read or written. Do not use the auto-commit mode
in applications.

Do not use a new Hibernate Sessi on for every database operation. Use one Hibernate Sessi on
that is scoped to the whole request. Use get Cur r ent Sessi on(), So that it is automatically bound
to the current Java thread.

Next, the possible actions of the request are processed and the response HTML is rendered. We
will get to that part soon.

Finally, the unit of work ends when processing and rendering are complete. If any problems
occurred during processing or rendering, an exception will be thrown and the database transaction
rolled back. This completes the sessi on-per-request pattern. Instead of the transaction

21

Chapter 1. Tutorial

demarcation code in every servlet, you could also write a servlet filter. See the Hibernate website
and Wiki for more information about this pattern called Open Session in View. You will need it as
soon as you consider rendering your view in JSP, not in a servlet.

1.3.2. Processing and rendering

Now you can implement the processing of the request and the rendering of the page.

/1 Wite HTM. header
PrintWiter out = response.getWiter();
out. println("<htm ><head><titl e>Event Manager</titl e></head><body>");

/] Handl e actions
if ("store".equal s(request.getParanmeter("action"))) {

String eventTitle = request.getParaneter("eventTitle");
String eventDate = request. getParanmeter("eventDate");

if ("".equals(eventTitle) || "".equal s(eventDate)) {
out.println("<i >Pl ease enter event title and date.</i>");

}

el se {
creat eAndSt or eEvent (event Titl e, dateFormatter. parse(eventDate));
out. println("<i >Added event.</i>");

/1 Print page
print Event For n{out);
|'i st Events(out, dateFornatter);

/'l Wite HTM. footer

out. println("</body></htm >");
out. flush();

out.close();

This coding style, with a mix of Java and HTML, would not scale in a more complex application-
keep in mind that we are only illustrating basic Hibernate concepts in this tutorial. The code prints
an HTML header and a footer. Inside this page, an HTML form for event entry and a list of all
events in the database are printed. The first method is trivial and only outputs HTML:

private void printEventForm(PrintWiter out) {

out.println("<h2>Add new event: </ h2>");

out.println("<forns");

out.println("Title: <input nane="eventTitle' |ength="50"/>
");
out.println("Date (e.g. 24.12.2009): <input nane='eventDate' |ength="10"/>
");
out.println("<input type='subnmit' nanme='action' value='store'/>");
out.println("</fornp");

22

Deploying and testing

The |i st Event s() method uses the Hibernate Sessi on bound to the current thread to execute
a query:

private void listEvents(PrintWiter out, SinpleDateFornat dateFornatter) {

List result = HibernateUtil.getSessionFactory()
.getCurrent Session().createCriteria(Event.class).list();
if (result.size() > 0) {
out.println("<h2>Events in database: </ h2>");
out.println("<table border="1">");
out.println("<tr>");
out.println("<th>Event title</th>");
out.println("<th>Event date</th>");
out.println("</tr>");
Iterator it = result.iterator();
while (it.hasNext()) {
Event event = (Event) it.next();
out.println("<tr>");
out.println("<td>" + event.getTitle() + "</td>");
out.println("<td>" + dateFormatter.format(event.getDate()) + "</td>");
out.println("</tr>");
}

out.println("</table>");

Finally, the st or e action is dispatched to the cr eat eAndSt or eEvent () method, which also uses
the Sessi on of the current thread:

protected void createAndStoreEvent(String title, Date theDate) {
Event theEvent = new Event();
theEvent.setTitle(title);
t heEvent . set Dat e(t heDat e) ;

Hi bernateUti | . get Sessi onFactory()
. get Current Sessi on() . save(theEvent);

The servlet is now complete. A request to the servlet will be processed in a single Sessi on and
Transacti on. As earlier in the standalone application, Hibernate can automatically bind these
objects to the current thread of execution. This gives you the freedom to layer your code and
access the Sessi onFactory in any way you like. Usually you would use a more sophisticated
design and move the data access code into data access objects (the DAO pattern). See the
Hibernate Wiki for more examples.

1.3.3. Deploying and testing

To deploy this application for testing we must create a Web ARchive (WAR). First we must define
the WAR descriptor as sr ¢/ mai n/ webapp/ VEB- | NF/ web. xm

23

Chapter 1. Tutorial

<?xm version="1.0" encodi ng="UTF-8"?>
<web- app version="2.4"
xm ns="http://java. sun. com xnm / ns/j 2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://java. sun.com xm /ns/j2ee http://java.sun.com xm /ns/j2eel web-
app_2_4. xsd">

<servlet>

<servl et - name>Event Manager </ servl et - nane>

<servl et-cl ass>org. hi bernate. tutorial.web. Event Manager Servl et </ servl et -cl ass>
</ servlet>

<servl et - nappi ng>
<servl et - name>Event Manager </ servl et - nane>
<url - patt ern>/ event manager </ ur| - pattern>
</ servl et - mappi ng>
</ web- app>

To build and deploy call mvn package in your project directory and copy the hi ber nat e-
tutorial . war file into your Tomcat webapps directory.

http://tomcat.apache.org/

Once deployed and Tomcat is running, access the application at http:/ /| ocal host: 8080/
hi bernat e-tut ori al / event manager. Make sure you watch the Tomcat log to see Hibernate
initialize when the first request hits your servlet (the static initializer in Hi ber natelti | is called)
and to get the detailed output if any exceptions occurs.

1.4. Summary

This tutorial covered the basics of writing a simple standalone Hibernate application and a small
web application. More tutorials are available from the Hibernate website [http://hibernate.org].

24

http://tomcat.apache.org/
http://hibernate.org
http://hibernate.org

Chapter 2.

Architecture

2.1. Overview

The diagram below provides a high-level view of the Hibernate architecture:

Application

Persistent Objects

HIBERNATE

hi ber nat e. :
properties AL LRIl
Database

Unfortunately we cannot provide a detailed view of all possible runtime architectures. Hibernate is
sufficiently flexible to be used in a number of ways in many, many architectures. We will, however,
illustrate 2 specifically since they are extremes.

2.1.1. Minimal architecture

The "minimal” architecture has the application manage its own JDBC connections and provide
those connections to Hibernate; additionally the application manages transactions for itself. This
approach uses a minimal subset of Hibernate APIs.

25

Chapter 2. Architecture

2.1.2. Comprehensive architecture

The "comprehensive" architecture abstracts the application away from the underlying JDBC/JTA
APIs and allows Hibernate to manage the details.

26

Basic APIs

2.1.3. Basic APIs

Here are quick discussions about some of the API objects depicted in the preceding diagrams
(you will see them again in more detail in later chapters).

SessionFactory (or g. hi ber nat e. Sessi onFact ory)
A thread-safe, immutable cache of compiled mappings for a single
database. A factory for org. hibernate.Session instances. A client of
or g. hi bernat e. connecti on. Connect i onProvi der. Optionally maintains a second | evel
cache of data that is reusable between transactions at a process or cluster level.

Session (or g. hi ber nat e. Sessi on)
A single-threaded, short-lived object representing a conversation between the
application and the persistent store. Wraps a JDBC j ava. sqgl . Connecti on. Factory
for org. hi bernate. Transacti on. Maintains a first |evel cache of persistent the
application's persistent objects and collections; this cache is used when navigating the object
graph or looking up objects by identifier.

Persistent objects and collections
Short-lived, single threaded objects containing persistent state and business function.
These can be ordinary JavaBeans/POJOs. They are associated with exactly one
or g. hi ber nat e. Sessi on. Once the org. hi bernate. Session is closed, they will be
detached and free to use in any application layer (for example, directly as data transfer objects
to and from presentation). Chapter 11, Working with objects discusses transient, persistent
and detached object states.

Transient and detached objects and collections
Instances of persistent classes that are not currently associated with a
or g. hi ber nat e. Sessi on. They may have been instantiated by the application and not
yet persisted, or they may have been instantiated by a closed or g. hi ber nat e. Sessi on.
Chapter 11, Working with objects discusses transient, persistent and detached object states.

Transaction (or g. hi ber nat e. Tr ansact i on)
(Optional) A single-threaded, short-lived object used by the application to specify atomic
units of work. It abstracts the application from the underlying JDBC, JTA or CORBA
transaction. A or g. hi ber nat e. Sessi on might span several or g. hi ber nat e. Transact i ons
in some cases. However, transaction demarcation, either using the underlying API or
or g. hi ber nat e. Transacti on, is never optional.

ConnectionProvider (or g. hi ber nat e. connect i on. Connect i onProvi der)
(Optional) A factory for, and pool of, JDBC connections. It abstracts the application from
underlying j avax. sql . Dat aSource or java.sql.DriverManager. It is not exposed to
application, but it can be extended and/or implemented by the developer.

TransactionFactory (or g. hi ber nat e. Transact i onFact ory)
(Optional) A factory for org. hi ber nat e. Transacti on instances. It is not exposed to the
application, but it can be extended and/or implemented by the developer.

27

Chapter 2. Architecture

Extension Interfaces
Hibernate offers a range of optional extension interfaces you can implement to customize the
behavior of your persistence layer. See the APl documentation for details.

2.2. JMX Integration

JMX is the J2EE standard for the management of Java components. Hibernate can be
managed via a JMX standard service. AN MBean implementation is provided in the distribution:
or g. hi bernnate. j nx. Hi ber nat eServi ce.

Another feature available as a JMX service is runtime Hibernate statistics. See Section 3.4.6,
“Hibernate statistics” for more information.

2.3. Contextual sessions

Most applications using Hibernate need some form of "contextual” session, where a given session
is in effect throughout the scope of a given context. However, across applications the definition
of what constitutes a context is typically different; different contexts define different scopes to
the notion of current. Applications using Hibernate prior to version 3.0 tended to utilize either
home-grown Thr eadLocal -based contextual sessions, helper classes such as Hi ber natelUti | , or
utilized third-party frameworks, such as Spring or Pico, which provided proxy/interception-based
contextual sessions.

Starting with version 3.0.1, Hibernate added the SessionFact ory. get Current Sessi on()
method. Initially, this assumed usage of JTA transactions, where the JTA transaction defined both
the scope and context of a current session. Given the maturity of the numerous stand-alone
JTA Transacti onManager implementations, most, if not all, applications should be using JTA
transaction management, whether or not they are deployed into a J2EE container. Based on that,
the JTA-based contextual sessions are all you need to use.

However, as of version 3.1, the processing behind Sessi onFact ory. get Curr ent Sessi on()
is now pluggable. To that end, a new extension interface,
or g. hi ber nat e. cont ext . Current Sessi onContext, and a new configuration parameter,
hi ber nat e. current _sessi on_cont ext _cl ass, have been added to allow pluggability of the
scope and context of defining current sessions.

See the Javadocs for the org. hi ber nat e. cont ext. Current Sessi onCont ext interface for a
detailed discussion of its contract. It defines a single method, current Sessi on(), by which
the implementation is responsible for tracking the current contextual session. Out-of-the-box,
Hibernate comes with three implementations of this interface:

e org. hi bernat e. cont ext. JTASessi onCont ext : current sessions are tracked and scoped by a
JTA transaction. The processing here is exactly the same as in the older JTA-only approach.
See the Javadocs for details.

e org. hi bernat e. cont ext. ThreadLocal Sessi onCont ext :current sessions are tracked by
thread of execution. See the Javadocs for details.

28

Contextual sessions

e org. hi bernat e. cont ext . ManagedSessi onCont ext : current sessions are tracked by thread of
execution. However, you are responsible to bind and unbind a Sessi on instance with static
methods on this class: it does not open, flush, or close a Sessi on.

The first two implementations provide a "one session - one database transaction" programming
model. This is also known and used as session-per-request. The beginning and end of a Hibernate
session is defined by the duration of a database transaction. If you use programmatic transaction
demarcation in plain JSE without JTA, you are advised to use the Hibernate Tr ansacti on API
to hide the underlying transaction system from your code. If you use JTA, you can utilize the
JTA interfaces to demarcate transactions. If you execute in an EJB container that supports CMT,
transaction boundaries are defined declaratively and you do not need any transaction or session
demarcation operations in your code. Refer to Chapter 13, Transactions and Concurrency for
more information and code examples.

The hibernate. current_session_context_class configuration parameter defines which
org. hi bernat e. cont ext . Current Sessi onCont ext implementation should be used. For
backwards compatibility, if this configuration parameter is not set but a
or g. hi bernat e. transacti on. Transact i onManager Lookup is configured, Hibernate will use the
or g. hi ber nat e. cont ext . JTASessi onCont ext . Typically, the value of this parameter would just
name the implementation class to use. For the three out-of-the-box implementations, however,
there are three corresponding short names: "jta", "thread", and "managed".

29

30

Chapter 3.

Configuration

Hibernate is designed to operate in many different environments and, as such, there is a broad
range of configuration parameters. Fortunately, most have sensible default values and Hibernate
is distributed with an example hi ber nate. properties file in etc/ that displays the various
options. Simply put the example file in your classpath and customize it to suit your needs.

3.1. Programmatic configuration

An instance of org. hi bernat e. cf g. Confi gur ati on represents an entire set of mappings of
an application's Java types to an SQL database. The or g. hi bernate. cf g. Confi guration is
used to build an immutable or g. hi ber nat e. Sessi onFact ory. The mappings are compiled from
various XML mapping files.

You can obtain a or g. hi ber nat e. cf g. Confi gur ati on instance by instantiating it directly and
specifying XML mapping documents. If the mapping files are in the classpath, use addResour ce() .
For example:

Configuration cfg = new Configuration()
.addResource("Item hbm xm ")
. addResour ce("Bi d. hbm xm ") ;

An alternative way is to specify the mapped class and allow Hibernate to find the mapping
document for you:

Configuration cfg = new Configuration()
.addC ass(org. hi bernate. auction.|tem cl ass)
.addd ass(org. hi bernate. auction. Bi d. cl ass);

Hibernate will then search for mapping files named / or g/ hi ber nat e/ aucti on/ 1t em hbm xni
and / or g/ hi ber nat e/ aucti on/ Bi d. hbom xm in the classpath. This approach eliminates any
hardcoded filenames.

A org. hi bernate. cfg. Configuration also allows you to specify configuration properties. For
example:

Configuration cfg = new Configuration()
.addd ass(org. hi bernate. auction.|tem cl ass)
.addd ass(org. hi bernate. auction. Bi d. cl ass)

.setProperty("hibernate.dialect", "org.hibernate.dial ect. MySQLI nnoDBDi al ect")
.set Property("hibernate. connection.datasource", "java:conp/env/jdbc/test")
.setProperty("hibernate. order_updates", "true");

31

Chapter 3. Configuration

This is not the only way to pass configuration properties to Hibernate. Some alternative options
include:

1. Pass an instance of j ava. uti | . Properti es to Confi guration. set Properties().
2. Place a file named hi ber nat e. properti es in a root directory of the classpath.

3. Set Syst emproperties using j ava - Dpr oper t y=val ue.

4. Include <pr oper t y> elements in hi ber nat e. cf g. xn (this is discussed later).

If you want to get started quicklyhi ber nat e. properti es is the easiest approach.

The org. hi bernate. cfg. Configuration is intended as a startup-time object that will be
discarded once a Sessi onFact ory is created.

3.2. Obtaining a SessionFactory

When all mappings have been parsed by the org. hi bernate.cfg. Configuration, the
application must obtain a factory for or g. hi ber nat e. Sessi on instances. This factory is intended
to be shared by all application threads:

Sessi onFactory sessions = cfg. buil dSessi onFactory();

Hibernate does allow your application to instantiate more than one
or g. hi ber nat e. Sessi onFact ory. This is useful if you are using more than one database.

3.3. JDBC connections

It is advisable to have the or g. hi ber nat e. Sessi onFact ory create and pool JDBC connections
for you. If you take this approach, opening a or g. hi ber nat e. Sessi on is as simple as:

Sessi on session = sessions.openSession(); // open a new Session

Once you start a task that requires access to the database, a JDBC connection will be obtained
from the pool.

Before you can do this, you first need to pass some JDBC connection properties
to Hibernate. All Hibernate property names and semantics are defined on the class
org. hi bernate. cfg. Environment. The most important settings for JDBC connection
configuration are outlined below.

Hibernate will obtain and pool connections using j ava. sql . Dri ver Manager if you set the
following properties:

32

JDBC connections

Table 3.1. Hibernate JDBC Properties

Property name Purpose
hibernate.connection.driver_class JDBC driver class
hibernate.connection.url JDBC URL
hibernate.connection.username database user
hibernate.connection.password database user password
hibernate.connection.pool_size maximum number of pooled connections

Hibernate's own connection pooling algorithm is, however, quite rudimentary. It is intended to
help you get started and is not intended for use in a production system, or even for performance
testing. You should use a third party pool for best performance and stability. Just replace the
hibernate.connection.pool_size property with connection pool specific settings. This will turn off
Hibernate's internal pool. For example, you might like to use c3p0.

C3PO0 is an open source JDBC connection pool distributed along with Hibernate in the lib
directory. Hibernate will use its org. hi ber nat e. connecti on. C3P0Connect i onPr ovi der for
connection pooling if you set hibernate.c3p0.* properties. If you would like to use Proxool, refer to
the packaged hi ber nat e. properti es and the Hibernate web site for more information.

The following is an example hi ber nat e. pr operti es file for c3p0:

hi ber nat e. connection. driver_class = org. postgresql.Driver

hi ber nat e. connection.url = jdbc:postgresql://Ilocal host/nydatabase
hi ber nat e. connecti on. user name = nyuser

hi ber nat e. connecti on. password = secret

hi ber nat e. ¢3p0. m n_si ze=5

hi ber nat e. ¢3p0. max_si ze=20

hi ber nat e. ¢c3p0. ti meout =1800

hi ber nat e. ¢3p0. max_st at enment s=50

hi ber nat e. di al ect = org. hi bernate. di al ect. Post greSQ.Di al ect

For use inside an application server, you should almost always configure Hibernate to obtain
connections from an application server j avax. sql . Dat asour ce registered in JNDI. You will need
to set at least one of the following properties:

Table 3.2. Hibernate Datasource Properties

Property name Purpose

hibernate.connection.datasource datasource JNDI nhame

hibernate.jndi.url URL of the JNDI provider (optional)

hibernate.jndi.class class of the JNDI Initial ContextFactory
(optional)

hibernate.connection.username database user (optional)

hibernate.connection.password database user password (optional)

33

Chapter 3. Configuration

Here is an example hi bernate. properties file for an application server provided JNDI
datasource:

hi ber nat e. connecti on. dat asource = java:/conp/env/jdbc/test
hi bernate.transaction.factory_class =\

org. hi bernate. transacti on. JTATransacti onFactory
hi bernat e. transacti on. manager _| ookup_cl ass =\

or g. hi bernate. transacti on. JBossTr ansact i onManager Lookup
hi ber nat e. di al ect = org. hi bernate. di al ect. Post greSQ.Di al ect

JDBC connections obtained from a JNDI datasource will automatically participate in the container-
managed transactions of the application server.

Arbitrary connection properties can be given by prepending "hi ber nat e. connecti on" to the
connection property name. For example, you can specify a charSet connection property using
hibernate.connection.charSet.

You can define your own plugin strategy for obtaining JDBC connections by implementing
the interface or g. hi ber nat e. connecti on. Connecti onPr ovi der, and specifying your custom
implementation via the hibernate.connection.provider_class property.

3.4. Optional configuration properties

There are a number of other properties that control the behavior of Hibernate at runtime. All are
optional and have reasonable default values.

Warning

Some of these properties are "system-level" only. System-level properties can be
setonly viaj ava - Dpropert y=val ue or hi ber nat e. pr operti es. They cannot be
set by the other techniques described above.

Table 3.3. Hibernate Configuration Properties

Property name Purpose
hibernate.dialect The classname of a Hibernate
org. hi bernate. di al ect. Di al ect which

allows Hibernate to generate SQL optimized
for a particular relational database.

e.g.full.classnane. of. Di al ect

In most cases Hibernate will
actually be able to choose the
correct org. hi bernate. di al ect. Di al ect

34

Optional configuration properties

Property name

hibernate.show_sql

hibernate.format_sq|

hibernate.default_schema

Purpose

implementation based on the JDBC net adat a
returned by the JDBC driver.

Write all SQL statements to console. This
is an alternative to setting the log category
or g. hi ber nat e. SQL to debug.
eg.true|false

Pretty print the SQL in the log and console.

eg.true|false

Qualify unqualified table names with the given
schemal/tablespace in generated SQL.

e.g. SCHEMA_NAVE

hibernate.default_catalog

hibernate.session_factory_name

hibernate.max_fetch_depth

Qualifies unqualified table names with the
given catalog in generated SQL.

e.g. CATALOG_NAME

The or g. hi ber nat e. Sessi onFact ory will be
automatically bound to this name in JNDI after
it has been created.

e.g.j ndi / conposi t e/ nane

Sets a maximum "depth" for the outer join fetch
tree for single-ended associations (one-to-one,
many-to-one). A 0 disables default outer join
fetching.

e.g. recommended values between 0 and 3

hibernate.default_batch_fetch_size

hibernate.default_entity _mode

hibernate.order_updates

Sets a default size for Hibernate batch fetching
of associations.

e.g. recommended values 4, 8, 16

Sets a default mode for entity representation
for all sessions opened from this
Sessi onFactory

dynani c- map, domdj , poj o

Forces Hibernate to order SQL updates by the
primary key value of the items being updated.
This will result in fewer transaction deadlocks
in highly concurrent systems.

35

Chapter 3. Configuration

Property name

Purpose

eg.true|false

hibernate.generate_statistics

hibernate.use_identifier_rollback

hibernate.use_sql_comments

hibernate.id.new_generator_mappings

If enabled, Hibernate will collect statistics
useful for performance tuning.

eg.true|false

If enabled, generated identifier properties will
be reset to default values when objects are
deleted.

eg.true|false

If turned on, Hibernate will generate comments
inside the SQL, for easier debugging, defaults
to f al se.

eg.true|false

Setting is relevant when using
@=neratedVal ue. It indicates whether
or not the new IdentifierGenerator
implementations are used for
j avax. per si st ence. Gener ati onType. AUTQ,
j avax. persi st ence. Gener ati onType. TABLE
and

j avax. persi st ence. Gener at i onType. SEQUENCE.

Default to false to keep backward
compatibility.

e.g.true|false

Table 3.4. Hibernate JDBC and Connection Properties

Property name

Purpose

hibernate.jdbc.fetch_size

A non-zero value determines the JDBC fetch
size (calls St at enent . set Fet chSi ze()).

36

Optional configuration properties

Property name Purpose

hibernate.jdbc.batch_size A non-zero value enables use of JDBC2 batch
updates by Hibernate.

e.g. recommended values between 5 and 30

hibernate.jdbc.batch_versioned_data Set this property to true if your JDBC
driver returns correct row counts from
execut eBat ch() . It is usually safe to turn this
option on. Hibernate will then use batched DML
for automatically versioned data. Defaults to
fal se.

eg.true|false

hibernate.jdbc.factory_class Select a custom
or g. hi bernate. j dbc. Bat cher. Most
applications will not need this configuration
property.

e.g. cl assnane. of . Bat cher Factory

hibernate.jdbc.use_scrollable_resultset Enables use of JDBC2 scrollable resultsets
by Hibernate. This property is only
necessary when using user-supplied JDBC
connections. Hibernate uses connection
metadata otherwise.

e.g.true|fal se

hibernate.jdbc.use_streams_for_binary Use streams when writing/reading bi nary or
seri al i zabl e types to/from JDBC. *system-
level property*

e.g.true|fal se

hibernate.jdbc.use_get_generated_keys Enables use of JDBC3
Pr epar edSt at ement . get Gener at edKeys()
to retrieve natively generated keys after insert.
Requires JDBC3+ driver and JRE1.4+, set
to false if your driver has problems with the
Hibernate identifier generators. By default, it
tries to determine the driver capabilities using
connection metadata.

e.g.true|fal se

hibernate.connection.provider_class The classname of a custom
or g. hi ber nat e. connecti on. Connecti onProvi der

37

Chapter 3. Configuration

Property name

Purpose

which provides JDBC connections to
Hibernate.

e.g. cl assnane. of . Connecti onPr ovi der

hibernate.connection.isolation

Sets the JDBC transaction isolation level.
Check j ava. sqgl . Connecti on for meaningful
values, but note that most databases do not
support all isolation levels and some define
additional, non-standard isolations.

eg.1, 2, 4, 8

hibernate.connection.autocommit

Enables autocommit for JDBC pooled
connections (it is not recommended).

eg.true|false

hibernate.connection.release_mode

Specifies when Hibernate should release
JDBC connections. By default, a JDBC
connection is held until the session is
explicitly closed or disconnected. For an
application server JTA datasource, use
after_statenent to aggressively release
connections after every JDBC call. For a
non-JTA connection, it often makes sense to
release the connection at the end of each
transaction, by using after_transaction.
auto will choose after_statenent for the
JTA and CMT transaction strategies and
after_transaction for the JDBC transaction
strategy.

e.g. auto (default) | on_close |
after_transaction|after_statenent

This setting only affects Sessions
returned from Sessi onFact ory. openSessi on.
For Sessi ons obtained through
Sessi onFact ory. get Current Sessi on, the
Cur r ent Sessi onCont ext implementation
configured for use controls the connection
release mode for those Sessions. See
Section 2.3, “Contextual sessions”

hibernate.connection.<propertyName>

Pass the JDBC property <propertyName> to
Dri ver Manager . get Connecti on().

38

Optional configuration properties

Property name Purpose

hibernate.jndi.<propertyName> Pass the property <propertyName> to the JNDI
I nitial ContextFactory.

Table 3.5. Hibernate Cache Properties

Property name Purpose

hi ber nat e. cache. provi der _cl ass The classname of a custom CachePr ovi der .

e.g. cl assnane. of . CachePr ovi der

hi ber nat e. cache. use_ni ni mal _puts Optimizes second-level cache operation to
minimize writes, at the cost of more frequent
reads. This setting is most useful for clustered
caches and, in Hibernate3, is enabled by
default for clustered cache implementations.

e.g.true|fal se

hi ber nat e. cache. use_query_cache Enables the query cache. Individual queries
still have to be set cachable.

e.g.true|fal se

hi ber nat e. cache. use_second_I| evel _cache Can be used to completely disable the second
level cache, which is enabled by default for
classes which specify a <cache> mapping.

e.g.true| fal se

hi ber nat e. cache. query_cache_factory The classname of a custom QueryCache
interface, defaults to the built-in
St andar dQuer yCache.

e.g. cl assnane. of . QueryCache

hi ber nat e. cache. r egi on_prefi x A prefix to use for second-level cache region
names.

e.g.prefix

hi ber nat e. cache. use_structured_entries Forces Hibernate to store data in the second-
level cache in a more human-friendly format.

e.g.true|fal se

hi ber nat e. cache. def aul t _cache_concur r enSettingatisgg to give the name of the default
or g. hi bernat e. annot at i ons. CacheConcurrencyStr at egy
to use when either @acheabl e or @ache
is used. @ache(strategy="..") is used to
override this default.

39

Chapter 3. Configuration

Table 3.6. Hibernate Transaction Properties

Property name

Purpose

hi ber nat e. transaction. factory_cl ass

The classname of a Transacti onFactory to
use with Hibernate Tr ansact i on API (defaults
to JDBCTr ansact i onFact ory).

e.g. cl assnane. of . Transacti onFactory

jta. User Transaction

A JNDI name used by
JTATr ansacti onFactory to obtain the JTA
User Tr ansact i on from the application server.

e.g.j ndi/ conposi t e/ nanme

hi ber nat e. t ransacti on. manager _| ookup_cl adse

classname of a
Transact i onManager Lookup. It is required
when JVM-level caching is enabled or when
using hilo generator in a JTA environment.

e.g.
cl assnane. of . Transact i onManager Lookup

hi bernat e. transacti on. fl ush_bef or e_conpllttar@bled, the session will be automatically

flushed during the before completion phase
of the transaction. Built-in and automatic
session context management is preferred, see
Section 2.3, “Contextual sessions”.

e.g.true|fal se

hi bernat e. transacti on. aut o_cl ose_sessi of enabled, the session will be automatically

closed during the after completion phase
of the transaction. Built-in and automatic
session context management is preferred, see
Section 2.3, “Contextual sessions”.

e.g.true|fal se

Table 3.7. Miscellaneous Properties

Property name

Purpose

hi ber nat e. current _sessi on_cont ext _cl ass

hi ber nat e. query. factory_cl ass

Supply a custom strategy for the scoping
of the "current" Session. See Section 2.3,
“Contextual sessions” for more information
about the built-in strategies.

e.g.jta|thread | managed | cust om C ass

Chooses the HQL parser implementation.

40

Optional configuration properties

Property name Purpose
e.g.
org. hi bernate. hqgl . ast. ASTQuer yTr ansl at or Fact ory
or
org. hi bernate. hqgl . cl assi c. d assi cQueryTr ansl at or Fact or\

hi ber nat e. query. substitutions Is used to map from tokens in Hibernate
queries to SQL tokens (tokens might be
function or literal names, for example).

e.g. hqgl Li t eral =SQL_LI TERAL,
hgl Funct i on=SQLFUNC

hi ber nat e. hbn2ddI . aut o Automatically validates or exports schema
DDL to the database when the
Sessi onFactory is created. With create-
dr op, the database schema will be dropped
when the Sessi onFact ory is closed explicitly.

e.g. validate | update | create | create-
dr op

hi ber nat e. hbn2dd! . i nport _files Comma-separated names of the optional files
containing SQL DML statements executed
during the SessionFactory creation. This
is useful for testing or demoing: by adding
INSERT statements for example you can
populate your database with a minimal set of
data when it is deployed.

File order matters, the statements of a give
file are executed before the statements of
the following files. These statements are
only executed if the schema is created ie if
hi ber nat e. hbnR2ddl . aut o is set to creat e or
create-drop.

e.g./ humans. sql , / dogs. sql

hi ber nat e. byt ecode. use_refl ecti on_opti nizeables the use of bytecode manipulation
instead of runtime reflection. This is
a System-level property and cannot be
set in hibernate.cfg.xnl . Reflection can
sometimes be useful when troubleshooting.
Hibernate always requires either CGLIB or
javassist even if you turn off the optimizer.

eg.true|false

41

Chapter 3. Configuration

Property name Purpose

hi ber nat e. byt ecode. pr ovi der Both javassist or cglib can be used as
byte manipulation engines; the default is
j avassi st.

e.g.javassist |cglib

3.4.1. SQL Dialects

Always set the hi ber nat e. di al ect property to the correct or g. hi ber nat e. di al ect . Di al ect
subclass for your database. If you specify a dialect, Hibernate will use sensible defaults for some
of the other properties listed above. This means that you will not have to specify them manually.

Table 3.8. Hibernate SQL Dialects (hi ber nat e. di al ect)

RDBMS Dialect

DB2 org. hi bernate. di al ect. DB2Di al ect

DB2 AS/400 org. hi bernate. di al ect. DB2400Di al ect

DB2 OS390 org. hi bernate. di al ect. DB2390Di al ect
PostgreSQL org. hi bernate. di al ect. Post greSQLDi al ect
MySQL5 org. hi bernate. di al ect. \ySQ.5Di al ect
MySQLS5 with InnoDB or g. hi bernate. di al ect. MySQL5I nnoDBDi al ect
MySQL with MyISAM or g. hi bernate. di al ect. MySQLMyI SAMDI al ect
Oracle (any version) org. hi bernate. di al ect. O acl eDi al ect

Oracle 9i org. hi bernate. di al ect. Oracl e9i Di al ect
Oracle 10g org. hi bernate. di al ect. Oracl el0gDi al ect
Oracle 11g org. hi bernate. di al ect. Oracl e10gDi al ect
Sybase org. hi bernate. di al ect. SybaseASE15Di al ect
Sybase Anywhere or g. hi bernat e. di al ect. SybaseAnywher eDi al ect
Microsoft SQL Server 2000 org. hi bernate. di al ect. SQLSer ver Di al ect
Microsoft SQL Server 2005 or g. hi bernate. di al ect. SQLSer ver 2005Di al ect
Microsoft SQL Server 2008 or g. hi bernate. di al ect. SQLSer ver 2008Di al ect
SAP DB or g. hi bernate. di al ect. SAPDBDI al ect

Informix org. hi bernate. di al ect.|nforni xDi al ect
HypersonicSQL org. hi bernate. di al ect. HSQLDi al ect

H2 Database org. hi bernate. di al ect. H2Di al ect

Ingres org. hi bernate. di al ect. | ngresDi al ect
Progress org. hi bernate. di al ect. ProgressbDi al ect
Mckoi SQL or g. hi bernat e. di al ect. Mckoi Di al ect

42

Outer Join Fetching

RDBMS Dialect

Interbase org. hi bernate. di al ect. | nterbaseDi al ect
Pointbase or g. hi ber nat e. di al ect. Poi nt baseDi al ect
FrontBase or g. hi bernnate. di al ect. Front baseDi al ect
Firebird org. hi bernate. di al ect. FirebirdDi al ect

3.4.2. Outer Join Fetching

If your database supports ANSI, Oracle or Sybase style outer joins, outer join fetching will often
increase performance by limiting the number of round trips to and from the database. This is,
however, at the cost of possibly more work performed by the database itself. Outer join fetching
allows a whole graph of objects connected by many-to-one, one-to-many, many-to-many and one-
to-one associations to be retrieved in a single SQL SELECT.

Outer join fetching can be disabled globally by setting the property hi ber nat e. max_f et ch_dept h
to 0. A setting of 1 or higher enables outer join fetching for one-to-one and many-to-one
associations that have been mapped with f et ch="j oi n".

See Section 21.1, “Fetching strategies” for more information.
3.4.3. Binary Streams

Oracle limits the size of byte arrays that can be passed to and/or from its JDBC driver.
If you wish to use large instances of binary or serializable type, you should enable
hi ber nat e. j dbc. use_streans_f or _bi nary. This is a system-level setting only.

3.4.4. Second-level and query cache

The properties prefixed by hi ber nat e. cache allow you to use a process or cluster scoped second-
level cache system with Hibernate. See the Section 21.2, “The Second Level Cache” for more
information.

3.4.5. Query Language Substitution

You can define new Hibernate query tokens using hi ber nate. query. substitutions. For
example:

hi ber nat e. query. substitutions true=1, false=0

This would cause the tokens t rue and f al se to be translated to integer literals in the generated
SQL.

hi ber nat e. query. substitutions toLowercase=LONER

43

Chapter 3. Configuration

This would allow you to rename the SQL LOAER function.

3.4.6. Hibernate statistics

If you enable hi ber nat e. generate_stati stics, Hibernate exposes a number of metrics that
are useful when tuning a running system via Sessi onFact ory. get St ati sti cs() . Hibernate can
even be configured to expose these statistics via JMX. Read the Javadoc of the interfaces in
or g. hi ber nat e. st at s for more information.

3.5. Logging

Hibernate utilizes Simple Logging Facade for Java [http://www.slIf4].org/] (SLF4J) in order to log
various system events. SLF4J can direct your logging output to several logging frameworks (NOP,
Simple, log4j version 1.2, JDK 1.4 logging, JCL or logback) depending on your chosen binding. In
order to setup logging you will need sl f 4j - api . j ar in your classpath together with the jar file for
your preferred binding - s| f 4j -1 og4j 12. j ar in the case of Log4J. See the SLF4J documentation
[http://www.slf4j.org/manual.html] for more detail. To use Log4j you will also need to place a
| og4j . properti es file in your classpath. An example properties file is distributed with Hibernate
in the src/ directory.

It is recommended that you familiarize yourself with Hibernate's log messages. A lot of work has
been put into making the Hibernate log as detailed as possible, without making it unreadable. It
is an essential troubleshooting device. The most interesting log categories are the following:

Table 3.9. Hibernate Log Categories

Category Function
or g. hi ber nat e. SQL Log all SQL DML statements as they are executed
org. hi bernate. type Log all JDBC parameters

or g. hi ber nat e. t ool . hbnildaly all SQL DDL statements as they are executed

org. hibernate.pretty |Log the state of all entities (max 20 entities) associated with the
session at flush time

or g. hi bernat e. cache Log all second-level cache activity

or g. hi ber nat e. t r ansact|iloyg transaction related activity

or g. hi bernate. j dbc Log all IDBC resource acquisition
or g. hi bernat e. hgl . ast .|A®g HQL and SQL ASTs during query parsing

org. hi bernate. secure | Log all JAAS authorization requests

org. hi bernate Log everything. This is a lot of information but it is useful for
troubleshooting

When developing applications with Hibernate, you should almost always work with debug enabled
for the category org. hi bernate. SQL, or, alternatively, the property hi ber nate. show_sq|l
enabled.

44

http://www.slf4j.org/
http://www.slf4j.org/
http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html

Implementing a NamingStrategy

3.6. Implementing a naningstrat egy

The interface or g. hi ber nat e. cf g. Nami ngSt r at egy allows you to specify a "naming standard"
for database objects and schema elements.

You can provide rules for automatically generating database identifiers from Java identifiers or
for processing "logical" column and table names given in the mapping file into "physical” table
and column names. This feature helps reduce the verbosity of the mapping document, eliminating
repetitive noise (TBL_ prefixes, for example). The default strategy used by Hibernate is quite
minimal.

You can specify a different strategy by calling Confi gur ati on. set Nami ngStrat egy() before
adding mappings:

Sessi onFactory sf = new Configuration()
. set Nam ngStrat egy (| mprovedNam ngStr at egy. | NSTANCE)
.addFil e("Item hbm xnml ")
.addFi |l e("Bi d. hbm xm ")
. bui | dSessi onFactory();

org. hi bernate. cfg. I nprovedNanmi ngStrat egy is a built-in strategy that might be a useful
starting point for some applications.

3.7. Implementing a PersisterClassProvider

You can configure the persister implementation used to persist your entities and collections:

« by default, Hibernate uses persisters that make sense in a relational model and follow Java
Persistence's specification

« you can define a Per si st er O assProvi der implementation that provides the persister class
used of a given entity or collection

« finally, you can override them on a per entity and collection basis in the mapping using
@er si st er or its XML equivalent

The latter in the list the higher in priority.

You can pass the Per si st er O assPr ovi der instance to the Confi gur ati on object.

Sessi onFactory sf = new Configuration()
. set Persi st er Cl assProvi der (cust onPer si st er Cl assProvi der)
. addAnnot at edd ass(Or der. cl ass)
. bui | dSessi onFactory();

45

Chapter 3. Configuration

The persister class provider methods, when returning a non null persister class, override the
default Hibernate persisters. The entity name or the collection role are passed to the methods.
It is a nice way to centralize the overriding logic of the persisters instead of spreading them on
each entity or collection mapping.

3.8. XML configuration file

An alternative approach to configuration is to specify a full configuration in a file named
hi ber nat e. cf g. xnl . This file can be used as a replacement for the hi ber nat e. properti es file
or, if both are present, to override properties.

The XML configuration file is by default expected to be in the root of your CLASSPATH. Here is
an example:

<?xm version='"1.0" encoding='utf-8" ?>
<! DOCTYPE hi ber nat e-confi gurati on PUBLI C
"-// Hi bernat e/ H bernate Configuration DID//EN'
"http://ww. hi bernat e. or g/ dt d/ hi bernat e-confi gurati on-3.0.dtd">

<hi ber nat e- confi gurati on>

<I-- a SessionFactory instance |listed as /jndi/nanme -->
<session-factory
nane="j ava: hi ber nat e/ Sessi onFactory">

<l-- properties -->
<property nane="connecti on. dat asource">j ava: / conp/ env/j dbc/ MyDB</ pr operty>
<property nanme="di al ect">org. hi bernate. di al ect. \ySQLD al ect </ property>
<property name="show_sql ">f al se</ property>
<property name="transaction.factory_class">
or g. hi bernate. transacti on. JTATransacti onFactory
</ property>
<property nanme="jta.UserTransaction">j ava: conp/ User Transacti on</ property>

<I-- mapping files -->
<mappi ng resource="or g/ hi bernate/auction/Item hbm xm "/>
<mappi ng resource="or g/ hi bernat e/ aucti on/ Bi d. hbm xm "/ >

<I-- cache settings -->

<cl ass-cache class="org. hi bernate. auction.|ten usage="read-wite"/>

<cl ass-cache cl ass="org. hi bernate. aucti on. Bi d* usage="read-only"/>

<col | ection-cache coll ection="org. hi bernate. auction.|tem bids" usage="read-wite"/>

</ sessi on-factory>

</ hi ber nat e- confi gurati on>

The advantage of this approach is the externalization of the mapping file names to configuration.
The hi ber nat e. cf g. xnl is also more convenient once you have to tune the Hibernate cache. It
is your choice to use either hi ber nat e. properti es or hi ber nat e. cf g. xm . Both are equivalent,
except for the above mentioned benefits of using the XML syntax.

46

Java EE Application Server integration

With the XML configuration, starting Hibernate is then as simple as:

Sessi onFactory sf = new Configuration().configure().buil dSessionFactory();

You can select a different XML configuration file using:

Sessi onFactory sf = new Configuration()

.configure("catdb.cfg.xnm™")
. bui | dSessi onFactory();

3.9. Java EE Application Server integration

Hibernate has the following integration points for J2EE infrastructure:

Container-managed datasources: Hibernate can use JDBC connections managed by the
container and provided through JNDI. Usually, a JTA compatible Tr ansacti onManager and
a ResourceManager take care of transaction management (CMT), especially distributed
transaction handling across several datasources. You can also demarcate transaction
boundaries programmatically (BMT), or you might want to use the optional Hibernate
Transact i on API for this to keep your code portable.

Automatic JNDI binding: Hibernate can bind its Sessi onFact ory to JNDI after startup.

JTA Session binding: the Hibernate Sessi on can be automatically bound to the scope of JTA
transactions. Simply lookup the Sessi onFact ory from JNDI and get the current Sessi on. Let
Hibernate manage flushing and closing the Sessi on when your JTA transaction completes.
Transaction demarcation is either declarative (CMT) or programmatic (BMT/UserTransaction).

JMX deployment: if you have a JMX capable application server (e.g. JBoss AS), you can choose
to deploy Hibernate as a managed MBean. This saves you the one line startup code to build your
Sessi onFact ory from a Confi gur ati on. The container will startup your H ber nat eSer vi ce
and also take care of service dependencies (datasource has to be available before Hibernate
starts, etc).

Depending on your environment, you might have to set the configuration option
hi ber nat e. connecti on. aggressi ve_rel ease to true if your application server shows
"connection containment" exceptions.

3.9.1. Transaction strategy configuration

The Hibernate Sessi on API is independent of any transaction demarcation system in your

architecture. If you let Hibernate use JDBC directly through a connection pool, you can begin
and end your transactions by calling the JDBC API. If you run in a J2EE application server, you

47

Chapter 3. Configuration

might want to use bean-managed transactions and call the JTA APl and User Tr ansact i on when
needed.

To keep your code portable between these two (and other) environments we recommend the
optional Hibernate Tr ansact i on API, which wraps and hides the underlying system. You have to
specify a factory class for Tr ansact i on instances by setting the Hibernate configuration property
hi bernate.transaction.factory_cl ass.

There are three standard, or built-in, choices:

org. hi bernate.transacti on. JDBCTr ansacti onFactory
delegates to database (JDBC) transactions (default)

org. hi bernate. transacti on. JTATransacti onFact ory
delegates to container-managed transactions if an existing transaction is underway in this
context (for example, EJB session bean method). Otherwise, a new transaction is started and
bean-managed transactions are used.

org. hi bernate.transacti on. CMI Tr ansact i onFact ory
delegates to container-managed JTA transactions

You can also define your own transaction strategies (for a CORBA transaction service, for
example).

Some features in Hibernate (i.e., the second level cache, Contextual Sessions with JTA, etc.)
require access to the JTA Transacti onManager in a managed environment. In an application
server, since J2EE does not standardize a single mechanism, you have to specify how Hibernate
should obtain a reference to the Tr ansact i onManager :

Table 3.10. JTA TransactionManagers

Transaction Factory Application Server
org. hi bernate. transacti on. JBossTransact i onManager Lookup JBoss AS
org. hi bernate. transacti on. Wbl ogi cTr ansact i onManager Lookup Weblogic

or g. hi bernat e. t ransacti on. WebSpher eTr ansact i onManager Lookup ~ WebSphere

or g. hi bernat e. t ransacti on. WebSpher eExt endedJTATr ansact i onLook¥MgebSphere 6

org. hi bernate.transacti on. Ori onTransacti onManager Lookup Orion
org. hi bernate.transacti on. Resi nTransact i onManager Lookup Resin
org. hi bernate. transacti on. JOTMIr ansact i onManager Lookup JOTM
org. hi bernate.transacti on. JOnASTr ansact i onManager Lookup JONnAS
org. hi bernate. transacti on. JRun4Tr ansact i onManager Lookup JRun4
org. hi bernate. transacti on. BESTr ansact i onManager Lookup Borland ES

org. hi bernate. transacti on. JBossTSSt andal oneTr ansact i onManagerlBossuig S used
standalone (ie. outside

48

JNDI-bound SessionFactory

Transaction Factory Application Server
JBoss AS and a JNDI
environment generally).
Known to work for
org.j boss.jbossts:jbossjta: 4.11. 0. Fi nal

3.9.2. INDI-bound sessi onFact ory

A JNDI-bound Hibernate Sessi onFact ory can simplify the lookup function of the factory and
create new Sessi ons. This is not, however, related to a JNDI bound Dat asour ce; both simply
use the same registry.

If you wish to have the Sessi onFactory bound to a JNDI namespace, specify a nhame (e.g.
j ava: hi ber nat e/ Sessi onFact ory) using the property hi ber nat e. sessi on_factory_nane. If
this property is omitted, the Sessi onFact or y will not be bound to JNDI. This is especially useful
in environments with a read-only JNDI default implementation (in Tomcat, for example).

When binding the SessionFactory to JNDI, Hibernate will use the values of
hi bernate.jndi.url, hibernate.jndi.class to instantiate an initial context. If they are not
specified, the default I ni ti al Cont ext will be used.

Hibernate will automatically place the SessionFactory in JNDI after you call
cf g. bui | dSessi onFact or y() . This means you will have this call in some startup code, or utility
class in your application, unless you use JMX deployment with the Hi ber nat eServi ce (this is
discussed later in greater detail).

If you use a JNDI SessionFactory, an EJB or any other class, you can obtain the
Sessi onFact ory using a JNDI lookup.

It is recommended that you bind the Sessi onFact ory to JNDI in a managed environment and
use a st ati ¢ singleton otherwise. To shield your application code from these details, we also
recommend to hide the actual lookup code for a Sessi onFactory in a helper class, such as
Hi bernatelti | . get Sessi onFact ory(). Note that such a class is also a convenient way to
startup Hibernate—see chapter 1.

3.9.3. Current Session context management with JTA

The easiest way to handle Sessi ons and transactions is Hibernate's automatic "current” Sessi on
management. For a discussion of contextual sessions see Section 2.3, “Contextual sessions”.
Using the "j ta" session context, if there is no Hibernate Sessi on associated with the current
JTA transaction, one will be started and associated with that JTA transaction the first time you call
sessi onFact ory. get Current Sessi on() . The Sessi ons retrieved via get Cur r ent Sessi on() in
the "jta" context are set to automatically flush before the transaction completes, close after
the transaction completes, and aggressively release JDBC connections after each statement.
This allows the Sessi ons to be managed by the life cycle of the JTA transaction to which it
is associated, keeping user code clean of such management concerns. Your code can either

49

Chapter 3. Configuration

use JTA programmatically through User Tr ansact i on, or (recommended for portable code) use
the Hibernate Transacti on API to set transaction boundaries. If you run in an EJB container,
declarative transaction demarcation with CMT is preferred.

3.9.4. JIMX deployment

The line cfg. buil dSessionFactory() still has to be executed somewhere to get a
Sessi onFact ory into JNDI. You can do this either in a st ati ¢ initializer block, like the one in
Hi bernat elUti |, or you can deploy Hibernate as a managed service.

Hibernate is distributed with org. hi ber nat e. j nx. Hi ber nat eSer vi ce for deployment on an
application server with JMX capabilities, such as JBoss AS. The actual deployment and
configuration is vendor-specific. Here is an example j boss- servi ce. xml for JBoss 4.0.x:

<?xm version="1.0"?>
<server>

<nmbean code="org. hi bernate. j nx. H ber nat eServi ce"
nane="j boss. j ca: servi ce=Hi ber nat eFact ory, nane=Hi ber nat eFact ory" >

<!-- Required services -->
<depends>j boss. j ca: ser vi ce=RARDepl oyer </ depends>
<depends>j boss. j ca: servi ce=Local TxCM nanme=Hsql DS</ depends>

<!-- Bind the H bernate service to JNDI -->
<attribute name="Jndi Name" >j ava: / hi ber nat e/ Sessi onFactory</attribute>

<!-- Datasource settings -->
<attribute nanme="Dat asource">j ava: Hsql DS</ attri but e>
<attribute nanme="Di al ect">org. hi bernate. di al ect. HSQLDi al ect </ attri but e>

<!-- Transaction integration -->
<attribute name="Transacti onStrategy">

org. hi bernate. transacti on. JTATr ansacti onFactory</attri bute>
<attribute nanme="Transacti onManager LookupStrat egy" >

or g. hi bernat e. transacti on. JBossTr ansact i onManager Lookup</ attri but e>
<attribute nanme="Fl ushBef or eConpl eti onEnabl ed">true</attri bute>
<attribute name="Aut oC oseSessi onEnabl ed">true</attribute>

<!-- Fetching options -->
<attribute name="Maxi munfFet chDept h">5</attri bute>

<I-- Second-|evel caching -->

<attribute name="SecondLevel CacheEnabl ed">true</attri bute>

<attribute nanme="CacheProvi der C ass" >or g. hi ber nat e. cache. EhCacheProvi der </ attri but e>
<attribute name="QueryCacheEnabl ed">true</attri bute>

<!-- Logging -->
<attribute name="ShowSqgl Enabl ed">true</attri bute>

<l-- Mapping files -->
<attribute nanme="MapResour ces">auction/|tem hbm xm , aucti on/ Cat egory. hbm xm </ attri but e>

</ mbean>

50

JMX deployment

</ server>

This file is deployed in a directory called META- | NF and packaged in a JAR file with the extension
. sar (service archive). You also need to package Hibernate, its required third-party libraries, your
compiled persistent classes, as well as your mapping files in the same archive. Your enterprise
beans (usually session beans) can be kept in their own JAR file, but you can include this EJB
JAR file in the main service archive to get a single (hot-)deployable unit. Consult the JBoss AS
documentation for more information about JMX service and EJB deployment.

51

52

Chapter 4.

Persistent Classes

Persistent classes are classes in an application that implement the entities of the business problem
(e.g. Customer and Order in an E-commerce application). The term "persistent" here means that
the classes are able to be persisted, not that they are in the persistent state (see Section 11.1,
“Hibernate object states” for discussion).

Hibernate works best if these classes follow some simple rules, also known as the Plain Old
Java Object (POJO) programming model. However, none of these rules are hard requirements.
Indeed, Hibernate assumes very little about the nature of your persistent objects. You can express
a domain model in other ways (using trees of j ava. uti | . Map instances, for example).

4.1. A simple POJO example

Example 4.1. Simple POJO representing a cat

package eg;
inport java.util. Set;
inmport java.util.Date;

public class Cat {
private Long id; // identifier

private Date birthdate;
private Col or color;
private char sex;
private float weight;
private int litterld,;

private Cat nother;
private Set kittens = new HashSet();

private void setld(Long id) {
this.id=id;

}

public Long getld() {
return id,;

}

void setBirthdate(Date date) {
birthdate = date;

}

public Date getBirthdate() {
return birthdate;

}

voi d set Wi ght (fl oat wei ght) {
this.weight = weight;

}

public float getWight() {
return weight;

}

53

Chapter 4. Persistent Classes

public Col or getColor() {
return color;

}
voi d set Col or (Col or color) {
this.color = color;

voi d set Sex(char sex) {
t hi s. sex=sex;

}

public char getSex() {
return sex;

void setLitterld(int id) {
this.litterld = id;

}

public int getLitterld() {
return litterld;

voi d set Mbt her (Cat nother) {
this. mother = nother;

}
public Cat getMther() {

return nother;

}
void setKittens(Set kittens) {
this.kittens = kittens;

}
public Set getKittens() {

return kittens;

/] addKitten not needed by Hi bernate

public void addKitten(Cat kitten) {
kitten. set Mot her(this);

kitten.setLitterld(kittens.size());
kittens. add(kitten);

The four main rules of persistent classes are explored in more detail in the following sections.

4.1.1. Implement a no-argument constructor

Cat has a no-argument constructor. All persistent classes must have a default
constructor (which can be non-public) so that Hibernate can instantiate them using
java.l ang. reflect. Constructor.new nstance(). It is recommended that this constructor be
defined with at least package visibility in order for runtime proxy generation to work properly.

54

Provide an identifier property

4.1.2. Provide an identifier property

(3

Cat has a property named i d. This property maps to the primary key column(s) of the underlying
database table. The type of the identifier property can be any "basic" type (see ??77?). See
Section 9.4, “Components as composite identifiers” for information on mapping composite (multi-
column) identifiers.

(3

We recommend that you declare consistently-named identifier properties on persistent classes
and that you use a nullable (i.e., non-primitive) type.

4.1.3. Prefer non-final classes (semi-optional)

A central feature of Hibernate, proxies (lazy loading), depends upon the persistent class being
either non-final, or the implementation of an interface that declares all public methods. You can
persist fi nal classes that do not implement an interface with Hibernate; you will not, however,
be able to use proxies for lazy association fetching which will ultimately limit your options for
performance tuning. To persistafi nal class which does not implement a "full" interface you must
disable proxy generation. See Example 4.2, “Disabling proxies in hbm.xml|” and Example 4.3,
“Disabling proxies in annotations”.

Example 4.2. Disabling proxies in hbm xm

<class nane="Cat" |azy="false"...> ..</class>

Example 4.3. Disabling proxies in annotations

@ntity @roxy(lazy=false) public class Cat { ... }

55

Chapter 4. Persistent Classes

If the fi nal class does implement a proper interface, you could alternatively tell Hibernate to use
the interface instead when generating the proxies. See Example 4.4, “Proxying an interface in
hbm.xml” and Example 4.5, “Proxying an interface in annotations”.

Example 4.4. Proxying an interface in hbm xni

<cl ass nane="Cat" proxy="ICat"...>...</class>

Example 4.5. Proxying an interface in annotations

@ntity @°roxy(proxyC ass=lCat.class) public class Cat inplenents ICat { ... }

You should also avoid declaring public final methods as this will again limit the ability to
generate proxies from this class. If you want to use a class with public final methods, you
must explicitly disable proxying. Again, see Example 4.2, “Disabling proxies in hbm.xml” and
Example 4.3, “Disabling proxies in annotations”.

4.1.4. Declare accessors and mutators for persistent fields
(optional)

Cat declares accessor methods for all its persistent fields. Many other ORM tools directly persist
instance variables. It is better to provide an indirection between the relational schema and
internal data structures of the class. By default, Hibernate persists JavaBeans style properties
and recognizes method names of the form get Foo, i sFoo and set Foo. If required, you can switch
to direct field access for particular properties.

Properties need not be declared public. Hibernate can persist a property declared with package,
prot ect ed or pri vat e visibility as well.

4.2. Implementing inheritance

A subclass must also observe the first and second rules. It inherits its identifier property from the
superclass, Cat . For example:

package eg;

public class DomesticCat extends Cat {
private String nane;

public String getName() {
return nane;

}

protected void setNane(String nane) {
t hi s. nane=nane;

}

56

Implementing equals() and hashCode()

4.3. Implementing equais() and nashcode()

You have to override the equal s() and hashCode() methods if you:

« intend to put instances of persistent classes in a Set (the recommended way to represent many-
valued associations); and
* intend to use reattachment of detached instances

Hibernate guarantees equivalence of persistent identity (database row) and Java identity only
inside a particular session scope. When you mix instances retrieved in different sessions, you
must implement equal s() and hashCode() if you wish to have meaningful semantics for Set s.

The most obvious way is to implement equal s() /hashCode() by comparing the identifier value
of both objects. If the value is the same, both must be the same database row, because they are
equal. If both are added to a Set , you will only have one element in the Set). Unfortunately, you
cannot use that approach with generated identifiers. Hibernate will only assign identifier values to
objects that are persistent; a newly created instance will not have any identifier value. Furthermore,
if an instance is unsaved and currently in a Set , saving it will assign an identifier value to the object.
If equal s() and hashCode() are based on the identifier value, the hash code would change,
breaking the contract of the Set . See the Hibernate website for a full discussion of this problem.
This is not a Hibernate issue, but normal Java semantics of object identity and equality.

It is recommended that you implement equal s() and hashCode() using Business key equality.
Business key equality means that the equal s() method compares only the properties that form
the business key. It is a key that would identify our instance in the real world (a natural candidate
key):

public class Cat {

publ i c bool ean equal s(Obj ect other) {
if (this == other) return true,
if (!(other instanceof Cat)) return fal se;

final Cat cat = (Cat) other;

if (lcat.getLitterld().equals(getLitterld())) return false;
if (!cat.getMther().equals(getMther())) return false;

return true;

}

public int hashCode() {
int result;
result = get Mother().hashCode();
result = 29 * result + getLitterld();
return result;

57

Chapter 4. Persistent Classes

A business key does not have to be as solid as a database primary key candidate (see
Section 13.1.3, “Considering object identity”). Immutable or unique properties are usually good
candidates for a business key.

4.4. Dynamic models

Note

The following features are currently considered experimental and may change in
the near future.

Persistent entities do not necessarily have to be represented as POJO classes or as JavaBean
objects at runtime. Hibernate also supports dynamic models (using Maps of Maps at runtime) and
the representation of entities as DOM4J trees. With this approach, you do not write persistent
classes, only mapping files.

By default, Hibernate works in normal POJO mode. You can set a default entity representation
mode for a particular Sessi onFact ory using the def aul t _ent i t y_node configuration option (see
Table 3.3, “Hibernate Configuration Properties”).

The following examples demonstrate the representation using Maps. First, in the mapping file an
enti ty-nane has to be declared instead of, or in addition to, a class name:

<hi ber nat e- mappi ng>
<cl ass entity-nane="Custoner">

<id name="id"

type="1ong"

col um="1D">

<gener at or cl ass="sequence"/>
</id>

<property nanme="name"
col um=" NAME"
type="string"/>

<property nanme="address"
col um=" ADDRESS"
type="string"/>

<many-to-one nane="organi zati on"
col utm="ORGANI ZATI ON_I| D"
cl ass="Organi zation"/ >

58

Dynamic models

<bag name="orders"
inverse="true"
lazy="fal se"
cascade="al | ">
<key col um="CUSTOMVER | D'/ >
<one-to-nmany cl ass="Order"/>
</ bag>

</cl ass>

</ hi ber nat e- mappi ng>

Even though associations are declared using target class names, the target type of associations
can also be a dynamic entity instead of a POJO.

After setting the default entity mode to dynani c- map for the Sessi onFact or y, you can, at runtime,
work with Maps of Maps:

Session s = openSession();
Transaction tx = s.beginTransaction();

/] Create a custoner
Map david = new HashMap();
davi d. put ("nane", "David");

/] Create an organi zation
Map foobar = new HashMap();
f oobar. put ("name", "Foobar Inc.");

/1 Link both
davi d. put ("organi zation", foobar);

/| Save both
s. save("Custoner", david);
s.save("Organi zation", foobar);

tx.commit();
s.close();

One of the main advantages of dynamic mapping is quick turnaround time for prototyping, without
the need for entity class implementation. However, you lose compile-time type checking and
will likely deal with many exceptions at runtime. As a result of the Hibernate mapping, the
database schema can easily be normalized and sound, allowing to add a proper domain model
implementation on top later on.

Entity representation modes can also be set on a per Sessi on basis:

Sessi on dynani cSessi on = poj oSessi on. get Sessi on(Entit yMode. MAP) ;

/] Create a custoner
Map davi d = new HashMap();
davi d. put ("nane", "David");

59

Chapter 4. Persistent Classes

dynami cSessi on. save(" Custoner", david)

dynami cSessi on. fl ush()
dynani cSessi on. cl ose()

/] Continue on pojoSession

Please note that the call to get Sessi on() using an EntityMde is on the Sessi on API, not
the Sessi onFact ory. That way, the new Sessi on shares the underlying JDBC connection,
transaction, and other context information. This means you do not have to call flush() and
cl ose() on the secondary Sessi on, and also leave the transaction and connection handling to
the primary unit of work.

More information about the XML representation capabilities can be found in Chapter 20, XML
Mapping.

4.5. Tuplizers

org. hibernate.tuple. Tuplizer and its sub-interfaces are responsible for managing
a particular representation of a piece of data given that representation's
or g. hi bernat e. Enti t yMbde. If a given piece of data is thought of as a data structure, then a
tuplizer is the thing that knows how to create such a data structure, how to extract values from such
a data structure and how to inject values into such a data structure. For example, for the POJO
entity mode, the corresponding tuplizer knows how create the POJO through its constructor. It
also knows how to access the POJO properties using the defined property accessors.

There are two (high-level) types of Tuplizers:

e org. hibernate.tuple.entity.EntityTuplizer whichisresponsible for managing the above
mentioned contracts in regards to entities

e org. hi bernate. tupl e. conponent . Conponent Tupl i zer which does the same for
components

Users can also plug in their own tuplizers. Perhaps you require that java.util.Mp
implementation other than j ava. uti | . HashMap be used while in the dynamic-map entity-mode.
Or perhaps you need to define a different proxy generation strategy than the one used by default.
Both would be achieved by defining a custom tuplizer implementation. Tuplizer definitions are
attached to the entity or component mapping they are meant to manage. Going back to the
example of our Cust omer entity, Example 4.6, “Specify custom tuplizers in annotations” shows
how to specify a custom org. hi bernate.tuple.entity.EntityTuplizer using annotations
while Example 4.7, “Specify custom tuplizers in hbm.xml” shows how to do the same in hbm xni

Example 4.6. Specify custom tuplizers in annotations

@ntity

60

EntityNameResolvers

@uplizer(inpl = DynanicEntityTuplizer.class)
public interface Cuisine {

@d

@xner at edVal ue

public Long getld();

public void setld(Long id)

public String getNane();
public void setNane(String name);

@uplizer (i npl = Dynami cConponent Tupli zer. cl ass)
public Country getCountry();
public void setCountry(Country country)

Example 4.7. Specify custom tuplizers in hbm xm

<hi ber nat e- mappi ng>
<cl ass entity-nane="Custoner">
<lf-=
Override the dynam c-nmap entity-node

tuplizer for the customer entity
-->

<tuplizer entity-node="dynam c- map"
cl ass="Cust onVapTupl i zerl npl "/ >

<id name="id" type="long" colum="ID">
<gener at or cl ass="sequence"/>
</id>

<l-- other properties -->
</ cl ass>
</ hi ber nat e- mappi ng>

4.6. EntityNameResolvers

or g. hi bernate. Entit yNameResol ver is a contract for resolving the entity name of a given
entity instance. The interface defines a single method resol veEntityName which is passed
the entity instance and is expected to return the appropriate entity name (null is allowed and
would indicate that the resolver does not know how to resolve the entity name of the given
entity instance). Generally speaking, an or g. hi ber nat e. Ent i t yNameResol ver is going to be
most useful in the case of dynamic models. One example might be using proxied interfaces as
your domain model. The hibernate test suite has an example of this exact style of usage under
the org.hibernate.test.dynamicentity.tuplizer2. Here is some of the code from that package for
illustration.

/**
* A very trivial JDK Proxy |InvocationHandl er inplenentation where we proxy an
* interface as the domain nodel and sinply store persistent state in an interna

61

Chapter 4. Persistent Classes

* Map. This is an extrenely trivial exanple neant only for illustration.
*/
public final class DataProxyHandl er inplenents |nvocationHandl er {

private String entityName;

private HashMap data = new HashMap();

publ i c Dat aProxyHandl er (String entityName, Serializable id) {
this.entityName = entityName;
data.put("Id", id);

public Object invoke(Object proxy, Method nethod, Object[] args) throws Throwable {

String net hodNanme = net hod. get Nane();

if (nethodNane.startsWth("set")) {
String propertyNane = met hodNane. substring(3);
dat a. put (propertyNane, args[0]);

}

else if (methodNane.startsWth("get")) {
String propertyNane = net hodNane. substring(3);
return data.get(propertyName);

}

else if ("toString".equals(nmethodNanme)) {
return entityName + "#" + data.get("1d");

}

else if ("hashCode".equal s(nethodNanme)) {
return new I nteger(this.hashCode());

}

return null;

public String getEntityNanme() {
return entityName;

public HashMap getData() {
return data;

public class ProxyHel per {
public static String extractEntityNane(Cbject object) {
/1 Qur customjava.lang.reflect.Proxy instances actually bundle
// their appropriate entity nane, so we sinply extract it fromthere
/] if this represents one of our proxies; otherwi se, we return null
if (Proxy.isProxyd ass(object.getClass())) {
I nvocati onHandl er handl er = Proxy.getlnvocati onHandl er (object);
if (DataProxyHandl er.cl ass. i sAssignabl eFron{ handl er.getC ass())) {
Dat aPr oxyHandl er nyHandl er = (DataProxyHandl er) handl er;
return nmyHandl er. get EntityNane();

}

return null;

/1l various other utility methods

| **

62

EntityNameResolvers

* The EntityNameResol ver inpl enmentation.

* | MPL NOTE : An EntityNanmeResol ver really defines a strategy for how entity nanes
* shoul d be resolved. Since this particular inpl can handle resolution for all of our
* entities we want to take advantage of the fact that SessionFactorylnpl keeps these
* in a Set so that we only ever have one instance registered. Wiy? Well, when it
* cones tinme to resolve an entity name, Hibernate nust iterate over all the registered
* resolvers. So keeping that nunber down hel ps that process be as speedy as possible.
* Hence the equal s and hashCode i nplenentations as is
*/
public class MyEntityNameResol ver inplenments EntityNanmeResol ver {

public static final M/EntityNaneResol ver | NSTANCE = new M/EntityNanmeResol ver();

public String resolveEntityNane(Object entity) {
return ProxyHel per.extractEntityNane(entity);

publi c bool ean equal s(oj ect obj) {
return getC ass().equal s(obj.getd ass());

public int hashCode() {
return getC ass().hashCode();

public class MyEntityTuplizer extends PojoEntityTuplizer {
public MyEntityTuplizer(EntityMetanpdel entityMetanodel, Persistentd ass mappedEntity) {
super (entityMetanodel, mappedEntity);

public EntityNameResol ver[] getEntityNameResol vers() {
return new EntityNameResol ver[] { M/EntityNaneResol ver. | NSTANCE };

public String determ neConcreteSubcl assEntityName(Obj ect entitylnstance, SessionFactorylnplenentor factory) {
String entityName = ProxyHel per.extractEntityName(entitylnstance);
if (entityName == null) {
entityNane = super.determ neConcreteSubcl assEntityNanme(entitylnstance, factory);

}

return entityNane;

In order to register an or g. hi ber nat e. Enti t yNameResol ver users must either:

1. Implement a custom tuplizer (see Section 4.5, *“Tuplizers”), implementing the
get Enti t yNameResol ver s method

2. Register it with the or g. hi ber nat e. i npl . Sessi onFact oryl npl (which is the implementation
class for org. hi bernate. Sessi onFactory) using the registerEntityNaneResol ver
method.

63

64

Chapter 5.

Basic O/R Mapping

5.1. Mapping declaration

Object/relational mappings can be defined in three approaches:

» using Java 5 annotations (via the Java Persistence 2 annotations)
 using JPA 2 XML deployment descriptors (described in chapter XXX)
 using the Hibernate legacy XML files approach known as hbm.xml

Annotations are split in two categories, the logical mapping annotations (describing the object
model, the association between two entities etc.) and the physical mapping annotations
(describing the physical schema, tables, columns, indexes, etc). We will mix annotations from
both categories in the following code examples.

JPA annotations are in the j avax. persi st ence. * package. Hibernate specific extensions are
in or g. hi ber nat e. annot ati ons. *. You favorite IDE can auto-complete annotations and their
attributes for you (even without a specific "JPA" plugin, since JPA annotations are plain Java 5
annotations).

Here is an example of mapping

package eg;

@ntity

@abl e(nane="cats") @nheritance(strategy=SI NGLE_TABLE)

@i scrim natorValue("C') @i scrini natorCol um(nane="subcl ass", discrin natorType=CHAR)
public class Cat {

@d @zener at edVal ue

public Integer getld() { returnid; }

public void setld(Integer id) { this.id =id; }
private Integer id;

public BigDeci mal getWight() { return weight; }
public void set Wi ght(Bi gDeci mal weight) { this.weight = weight; }
private BigDecinal weight;

@enpor al (DATE) @Not Nul I @Col utm(updat abl e=f al se)

public Date getBirthdate() { return birthdate; }

public void setBirthdate(Date birthdate) { this.birthdate = birthdate; }
private Date birthdate;

@r g. hi bernate. annot ati ons. Type(type="eg. types. Col or User Type")
@\ot Nul | @Col um(updat abl e=f al se)

public Col or Type getColor() { return color; }

public void setCol or (Col or Type color) { this.color = color; }
private Col or Type col or;

65

Chapter 5. Basic O/R Mapping

@\ot Nul | @Col um(updat abl e=f al se)

public String getSex() { return sex; }

public void setSex(String sex) { this.sex = sex; }
private String sex;

@Not Nul | @Col umm(updat abl e=f al se)

public Integer getLitterld() { return litterld; }

public void setLitterld(Integer litterld) { this.litterld =litterld; }
private Integer litterld;

@manyToOne @oi nCol um(nane="not her _i d*, updat abl e=f al se)
public Cat getMther() { return nother; }

public void setMther(Cat nmother) { this.nother = nother; }
private Cat nother;

@neToMany(mappedBy="not her") @rderBy("litterld")

public Set<Cat> getKittens() { return kittens; }

public void setKittens(Set<Cat> kittens) { this.kittens = kittens; }
private Set<Cat> kittens = new HashSet <Cat >();

@ntity @iscrimnatorValue("D")
public class DomesticCat extends Cat {

public String getName() { return name; }
public void setName(String nane) { this.nane = nane }
private String nane;

@ntity
public class Dog { ... }

The legacy hbm.xml approach uses an XML schema designed to be readable and hand-editable.
The mapping language is Java-centric, meaning that mappings are constructed around persistent
class declarations and not table declarations.

Please note that even though many Hibernate users choose to write the XML by hand, a number of
tools exist to generate the mapping document. These include XDoclet, Middlegen and AndroMDA.

Here is an example mapping:

<?xm version="1.0""?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-//H bernate/H bernate Mapping DID 3.0//EN'
"http://ww. hi bernate. org/ dtd/ hi ber nat e- mappi ng-3. 0. dt d" >

<hi ber nat e- mappi ng package="eg">

<cl ass nane="Cat"
tabl e="cat s"
di scrim nator-val ue="C"'>

<id name="id">
<generator class="native"/>
</id>

66

Mapping declaration

<di scri m nat or col um="subcl ass"
type="character"/>

<property name="wei ght"/>

<property nanme="birthdate"
type="dat e"
not-nul | ="true"
updat e="f al se"/ >

<property nanme="col or"
type="eg. types. Col or User Type"
not-nul I ="true"
updat e="fal se"/ >

<property nane="sex"
not-nul | ="true"
updat e="fal se"/ >

<property name="litterld"
colum="litterld"
updat e="fal se"/ >

<nmany-t o-one name="not her"
col um="not her _i d"
updat e="fal se"/ >

<set nane="kittens"
inverse="true"
order-by="litter_id">
<key col um="not her _i d"/>
<one-to-nany cl ass="Cat"/>
</set>

<subcl ass nanme="Donesti cCat"
di scri m nator-val ue="D"'>

<property nanme="name"
type="string"/>

</ subcl ass>
</ cl ass>

<cl ass nane="Dog" >
<!'-- napping for Dog could go here -->
</cl ass>

</ hi ber nat e- mappi ng>

We will now discuss the concepts of the mapping documents (both annotations and XML). We
will only describe, however, the document elements and attributes that are used by Hibernate at
runtime. The mapping document also contains some extra optional attributes and elements that
affect the database schemas exported by the schema export tool (for example, the not - nul |
attribute).

67

Chapter 5. Basic O/R Mapping

5.1.1. Entity

An entity is a regular Java object (aka POJO) which will be persisted by Hibernate.

To mark an object as an entity in annotations, use the @nt i t y annotation.

@Entity
public class Flight inplenents Serializable {
Long id;

@d
public Long getld() { returnid; }

public void setld(Long id) { this.id =id; }

That's pretty much it, the rest is optional. There are however any options to tweak your entity
mapping, let's explore them.

@rabl e lets you define the table the entity will be persisted into. If undefined, the table name is
the unqualified class name of the entity. You can also optionally define the catalog, the schema
as well as unique constraints on the table.

@Entity
@rabl e(nanme="TBL_FLI GHT",
schema="Al R_COMAND",
uni queConstrai nt s=
@Jni queConstrai nt (
name="f | i ght _nunber",
col umNanmes={"conp_prefix", "flight_nunber"}))
public class Flight inplenments Serializable {
@col um(nanme="conp_prefix")
public String get ConpagnyPrefix() { return conpanyPrefix; }

@Col um(nanme="f1i ght _nunber")
public String getNunber() { return nunber; }

The constraint name is optional (generated if left undefined). The column names composing the
constraint correspond to the column names as defined before the Hibernate Nani ngSt r at egy is
applied.

@ntity. name lets you define the shortcut name of the entity you can used in JP-QL and HQL
queries. It defaults to the unqualified class name of the class.

Hibernate goes beyond the JPA specification and provide additional configurations. Some of them
are hosted on @r g. hi bernat e. annot ati ons. Entity:

e dynani cl nsert /dynani cUpdat e (defaults to false): specifies that | NSERT / UPDATE SQL should
be generated at runtime and contain only the columns whose values are not null. The dynani c-

68

Entity

updat e and dynani c-i nsert settings are not inherited by subclasses. Although these settings
can increase performance in some cases, they can actually decrease performance in others.

sel ect Bef or eUpdat e (defaults to false): specifies that Hibernate should never perform an SQL
UPDATE unless it is certain that an object is actually modified. Only when a transient object
has been associated with a new session using updat e() , will Hibernate perform an extra SQL
SELECT to determine if an UPDATE is actually required. Use of sel ect - bef or e- updat e will
usually decrease performance. It is useful to prevent a database update trigger being called
unnecessarily if you reattach a graph of detached instances to a Sessi on.

pol ynor phi sns (defaults to 1 MPLI CI T): determines whether implicit or explicit query
polymorphisms is used. Implicit polymorphisms means that instances of the class will be
returned by a query that names any superclass or implemented interface or class, and that
instances of any subclass of the class will be returned by a query that names the class
itself. Explicit polymorphisms means that class instances will be returned only by queries that
explicitly name that class. Queries that name the class will return only instances of subclasses
mapped. For most purposes, the default pol ynor phi sms=I MPLI CI T is appropriate. Explicit
polymorphisms is useful when two different classes are mapped to the same table This allows
a "lightweight" class that contains a subset of the table columns.

per si st er : specifies a custom C assPer si st er. The persi st er attribute lets you customize
the persistence strategy used for the class. You can, for example, specify your own
subclass of org. hi bernate. persister.EntityPersister, or you can even provide a
completely new implementation of the interface or g. hi ber nat e. persi ster. Cl assPer si st er
that implements, for example, persistence via stored procedure calls, serialization to flat files
or LDAP. See org. hi ber nat e. t est . Cust onPer si st er for a simple example of "persistence"
to a Hasht abl e.

opti m sticLock (defaults to VERSI ON): determines the optimistic locking strategy. If you enable
dynanm cUpdat e, you will have a choice of optimistic locking strategies:

¢ versi on: check the version/timestamp columns

e al | : check all columns

 di rty: check the changed columns, allowing some concurrent updates
¢ none: do not use optimistic locking

It is strongly recommended that you use version/timestamp columns for optimistic locking with
Hibernate. This strategy optimizes performance and correctly handles modifications made to
detached instances (i.e. when Sessi on. mer ge() is used).

Tip

Be sure to import @ avax. per si st ence. Enti ty to mark a class as an entity. It's a
common mistake to import @r g. hi ber nat e. annot at i ons. Enti ty by accident.

69

Chapter 5. Basic O/R Mapping

Some entities are not mutable. They cannot be updated or deleted by the application. This allows
Hibernate to make some minor performance optimizations.. Use the @ nmut abl e annotation.

You can also alter how Hibernate deals with lazy initialization for this class. On @ oxy, use
| azy=false to disable lazy fetching (not recommended). You can also specify an interface to use
for lazy initializing proxies (defaults to the class itself): use pr oxyd ass on @r oxy. Hibernate will
initially return proxies (Javassist or CGLIB) that implement the named interface. The persistent
object will load when a method of the proxy is invoked. See "Initializing collections and proxies"
below.

@Bat chSi ze specifies a "batch size" for fetching instances of this class by identifier. Not yet loaded
instances are loaded batch-size at a time (default 1).

You can specific an arbitrary SQL WHERE condition to be used when retrieving objects of this
class. Use @er e for that.

In the same vein, @heck lets you define an SQL expression used to generate a multi-row check
constraint for automatic schema generation.

There is no difference between a view and a base table for a Hibernate mapping. This is
transparent at the database level, although some DBMS do not support views properly, especially
with updates. Sometimes you want to use a view, but you cannot create one in the database (i.e.
with a legacy schema). In this case, you can map an immutable and read-only entity to a given
SQL subselect expression using @r g. hi ber nat e. annot at i ons. Subsel ect :

@ntity
@ubsel ect ("sel ect item nane, max(bid.anount), count(*) "
+ "fromitem"
+ "join bid on bid.itemid =itemid "
+ "group by item nane")
@ynchronize({"iten¥, "bid"}) //tables inpacted
public class Sumary {
@d
public String getld() { returnid; }

Declare the tables to synchronize this entity with, ensuring that auto-flush happens correctly and
that queries against the derived entity do not return stale data. The <subsel ect > is available both
as an attribute and a nested mapping element.

We will now explore the same options using the hbm.xml structure. You can declare a persistent
class using the cl ass element. For example:

<cl ass
nane="C assNane"

t abl e="t abl eNane"

@0 e

di scri m nator-val ue="di scri m nat or _val ue"

70

Entity

/>

® o

© © 9O ©

e

nut abl e="true| fal se" 4]
schema="owner" (3
cat al og="cat al og" (6]
proxy="Proxyl nterface" ‘i
dynami c- updat e="true| fal se" (}
dynami c-insert="true| fal se" ()
sel ect - bef ore-updat e="true| fal se" i0]
pol ynor phi sm="inplicit|explicit" fD
where="arbitrary sqgl where condition" Ga
persi ster="Persisterd ass" ®
bat ch-si ze="N' m’
optim stic-1ock="none|version|dirty|all" ﬂ?
lazy="true| fal se" (16)
entity-name="EntityNane" (17)
check="arbitrary sql check condition" (18)
row d="row d" (19)
subsel ect =" SQL expressi on" (20)
abstract="true|fal se" (21)

node="el enent - nane"

nane (optional): the fully qualified Java class name of the persistent class or interface. If this
attribute is missing, it is assumed that the mapping is for a non-POJO entity.
t abl e (optional - defaults to the unqualified class hame): the name of its database table.

di scri mi nator-val ue (optional - defaults to the class name): a value that distinguishes
individual subclasses that is used for polymorphic behavior. Acceptable values include nul |
and not nul | .

nut abl e (optional - defaults to t r ue): specifies that instances of the class are (not) mutable.

schena (optional): overrides the schema name specified by the root <hi ber nat e- mappi ng>
element.

cat al og (optional): overrides the catalog name specified by the root <hi ber nat e- mappi ng>
element.

pr oxy (optional): specifies an interface to use for lazy initializing proxies. You can specify
the name of the class itself.

dynami c- updat e (optional - defaults to fal se): specifies that UPDATE SQL should be
generated at runtime and can contain only those columns whose values have changed.
dynami c-i nsert (optional - defaults to fal se): specifies that | NSERT SQL should be
generated at runtime and contain only the columns whose values are not null.

sel ect - bef or e- updat e (optional - defaults to f al se): specifies that Hibernate should never
perform an SQL UPDATE unless it is certain that an object is actually modified. Only when
a transient object has been associated with a new session using updat e(), will Hibernate
perform an extra SQL SELECT to determine if an UPDATE is actually required.

pol ynor phi sns (optional - defaults to i nplicit): determines whether implicit or explicit
guery polymorphisms is used.

71

Chapter 5. Basic O/R Mapping

EE® 86 6

B
0

wher e (optional): specifies an arbitrary SQL WHERE condition to be used when retrieving
objects of this class.
per si st er (optional): specifies a custom Cl assPersi ster.

bat ch- si ze (optional - defaults to 1): specifies a "batch size" for fetching instances of this
class by identifier.
optimistic-1ock (optional - defaultsto ver si on): determines the optimistic locking strategy.

I azy (optional): lazy fetching can be disabled by setting | azy="f al se".

entity-nanme (optional - defaults to the class name): Hibernate3 allows a class to be
mapped multiple times, potentially to different tables. It also allows entity mappings that
are represented by Maps or XML at the Java level. In these cases, you should provide an
explicit arbitrary name for the entity. See Section 4.4, “Dynamic models” and Chapter 20,
XML Mapping for more information.

check (optional): an SQL expression used to generate a multi-row check constraint for
automatic schema generation.

rowi d (optional): Hibernate can use ROWIDs on databases. On Oracle, for example,
Hibernate can use the r owi d extra column for fast updates once this option has been set
to rowi d. A ROWID is an implementation detail and represents the physical location of a
stored tuple.

subsel ect (optional): maps an immutable and read-only entity to a database subselect. This
is useful if you want to have a view instead of a base table. See below for more information.
abstract (optional): is used to mark abstract superclasses in <union-subcl ass>
hierarchies.

It is acceptable for the named persistent class to be an interface. You can declare implementing
classes of that interface using the <subcl ass> element. You can persist any static inner class.
Specify the class name using the standard form i.e. e. g. Foo$Bar .

Here is how to do a virtual view (subselect) in XML.:

<cl ass nane="Sumary" >

<subsel ect >
sel ect item nane, max(bid.anount), count(*)
fromitem
join bid on bid.itemid = itemid
group by item nane
</ subsel ect >
<synchroni ze tabl e="itenl/>
<synchroni ze tabl e="bi d"/>
<id name="name"/>

</cl ass>

The <subsel ect > is available both as an attribute and a nested mapping element.

72

Identifiers

5.1.2. Identifiers

Mapped classes must declare the primary key column of the database table. Most classes will
also have a JavaBeans-style property holding the unique identifier of an instance.

Mark the identifier property with @ d.

@ntity
public class Person {
@d Integer getld() { ... }

In hbm.xml, use the <i d> element which defines the mapping from that property to the primary
key column.

<id
name="pr opert yName" 0
type="t ypenane" 9
col um="col umm_nange" 3]
unsaved- val ue="nul I | any| none| undefi ned|i d_val ue" o
access="fi el d| property| Cl assNane" > (5]
node="el ement - nane| @ttri bute-nane| el ement/ @ttribute|."
<generat or class="generatord ass"/>
</id>
© nane (optional): the name of the identifier property.
€ type (optional): a name that indicates the Hibernate type.
© col um (optional - defaults to the property name): the name of the primary key column.
@) unsaved-val ue (optional - defaults to a "sensible" value): an identifier property value

that indicates an instance is newly instantiated (unsaved), distinguishing it from detached
instances that were saved or loaded in a previous session.

© access (optional - defaults to property): the strategy Hibernate should use for accessing
the property value.

If the name attribute is missing, it is assumed that the class has no identifier property.

The unsaved-val ue attribute is almost never needed in Hibernate3 and indeed has no
corresponding element in annotations.

You can also declare the identifier as a composite identifier. This allows access to legacy data
with composite keys. Its use is strongly discouraged for anything else.

73

Chapter 5. Basic O/R Mapping

5.1.2.1. Composite identifier

You can define a composite primary key through several syntaxes:

e use a component type to represent the identifier and map it as a property in the entity: you then
annotated the property as @nbedded! d. The component type has to be Seri al i zabl e.

* map multiple properties as @ d properties: the identifier type is then the entity class itself and
needs to be Seri al i zabl e. This approach is unfortunately not standard and only supported
by Hibernate.

« map multiple properties as @ d properties and declare an external class to be the identifier
type. This class, which needs to be Seri al i zabl e, is declared on the entity via the @ dCl ass
annotation. The identifier type must contain the same properties as the identifier properties of
the entity: each property name must be the same, its type must be the same as well if the entity
property is of a basic type, its type must be the type of the primary key of the associated entity
if the entity property is an association (either a @nheToOne or a @anyToOne).

As you can see the last case is far from obvious. It has been inherited from the dark ages of EJB
2 for backward compatibilities and we recommend you not to use it (for simplicity sake).

Let's explore all three cases using examples.
5.1.2.1.1. id as a property using a component type

Here is a simple example of @nbedded] d.

@Entity

class User {
@nbedded! d
@\t tributeOverride(nanme="firstNane", colum=@ol um(nanme="fld_firstnane")
Userld id;

I nteger age;

}
@nbeddabl e
class Userld inplenents Serializable {

String firstNang;
String | ast Nane;

You can notice that the Userld class is serializable. To override the column mapping, use
@\ttributeCverride.

An embedded id can itself contains the primary key of an associated entity.

@ntity

74

Identifiers

cl ass Customer {
@nbeddedl d Custonerld id;
bool ean preferredCust oner;

@mpsl d("userld")
@oi nCol ums({

@oi nCol um(name="user firstnanme_fk", referencedCol utmNanme="firstNane"),

@oi nCol um(nane="user| ast nane_f k", referencedCol umNane="1ast Nane")

9]
@neToOne User user;

}

@nbeddabl e

class Custonerld inplenents Serializable {
Userld userld;
String customer Nunber ;

/1'i npl ements equal s and hashCode

}

@ntity

class User {
@nbeddedl d Userld id;
I nt eger age;

}

@nbeddabl e

class Userld inplenents Serializable {
String firstNang;
String | ast Nane;

/1inmplenents equal s and hashCode

In the embedded id object, the association is represented as the identifier of the associated
entity. But you can link its value to a regular association in the entity via the @vaps! d annotation.
The @apslid value correspond to the property name of the embedded id object containing
the associated entity's identifier. In the database, it means that the Custoner. user and the
Cust omer | d. user | d properties share the same underlying column (user _f k in this case).

Tip

The component type used as identifier must implement equal s() and hashCode() .

In practice, your code only sets the Cust oner . user property and the user id value is copied by

Hibernate into the Cust omer I d. user | d property.

Warning

The id value can be copied as late as flush time, don't rely on it until after flush time.

75

Chapter 5. Basic O/R Mapping

While not supported in JPA, Hibernate lets you place your association directly in the embedded
id component (instead of having to use the @/aps| d annotation).

@ntity

cl ass Customer {
@nbeddedl d Custonerld id;
bool ean preferredCustoner;

}
@nbeddabl e
class Customerld inplenents Serializable {
@neToOne
@oi nCol ums({
@oi nCol um(nanme="user firstnanme_fk", referencedCol umName="firstNane"),
@oi nCol um(name="user | ast name_f k", referencedCol umNanme="| ast Name")
})
User user;
String custoner Nunber ;
/1inmplenents equal s and hashCode
}
@ntity

class User {
@nbeddedl d Userld id;
I nt eger age;

@nbeddabl e

class Userld inplenents Serializable {
String firstNang;
String | ast Nang;

/1'i npl enents equal s and hashCode

Let's now rewrite these examples using the hbm.xml syntax.

<conmposite-id
name="pr opert yNanme"
cl ass="C assNane"
mapped="true|fal se"
access="fi el d| property| C assNane"
node="el enent - nane| . ">

<key-property name="propertyNane" type="typenane" col um="col umm_nane"/>
<key-many-t o-one name="propertyNane" class="C assNane" col utm="col um_nane"/ >

</ conposi te-id>

First a simple example:

76

Identifiers

<cl ass name="User">
<conposite-id name="id" class="Userld">
<key-property nanme="firstName" colum="fld_firstname"/>
<key-property nane="| ast Narme"/>
</ conposi te-id>
</ cl ass>

Then an example showing how an association can be mapped.

<cl ass name="Cust oner" >
<conposite-id nane="id" class="Customerld">
<key-property name="firstNane" colum="userfirstnanme_fk"/>
<key-property nane="| ast Name" col um="userfirstname_fk"/>
<key- property name="cust ormer Nunber"/ >
</ conposi te-id>

<property nanme="preferredCustoner"/>

<many-to-one name="user">
<col umm name="userfirstname_fk" updatabl e="fal se" insertable="fal se"/>
<col umm nane="user | ast name_f k" updat abl e="f al se" insertabl e="fal se"/>
</ many-t o- one>
</ cl ass>

<cl ass name="User">
<conposite-id name="id" class="Userld">
<key-property nanme="firstName"/>
<key-property nane="| ast Name"/>
</ conposi te-id>

<property nanme="age"/>
</ cl ass>

Notice a few things in the previous example:

« the order of the properties (and column) matters. It must be the same between the association
and the primary key of the associated entity

« the many to one uses the same columns as the primary key and thus must be marked as read
only (i nsert abl e and updat abl e to false).

« unlike with @vapsl| d, the id value of the associated entity is not transparently copied, check the
f or ei gn id generator for more information.

The last example shows how to map association directly in the embedded id component.

<cl ass nane="Cust oner" >
<conposite-id name="id" class="Custonerl|d">
<key- many-t o- one nane="user">
<col um nane="userfirstname_fk"/>
<col um nanme="user | ast name_f k" />

77

Chapter 5. Basic O/R Mapping

</ key- many-t o- one>
<key- property name="cust ormer Nunber"/ >
</ conposi te-id>

<property nanme="preferredCustoner"/>
</ cl ass>

<cl ass nane="User">
<conposite-id name="id" class="Userld">
<key-property name="firstNane"/>
<key-property name="| ast Nanme"/>
</ conposi te-id>

<property name="age"/>
</cl ass>

This is the recommended approach to map composite identifier. The following options should not
be considered unless some constraint are present.

5.1.2.1.2. Multiple id properties without identifier type

Another, arguably more natural, approach is to place @ d on multiple properties of your entity.
This approach is only supported by Hibernate (not JPA compliant) but does not require an extra
embeddable component.

@ntity
class Customer inplenents Serializable {
@d @neTone
@oi nCol ums({
@oi nCol um(nanme="userfirstname_fk", referencedCol umNanme="firstNane"),
@oi nCol um(nanme="user | ast name_f k", referencedCol umNane="| ast Nane")

})

User user;

@d String customer Nunber;

bool ean preferredCust oner;

/1'i npl ements equal s and hashCode
@ntity
class User {

@Enbeddedl d Userld id;
I nt eger age;

@nbeddabl e

class Userld inplenents Serializable {
String firstNang;
String | ast Nane;

/1inmplements equal s and hashCode

78

Identifiers

In this case Cust oner is its own identifier representation: it must implement Seri al i zabl e and
must implement equal s() and hashCode() .

In hbm.xml, the same mapping is:

<cl ass nane="Cust oner" >
<conposite-id>
<key- many-t o- one nane="user">
<col um nane="userfirstname_fk"/>
<col um nanme="user| ast name_f k" />
</ key- many-t o- one>
<key- property name="cust onmer Nunber"/ >
</ conposi te-id>

<property nanme="preferredCustoner"/>
</ cl ass>

<cl ass nane="User">
<conposite-id nane="id" class="Userld">
<key- property nane="firstName"/>
<key-property name="I| ast Nanme"/>
</ conposi te-id>

<property name="age"/>
</ cl ass>

5.1.2.1.3. Multiple id properties with with a dedicated identifier type

@ dd ass on an entity points to the class (component) representing the identifier of the class. The
properties marked @ d on the entity must have their corresponding property on the @ ddl ass. The
return type of search twin property must be either identical for basic properties or must correspond
to the identifier class of the associated entity for an association.

Warning

This approach is inherited from the EJB 2 days and we recommend against its use.
But, after all it's your application and Hibernate supports it.

@ntity
@ dd ass(Custonerl d. cl ass)
cl ass Customer inplenents Serializable {
@d @neToOne
@oi nCol ums({
@oi nCol um(nanme="user firstname_fk", referencedCol utmName="firstNane"),
@oi nCol um(nane="user| ast nane_f k", referencedCol umNane="1ast Nane")
b

User user;

@d String custoner Nunber;

79

Chapter 5. Basic O/R Mapping

bool ean preferredCust oner;

class Custonerld inplenents Serializable {
Userl d user;
String custoner Nunber;

/1'i npl ements equal s and hashCode

@ntity

class User {
@nbeddedl d Userld id;
I nt eger age;

/1'i npl ements equal s and hashCode

@nbeddabl e

class Userld inplenents Serializable {
String firstNang;
String | ast Nane;

/1'i npl ements equal s and hashCode

Customer and Customerld do have the same properties cust omer Nunber as well as user.
Cust omer | d must be Seri al i zabl e and implement equal s() and hashCode() .

While not JPA standard, Hibernate let's you declare the vanilla associated property in the
@dd ass.

@ntity
@dd ass(Custonerld.cl ass)
class Customer inplenents Serializable {
@d @neToOne
@oi nCol ums({
@oi nCol um(nanme="user firstnanme_fk", referencedCol umNanme="firstNane"),
@oi nCol um(nane="user | ast name_f k", referencedCol umNane="| ast Nane")

9]
User user;
@d String custoner Nunber;
bool ean preferredCustoner;
class Custonerld inplenents Serializable {
@neToOne User user;
String customer Nunber;
/1inmplements equal s and hashCode

@ntity
class User {

80

Identifiers

@nbeddedl d Userld id;
I nt eger age;

/1'i npl ements equal s and hashCode

@nbeddabl e

class Userld inplenents Serializable {
String firstNane;
String | ast Name;

This feature is of limited interest though as you are likely to have chosen the @ dCl ass approach
to stay JPA compliant or you have a quite twisted mind.

Here are the equivalent on hbm.xml files:

<cl ass name="Cust oner" >
<conposite-id class="Custonerld" mapped="true">
<key- many-to-one nanme="user">
<col um nane="userfirstname_fk"/>
<col um nane="user | ast name_f k"/>
</ key- many-t o- one>
<key- property nanme="cust omer Nunber"/ >
</ conposi te-id>

<property nanme="preferredCustoner"/>
</ cl ass>

<cl ass nane="User">
<conposite-id nane="id" class="Userld">
<key-property name="first Nane"/>
<key- property nanme="I| ast Name"/ >
</ conposi te-id>

<property name="age"/>
</ cl ass>

5.1.2.2. Identifier generator

Hibernate can generate and populate identifier values for you automatically. This is the
recommended approach over "business" or "natural” id (especially composite ids).

Hibernate offers various generation strategies, let's explore the most common ones first that
happens to be standardized by JPA:

e IDENTITY: supports identity columns in DB2, MySQL, MS SQL Server, Sybase and
HypersonicSQL. The returned identifier is of type | ong, short orint.

« SEQUENCE (called seghil o in Hibernate): uses a hi/llo algorithm to efficiently generate
identifiers of type | ong, short ori nt, given a named database sequence.

81

Chapter 5. Basic O/R Mapping

e TABLE (called Mul ti pl eHi LoPer Tabl eGener at or in Hibernate) : uses a hi/lo algorithm to
efficiently generate identifiers of type | ong, short or int, given a table and column as a
source of hi values. The hi/lo algorithm generates identifiers that are unique only for a particular
database.

» AUTO: selects | DENTI TY, SEQUENCE or TABLE depending upon the capabilities of the underlying
database.

Important

We recommend all new projects to use the new enhanced identifier generators.
They are deactivated by default for entities using annotations but can be activated
using hi ber nat e. i d. new_gener at or _nmappi ngs=true. These new generators
are more efficient and closer to the JPA 2 specification semantic.

However they are not backward compatible with existing Hibernate based
application (if a sequence or a table is used for id generation). See XXXXXXX ??7?
for more information on how to activate them.

To mark an id property as generated, use the @sener at edVal ue annotation. You can specify the
strategy used (default to AUTO) by setting st r at egy.

@ntity
public class Custoner {
@d @=neratedVal ue
Integer getld() { ... };
}

@ntity

public class Invoice {
@d @xenerat edVal ue(strategy=CGenerationType. | DENTI TY)
Integer getld() { ... };

SEQUENCE and TABLE require additional configurations that you can set using
@equenceCGener at or and @abl eGener at or :
* nane: name of the generator

* table / sequenceName: name of the table or the sequence (defaulting respectively to
hi ber nat e_sequences and hi ber nat e_sequence)

e catal og/schema:
 initial Vval ue: the value from which the id is to start generating

 al l ocati onSi ze: the amount to increment by when allocating id numbers from the generator

82

Identifiers

In addition, the TABLE strategy also let you customize:

* pkCol unmNamre: the column name containing the entity identifier

* val ueCol untmNarre: the column name containing the identifier value

e pkCol umVal ue: the entity identifier

e uni queConstrai nt s: any potential column constraint on the table containing the ids

To link a table or sequence generator definition with an actual generated property, use the same
name in both the definition nane and the generator value gener at or as shown below.

@d

@ener at edVal ue(
strat egy=Gener at i onType. SEQUENCE,
gener at or =" SEQ CGEN")

@ avax. per si st ence. SequenceGener at or (
name="SEQ GEN',
sequenceNanme="ny_sequence",
al | ocati onSi ze=20

)

public Integer getld() { ... }

The scope of a generator definition can be the application or the class. Class-defined generators
are not visible outside the class and can override application level generators. Application level
generators are defined in JPA's XML deployment descriptors (see XXXXXX ??7?):

<t abl e- gener at or nane="EMP_CGEN'
t abl e=" GENERATOR_TABLE"
pk- col um- nanme="key"
val ue- col um- name="hi "
pk- col um- val ue="EMP"
al | ocati on-si ze="20"/>

//and the annotation equival ent

@ avax. per si st ence. Tabl eGener at or (
nanme="EMP_GEN",
t abl e=" GENERATOR _TABLE",
pkCol umName = "key",
val ueCol umNane = "hi"
pkCol umVal ue="EMP",
al | ocati onSi ze=20

<sequence- gener at or name="SEQ GEN'
sequence- name="ny_sequence"
al | ocati on-si ze="20"/>

//and the annotation equival ent

@ avax. per si st ence. SequenceGener at or (

83

Chapter 5. Basic O/R Mapping

nane="SEQ GEN',
sequenceNanme="my_sequence",
al | ocati onSi ze=20

If a JPA XML descriptor (like META- | NF/ or m xni) is used to define the generators, EMP_GEN and
SEQ GEN are application level generators.

Note

Package level definition is not supported by the JPA specification. However, you
can use the @=neri cGener at or at the package level (see).

These are the four standard JPA generators. Hibernate goes beyond that and provide additional
generators or additional options as we will see below. You can also write your own custom identifier
generator by implementing or g. hi bernate. i d. I dentifierCGenerator.

To define a custom generator, use the @=xner i cGener at or annotation (and its plural counter part
@=neri cGener at or s) that describes the class of the identifier generator or its short cut name
(as described below) and a list of key/value parameters. When using @=neri cGener at or and
assigning it via @ener at edVval ue. gener at or , the @=ener at edVal ue. st r at egy isignored: leave
it blank.

@d @zener at edVal ue(gener at or ="syst em uui d")
@zeneri cCGener at or (nane="system uui d", strategy = "uuid")
public String getld() {

@d @enerat edVal ue(generator="trigger-generated")
@neri cGenerat or (
name="tri gger-generated",
strategy = "select”,
paraneters = @Par anet er (name="key", value = "soci al SecurityNunber")

)
public String getld() {

The hbm.xml approach uses the optional <generat or> child element inside <id>. If any
parameters are required to configure or initialize the generator instance, they are passed using
the <par an» element.

<id nane="id" type="long" colum="cat_id">
<generator class="org. hi bernate.id. Tabl eH LoGenerat or">
<par am nane="t abl e" >ui d_t abl e</ par an»
<par am nane="col uim" >next _hi _val ue_col um</ par an®»
</ gener at or >
</id>

84

Identifiers

5.1.2.2.1. Various additional generators

All generators implement the interface or g. hi bernat e. i d. | denti fi er Gener at or. Thisis a very
simple interface. Some applications can choose to provide their own specialized implementations,
however, Hibernate provides a range of built-in implementations. The shortcut names for the built-
in generators are as follows:

i ncr ement
generates identifiers of type | ong, short ori nt that are unique only when no other process
is inserting data into the same table. Do not use in a cluster.

identity
supports identity columns in DB2, MySQL, MS SQL Server, Sybase and HypersonicSQL. The
returned identifier is of type | ong, short orint.

sequence
uses a sequence in DB2, PostgreSQL, Oracle, SAP DB, McKoi or a generator in Interbase.
The returned identifier is of type | ong, short ori nt

hilo
uses a hi/lo algorithm to efficiently generate identifiers of type | ong, short ori nt, given atable
and column (by default hi ber nat e_uni que_key and next _hi respectively) as a source of hi
values. The hi/lo algorithm generates identifiers that are unique only for a particular database.

seghil o
uses a hi/lo algorithm to efficiently generate identifiers of type | ong, short or i nt, given a
named database sequence.

uui d
Generates a 128-bit UUID based on a custom algorithm. The value generated is
represented as a string of 32 hexidecimal digits. Users can also configure it to use
a separator (config parameter "separator") which separates the hexidecimal digits into
8{sep}8{sep}4{sep}8{sep}4. Note specifically that this is different than the IETF RFC 4122
representation of 8-4-4-4-12. If you need RFC 4122 compliant UUIDs, consider using "uuid2"
generator discussed below.

uui d2
Generates a IETF RFC 4122 compliant (variant 2) 128-bit UUID. The exact "version" (the
RFC term) generated depends on the pluggable "generation strategy" used (see below).
Capable of generating values as java.util.UU D, java.lang.String or as a byte
array of length 16 (byte[16]). The "generation strategy" is defined by the interface
org. hi bernate.id. UU DGenerationStrategy. The generator defines 2 configuration
parameters for defining which generation strategy to use:

uui d_gen_strategy_cl ass
Names the UUIDGenerationStrategy class to use

uui d_gen_strat egy
Names the UUIDGenerationStrategy instance to use

85

Chapter 5. Basic O/R Mapping

Out of the box, comes with the following strategies:

e org. hi bernate.id. uuid. Standar dRandonttr at egy (the default) - generates "version
3" (aka, "random") UUID values via the r andonJUl D method of j ava. util. UUI D

e org. hi bernate.id. uuid. Cust onVer si onOneStrat egy - generates "version 1" UUID
values, using IP address since mac address not available. If you need mac address to
be used, consider leveraging one of the existing third party UUID generators which sniff
out mac address and integrating it via the or g. hi ber nat e. i d. UUI DGener at i onSt r at egy
contract. Two such libraries known at time of this writing include http://johannburkard.de/
software/uuid/ and http://commons.apache.org/sandbox/id/uuid.html

guid
uses a database-generated GUID string on MS SQL Server and MySQL.

native
selects i dentity, sequence or hil o depending upon the capabilities of the underlying
database.

assi gned
lets the application assign an identifier to the object before save() is called. This is the default
strategy if no <gener at or > element is specified.

sel ect
retrieves a primary key, assigned by a database trigger, by selecting the row by some unique
key and retrieving the primary key value.

foreign
uses the identifier of another associated object. It is usually used in conjunction with a <one-
t o- one> primary key association.

sequence-identity
a specialized sequence generation strategy that utilizes a database sequence for the actual
value generation, but combines this with JDBC3 getGeneratedKeys to return the generated
identifier value as part of the insert statement execution. This strategy is only supported on
Oracle 10g drivers targeted for JDK 1.4. Comments on these insert statements are disabled
due to a bug in the Oracle drivers.

5.1.2.2.2. Hi/lo algorithm

The hi | o and seghi | o generators provide two alternate implementations of the hi/lo algorithm.
The first implementation requires a "special" database table to hold the next available "hi" value.
Where supported, the second uses an Oracle-style sequence.

<id nane="id" type="long" colum="cat _id">
<generator class="hilo">
<par am nane="t abl e" >hi _val ue</ par an»
<par am nane="col um" >next _val ue</ par an»
<par am nanme="rmax_| 0" >100</ par an®>

86

http://johannburkard.de/software/uuid/
http://johannburkard.de/software/uuid/
http://commons.apache.org/sandbox/id/uuid.html

Identifiers

</ gener at or >
</id>

<id nane="id" type="long" colum="cat_id">
<gener at or class="seqhil 0">
<par am nane="sequence" >hi _val ue</ par an»
<par am nane="rmax_| 0" >100</ par an®>
</ gener at or >
</id>

Unfortunately, you cannot use hi | o when supplying your own Connect i on to Hibernate. When
Hibernate uses an application server datasource to obtain connections enlisted with JTA, you
must configure the hi ber nat e. tr ansact i on. manager _| ookup_cl ass.

5.1.2.2.3. UUID algorithm

The UUID contains: IP address, startup time of the JVM that is accurate to a quarter second,
system time and a counter value that is unique within the JVM. It is not possible to obtain a MAC
address or memory address from Java code, so this is the best option without using JNI.

5.1.2.2.4. Identity columns and sequences

For databases that support identity columns (DB2, MySQL, Sybase, MS SQL), you can use
i dentity key generation. For databases that support sequences (DB2, Oracle, PostgreSQL,
Interbase, McKoi, SAP DB) you can use sequence style key generation. Both of these strategies
require two SQL queries to insert a new object. For example:

<id nane="id" type="long" col um="person_id">
<gener at or cl ass="sequence">
<par am nane="sequence" >per son_i d_sequence</ par an»
</ gener at or >
</id>

<id name="id" type="long" col um="person_id" unsaved-val ue="0">
<generator class="identity"/>
</id>

For cross-platform development, the nat i ve strategy will, depending on the capabilities of the
underlying database, choose from the i denti ty, sequence and hi | o strategies.

5.1.2.2.5. Assigned identifiers

If you want the application to assign identifiers, as opposed to having Hibernate generate them,
you can use the assi gned generator. This special generator uses the identifier value already
assigned to the object's identifier property. The generator is used when the primary key is a natural

87

Chapter 5. Basic O/R Mapping

key instead of a surrogate key. This is the default behavior if you do not specify @=ener at edVval ue
nor <gener at or > elements.

The assigned generator makes Hibernate use unsaved-val ue="undefi ned". This forces
Hibernate to go to the database to determine if an instance is transient or detached, unless there
is a version or timestamp property, or you define | nt er cept or . i sUnsaved() .

5.1.2.2.6. Primary keys assigned by triggers

Hibernate does not generate DDL with triggers. It is for legacy schemas only.

<id nane="id" type="long" col um="person_id">
<gener ator class="sel ect">
<par am nane="key" >soci al Securit yNunber </ par an»
</ gener at or >
</id>

In the above example, there is a unique valued property named soci al Securi t yNunber. It is
defined by the class, as a natural key and a surrogate key named per son_i d, whose value is
generated by a trigger.

5.1.2.2.7. Identity copy (foreign generator)

Finally, you can ask Hibernate to copy the identifier from another associated entity. In the
Hibernate jargon, it is known as a foreign generator but the JPA mapping reads better and is
encouraged.

@ntity

class Medical History inplenents Serializable {
@d @mneToOne
@oi nCol um(nanme = "person_id")

Person patient;

}

@ntity
public class Person inplenents Serializable {
@d @eneratedVal ue Integer id;

}

Or alternatively

@ntity
class Medical History inplenments Serializable {
@d |Integer id;

@mpsl d @neToOne
@oi nCol um(nanme = "patient_id")
Person patient;

}

88

Identifiers

@Entity
cl ass Person {
@d @eneratedVal ue I nteger id;

}

In hbm.xml use the following approach:

<cl ass nanme="Medi cal Hi story">
<id nane="id">
<generator class="foreign">
<par am nane="property">pati ent </ paran»
</ gener at or >
</id>
<one-to-one name="patient" class="Person" constrained="true"/>
</ cl ass>

5.1.2.3. Enhanced identifier generators

Starting with release 3.2.3, there are 2 new generators which represent a re-thinking of 2 different
aspects of identifier generation. The first aspect is database portability; the second is optimization
Optimization means that you do not have to query the database for every request for a new
identifier value. These two new generators are intended to take the place of some of the named
generators described above, starting in 3.3.x. However, they are included in the current releases
and can be referenced by FON.

The first of these new generators is or g. hi bernat e. i d. enhanced. SequenceSt yl eGener at or
which is intended, firstly, as a replacement for the sequence generator and, secondly, as a better
portability generator than nat i ve. This is because nat i ve generally chooses between i dentity
and sequence which have largely different semantics that can cause subtle issues in applications
eyeing portability. or g. hi ber nat e. i d. enhanced. SequenceSt yl eGener at or , however, achieves
portability in a different manner. It chooses between a table or a sequence in the database to store
its incrementing values, depending on the capabilities of the dialect being used. The difference
between this and nat i ve is that table-based and sequence-based storage have the same exact
semantic. In fact, sequences are exactly what Hibernate tries to emulate with its table-based
generators. This generator has a number of configuration parameters:

* sequence_nane (optional, defaults to hi ber nat e_sequence): the name of the sequence or table
to be used.

e initial_val ue (optional, defaults to 1): the initial value to be retrieved from the sequence/table.
In sequence creation terms, this is analogous to the clause typically named "STARTS WITH".

e increnent _si ze (optional - defaults to 1): the value by which subsequent calls to the sequence/
table should differ. In sequence creation terms, this is analogous to the clause typically named
"INCREMENT BY™".

« force_tabl e_use (optional - defaults to f al se): should we force the use of a table as the
backing structure even though the dialect might support sequence?

89

Chapter 5. Basic O/R Mapping

« val ue_col umm (optional - defaults to next _val): only relevant for table structures, it is the name
of the column on the table which is used to hold the value.

* optinizer (optional - defaults to none). See Section 5.1.2.3.1, “Identifier generator
optimization”

The second of these new generators is or g. hi ber nat e. i d. enhanced. Tabl eGener at or, which
is intended, firstly, as a replacement for the t abl e generator, even though it actually functions
much more like or g. hi bernate. i d. Mul ti pl eHi LoPer Tabl eGener at or, and secondly, as a re-
implementation of or g. hi ber nat e. i d. Mul ti pl eHi LoPer Tabl eGener at or that utilizes the notion
of pluggable optimizers. Essentially this generator defines a table capable of holding a number of
different increment values simultaneously by using multiple distinctly keyed rows. This generator
has a number of configuration parameters:

« tabl e_name (optional - defaults to hi ber nat e_sequences): the name of the table to be used.

* val ue_col utm_nane (optional - defaults to next _val): the name of the column on the table that
is used to hold the value.

* segnent _col utm_nane (optional - defaults to sequence_nane): the name of the column on the
table that is used to hold the "segment key". This is the value which identifies which increment
value to use.

e segnent _val ue (optional - defaults to def aul t): The "segment key" value for the segment from
which we want to pull increment values for this generator.

e segnent _val ue_l engt h (optional - defaults to 255): Used for schema generation; the column
size to create this segment key column.

e initial_val ue (optional - defaults to 1): The initial value to be retrieved from the table.

* increnent_size (optional - defaults to 1): The value by which subsequent calls to the table
should differ.

* optinizer (optional - defaults to ??): See Section 5.1.2.3.1, “Identifier generator optimization”.

5.1.2.3.1. Identifier generator optimization

For identifier generators that store values in the database, it is inefficient for them to hit the
database on each and every call to generate a new identifier value. Instead, you can group a bunch
of them in memory and only hit the database when you have exhausted your in-memory value
group. This is the role of the pluggable optimizers. Currently only the two enhanced generators
(Section 5.1.2.3, “Enhanced identifier generators” support this operation.

« none (generally this is the default if no optimizer was specified): this will not perform any
optimizations and hit the database for each and every request.

e hilo: applies a hi/lo algorithm around the database retrieved values. The values from the
database for this optimizer are expected to be sequential. The values retrieved from the
database structure for this optimizer indicates the "group number". The i ncrenent _si ze is
multiplied by that value in memory to define a group "hi value”.

» pool ed: as with the case of hi | o, this optimizer attempts to minimize the number of hits to
the database. Here, however, we simply store the starting value for the "next group” into the
database structure rather than a sequential value in combination with an in-memory grouping
algorithm. Here, i ncr enent _si ze refers to the values coming from the database.

90

Optimistic locking properties (optional)

5.1.2.4. Partial identifier generation

Hibernate supports the automatic generation of some of the identifier properties. Simply use the
@z=ner at edVal ue annotation on one or several id properties.

Warning

The Hibernate team has always felt such a construct as fundamentally wrong. Try
hard to fix your data model before using this feature.

@ntity

public class Custonerlnventory inplenents Serializable {
@d
@rabl eGener at or (name = "inventory",

tabl e = "U SEQUENCES",
pkCol umNane = "S I D',
val ueCol umNane = "S_NEXTNUM',

pkCol umVal ue = "inventory",

al | ocationSi ze = 1000)
@cener at edVal ue(strategy = GenerationType. TABLE, generator = "inventory")
I nteger id;

@d @bnyToOne(cascade = CascadeType. MERGE)
Cust oner custoner;

}

@Entity

public class Custoner inplenents Serializable {
@d
private int id;

You can also generate properties inside an @nbedded! d class.

5.1.3. Optimistic locking properties (optional)

When using long transactions or conversations that span several database transactions, it is useful
to store versioning data to ensure that if the same entity is updated by two conversations, the last
to commit changes will be informed and not override the other conversation's work. It guarantees
some isolation while still allowing for good scalability and works particularly well in read-often
write-sometimes situations.

You can use two approaches: a dedicated version number or a timestamp.

A version or timestamp property should never be null for a detached instance. Hibernate will detect
any instance with a null version or timestamp as transient, irrespective of what other unsaved-
val ue strategies are specified. Declaring a nullable version or timestamp property is an easy way

91

Chapter 5. Basic O/R Mapping

to avoid problems with transitive reattachment in Hibernate. It is especially useful for people using
assigned identifiers or composite keys.

5.1.3.1. Version number

You can add optimistic locking capability to an entity using the @/er si on annotation:

@ntity
public class Flight inplenments Serializable {

@/er si on
@Col umm(nanme=" OPTLOCK")
public Integer getVersion() { ... }

The version property will be mapped to the OPTLOCK column, and the entity manager will use it to
detect conflicting updates (preventing lost updates you might otherwise see with the last-commit-
wins strategy).

The version column may be a numeric. Hibernate supports any kind of type provided that you
define and implement the appropriate User Ver si onType.

The application must not alter the version number set up by Hibernate in
any way. To artificially increase the version number, check in Hibernate Entity
Manager's reference documentation LockModeType. OPTI M STI C_FORCE_| NCREMENT or
LockModeType. PESSI M STI C_FORCE_| NCREMENT.

If the version number is generated by the database (via a trigger for example), make sure to use
@r g. hi ber nat e. annot at i ons. Gener at ed(Gener ati onTi ne. ALWAYS) .

To declare a version property in hbm.xml, use:

<version
col um="ver si on_col um"
name="pr opert yNane"
type="typenane"
access="fi el d| property| C assNane"
unsaved- val ue="nul | | negati ve| undef i ned"

gener at ed="never | al ways"

QOoO000O0D0S

insert="true|fal se"
node="el emrent - nane| @ttri bute-nane| el ement/ @ttribute|."

€ col um (optional - defaults to the property name): the name of the column holding the version
number.
€ nane: the name of a property of the persistent class.

92

Optimistic locking properties (optional)

€ type (optional - defaults to i nt eger): the type of the version number.

€ access (optional - defaults to pr opert y): the strategy Hibernate uses to access the property
value.

© unsaved-val ue (optional - defaults to undef i ned): a version property value that indicates
that an instance is newly instantiated (unsaved), distinguishing it from detached instances
that were saved or loaded in a previous session. Undefi ned specifies that the identifier
property value should be used.

) generated (optional - defaults to never): specifies that this version property value is
generated by the database. See the discussion of generated properties for more information.

@ insert (optional - defaults tot r ue): specifies whether the version column should be included
in SQL insert statements. It can be set to f al se if the database column is defined with a
default value of 0.

5.1.3.2. Timestamp

Alternatively, you can use a timestamp. Timestamps are a less safe implementation of optimistic
locking. However, sometimes an application might use the timestamps in other ways as well.

Simply mark a property of type Dat e or Cal endar as @/er si on.

@ntity
public class Flight inplenments Serializable {

@/er si on
public Date getlLastUpdate() { ... }

When using timestamp versioning you can tell Hibernate where to retrieve
the timestamp value from - database or JVM - by optionally adding the
@r g. hi ber nat e. annot ati ons. Sour ce annotation to the property. Possible values for the
value attribute of the annotation are org. hi bernate. annot ati ons. Sour ceType. VM and
or g. hi ber nat e. annot at i ons. Sour ceType. DB. The default is Sour ceType. DB which is also
used in case there is no @our ce annotation at all.

Like in the ~case of version numbers, the timestamp can also be
generated by the database instead of Hibernate. To do that, use
@r g. hi ber nat e. annot at i ons. Gener at ed(Gener at i onTi ne. ALWAYS) .

In hbm.xml, use the <t i nest anp> element:

<ti mest anp
col um="ti mest anp_col um"
nane="pr opertyNane"

access="fi el d| property| C assNane"

Q00O

unsaved- val ue="nul I | undefi ned"

93

Chapter 5. Basic O/R Mapping

sour ce="vnj db" (5]

gener at ed="never | al ways" 6
node="el ement - nane| @ttri bute-nane| el ement/ @ttribute|."
/>

€ colum (optional - defaults to the property name): the name of a column holding the
timestamp.

@ nane: the name of a JavaBeans style property of Java type Date or Ti mestanp of the
persistent class.

€ access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.

@ unsaved-val ue (optional - defaults to nul |): a version property value that indicates that an
instance is newly instantiated (unsaved), distinguishing it from detached instances that were
saved or loaded in a previous session. Undef i ned specifies that the identifier property value
should be used.

© source (optional - defaults to vm): Where should Hibernate retrieve the timestamp value
from? From the database, or from the current JVM? Database-based timestamps incur an
overhead because Hibernate must hit the database in order to determine the "next value". It
is safer to use in clustered environments. Not all Di al ect s are known to support the retrieval
of the database's current timestamp. Others may also be unsafe for usage in locking due to
lack of precision (Oracle 8, for example).

) generated (optional - defaults to never): specifies that this timestamp property value is
actually generated by the database. See the discussion of generated properties for more
information.

@ Note

<Ti mest anp> is equivalent to <versi on type="ti nmestanp">. And <ti nest anp
sour ce="db" > is equivalent to <ver si on type="dbti nest anp" >

5.1.4. Property

You need to decide which property needs to be made persistent in a given entity. This differs
slightly between the annotation driven metadata and the hbm.xml files.

5.1.4.1. Property mapping with annotations

In the annotations world, every non static non transient property (field or method depending on
the access type) of an entity is considered persistent, unless you annotate it as @r ansi ent . Not
having an annotation for your property is equivalent to the appropriate @asi ¢ annotation.

The @asi c annotation allows you to declare the fetching strategy for a property. If set to LAZY,
specifies that this property should be fetched lazily when the instance variable is first accessed. It
requires build-time bytecode instrumentation, if your classes are not instrumented, property level

94

Property

lazy loading is silently ignored. The default is EAGER. You can also mark a property as not optional
thanks to the @Basi c. opti onal attribute. This will ensure that the underlying column are not
nullable (if possible). Note that a better approach is to use the @t Nul | annotation of the Bean
Validation specification.

Let's look at a few examples:

public transient int counter; //transient property
private String firstname; //persistent property

@ransi ent
String getLengthinMeter() { ... } //transient property

String getName() {... } // persistent property

@Basi c
int getLength() { ... } // persistent property

@asi c(fetch = FetchType. LAZY)
String getDetailedComment() { ... } // persistent property

@enpor al (Tenpor al Type. Tl ME)
java.util.Date getDepartureTinme() { ... } // persistent property

@Enuner at ed(Enunilype. STRI NG)
Starred getNote() { ... } //enumpersisted as String in database

count er, a transient field, and | engt hl nMet er, a method annotated as @t ansi ent, and will be
ignored by the Hibernate. name, | engt h, and fi r st name properties are mapped persistent and
eagerly fetched (the default for simple properties). The det ai | edComent property value will be
lazily fetched from the database once a lazy property of the entity is accessed for the first time.
Usually you don't need to lazy simple properties (not to be confused with lazy association fetching).
The recommended alternative is to use the projection capability of JP-QL (Java Persistence Query
Language) or Criteria queries.

JPA support property mapping of all basic types supported by Hibernate (all basic Java types ,
their respective wrappers and serializable classes). Hibernate Annotations supports out of the box
enum type mapping either into a ordinal column (saving the enum ordinal) or a string based column
(saving the enum string representation): the persistence representation, defaulted to ordinal, can
be overridden through the @nuner at ed annotation as shown in the not e property example.

In plain Java APIs, the temporal precision of time is not defined. When dealing with temporal
data you might want to describe the expected precision in database. Temporal data can have
DATE, Tl ME, or TI MESTAMP precision (ie the actual date, only the time, or both). Use the @enpor al
annotation to fine tune that.

@ oob indicates that the property should be persisted in a Blob or a Clob depending on the property
type: j ava. sql . O ob, Character[], char[] and java.lang.St ri ng will be persisted in a Clob.
java.sqgl.Blob,Byte[], byte[] and Serializabl e type will be persisted in a Blob.

95

Chapter 5. Basic O/R Mapping

@.ob
public String getFull Text() {
return full Text;

}

@.ob
public byte[] getFull Code() {
return full Code;

}

If the property type implementsj ava. i 0. Seri al i zabl e and is not a basic type, and if the property
is not annotated with @.ob, then the Hibernate seri al i zabl e type is used.

5.1.4.1.1. Type

You can also manually specify a type using the @r g. hi ber nat e. annot at i ons. Type and some
parameters if needed. @ype. t ype could be:

1. The name of a Hibernate basic type: i nteger, string, character, date, tinestanp,
float, binary, serializable, object, blobetc.

2. The name of a Java class with a default basic type: i nt, float, char, java.lang. String,
java.util.Date, java.lang.Integer, java.sql.d ob etc.

3. The name of a serializable Java class.

4. The class name of a custom type: com i | | f1 ow. t ype. MyCust oniType etc.

If you do not specify a type, Hibernate will use reflection upon the named property and guess
the correct Hibernate type. Hibernate will attempt to interpret the name of the return class of the
property getter using, in order, rules 2, 3, and 4.

@r g. hi bernat e. annot ati ons. TypeDef and @r g. hi ber nat e. annot at i ons. TypeDef s allows
you to declare type definitions. These annotations can be placed at the class or package level.
Note that these definitions are global for the session factory (even when defined at the class level).
If the type is used on a single entity, you can place the definition on the entity itself. Otherwise,
it is recommended to place the definition at the package level. In the example below, when
Hibernate encounters a property of class PhoneNurer , it delegates the persistence strategy to the
custom mapping type PhoneNunber Type. However, properties belonging to other classes, too, can
delegate their persistence strategy to PhoneNunber Type, by explicitly using the @ype annotation.

@ Note

Package level annotations are placed in a file named package-i nf o. j ava in the
appropriate package. Place your annotations before the package declaration.

@ypeDef (
nanme = "phoneNunber",
def aul t For Type = PhoneNunber. cl ass,

96

Property

typeC ass = PhoneNunber Type. cl ass

@ntity
public class ContactDetails {
[...1]
private PhoneNunber | ocal PhoneNunber;
@vype(type="phoneNurber")
private OverseasPhoneNunber overseasPhoneNunber;

[...]

The following example shows the usage of the par anet er s attribute to customize the TypeDef.

//in org/hibernate/test/annotations/entity/package-info.java
@ypeDef s(
{
@ypeDef
nane="caster",
typed ass = CasterStringType.cl ass,
paraneters = {
@par anet er (nane="cast", val ue="|ower")

)

package org. hibernate.test.annotations.entity;

//in org/hibernate/test/annotations/entity/Forest.java
public class Forest {

@vype(type="caster")

public String getSnall Text() {

When using composite user type, you will have to express column definitions. The @ol urms has
been introduced for that purpose.

@vype(type="org. hibernate.test.annotations.entity.MnetaryAnount User Type")
@Col ums(col ums = {
@Col um(nane="r_anmount "),
@Col utm(nane="r _currency")
b
publi c MonetaryAnount get Amount () {
return anount;

public class MnetaryAnpunt inplenents Serializable {
private Bi gDeci mal anount;
private Currency currency;

97

Chapter 5. Basic O/R Mapping

5.1.4.1.2. Access type

By default the access type of a class hierarchy is defined by the position of the @ d or @nbedded! d
annotations. If these annotations are on a field, then only fields are considered for persistence
and the state is accessed via the field. If there annotations are on a getter, then only the getters
are considered for persistence and the state is accessed via the getter/setter. That works well in
practice and is the recommended approach.

@ Note

The placement of annotations within a class hierarchy has to be consistent
(either field or on property) to be able to determine the default access type. It is
recommended to stick to one single annotation placement strategy throughout your
whole application.

However in some situations, you need to:

« force the access type of the entity hierarchy
» override the access type of a specific entity in the class hierarchy
» override the access type of an embeddable type

The best use case is an embeddable class used by several entities that might not use the same
access type. In this case it is better to force the access type at the embeddable class level.

To force the access type on a given class, use the @\ccess annotation as showed below:

@ntity
public class Order {
@d private Long id;
public Long getld() { return id; }
public void setld(Long id) { this.id =id; }

@nbedded private Address address;
public Address get Address() { return address; }
public void setAddress() { this.address = address; }

}

@ntity

public class User {
private Long id;
@d public Long getld() { return id; }
public void setld(Long id) { this.id =id; }

98

Property

private Address address;
@nbedded public Address get Address() { return address; }
public void setAddress() { this.address = address; }

}

@nbeddabl e

@\ccess(AcessType. PROPERTY)

public class Address {
private String street1l;
public String getStreet1() { return streetl; }
public void setStreetl() { this.streetl = streetl; }

private hashCode; //not persistent

You can also override the access type of a single property while keeping the other properties
standard.

@ntity
public class Oder {
@d private Long id;
public Long getld() { returnid; }
public void setld(Long id) { this.id =id; }
@ransient private String userld;
@ransient private String orderld;

@\ccess(AccessType. PROPERTY)
public String getOrderNunber() { return userld + ":" + orderld; }
public void setOrderNunber() { this.userld = ...; this.orderld = ...; }

In this example, the default access type is FI ELD except for the or der Nunber property. Note that
the corresponding field, if any must be marked as @ ansi ent ortransi ent.

@ @org.hibernate.annotations.AccessType

The annotation @r g. hi ber nat e. annot ati ons. AccessType should be
considered deprecated for FIELD and PROPERTY access. Itis still useful however
if you need to use a custom access type.

5.1.4.1.3. Optimistic lock

It is sometimes useful to avoid increasing the version number even if a given property is
dirty (particularly collections). You can do that by annotating the property (or collection) with
@ptimsticLock(excluded=true).

More formally, specifies that updates to this property do not require acquisition of the optimistic
lock.

99

Chapter 5. Basic O/R Mapping

5.1.4.1.4. Declaring column attributes

The column(s) used for a property mapping can be defined using the @ol uim annotation. Use
it to override default values (see the JPA specification for more information on the defaults). You
can use this annotation at the property level for properties that are:

* not annotated at all
 annotated with @Basi ¢

» annotated with @/er si on
« annotated with @.ob

» annotated with @enpor al

@Entity
public class Flight inplenents Serializable {

@Col um(updat abl e = fal se, nanme = "flight_nanme", nullable = fal se, |ength=50)
public String getNane() { ... }

The nane property is mapped to the f I i ght _nanme column, which is not nullable, has a length of
50 and is not updatable (making the property immutable).

This annotation can be applied to regular properties as well as @ d or @/er si on properties.

@ol umm(
name="col umNane" ;
bool ean uni que() default false;
bool ean nul | abl e() default true;
bool ean insertabl e() default true;
bool ean updat abl e() default true;
String columbDefinition() default "";
String table() default ""

int length() default 255;

00000000 SS

int precision() default 0; // decimal precision
int scale() default 0; // decinal scale

€ nane (optional): the column name (default to the property name)
€ uni que (optional): set a unique constraint on this column or not (default false)

© nul | abl e (optional); set the column as nullable (default true).

100

Property

@ insertabl e (optional): whether or not the column will be part of the insert statement (default

true)

© updat abl e (optional): whether or not the column will be part of the update statement (default
true)

€ columbDefi nition (optional): override the sql DDL fragment for this particular column (non
portable)

€ tabl e (optional): define the targeted table (default primary table)

© | ength (optional): column length (default 255)

€) precision (optional): column decimal precision (default 0)

{{ scal e (optional): column decimal scale if useful (default 0)

5.1.4.1.5. Formula

Sometimes, you want the Database to do some computation for you rather than in the JVM, you
might also create some kind of virtual column. You can use a SQL fragment (aka formula) instead
of mapping a property into a column. This kind of property is read only (its value is calculated by
your formula fragment).

@ormul a("obj _I ength * obj _height * obj_w dth")

public | ong getObject Vol unme()

The SQL fragment can be as complex as you want and even include subselects.
5.1.4.1.6. Non-annotated property defaults

If a property is not annotated, the following rules apply:

* If the property is of a single type, it is mapped as @Basic

« Otherwise, if the type of the property is annotated as @Embeddable, it is mapped as
@Embedded

« Otherwise, if the type of the property is Seri al i zabl e, it is mapped as @asi ¢ in a column
holding the object in its serialized version

» Otherwise, if the type of the property is j ava. sql . d ob or j ava. sql . Bl ob, it is mapped as
@.ob with the appropriate LobType

5.1.4.2. Property mapping with hbm.xml

The <pr oper t y> element declares a persistent JavaBean style property of the class.

<property
nanme="propertyNanme" o
col um="col unm_nange" 9

101

Chapter 5. Basic O/R Mapping

o0 oo

o

@

80 © ©

[i1]

type="t ypenane"

updat e="true] f al se"
insert="true|fal se"

formul a="arbitrary SQ. expression"
access="fiel d| property| C assNanme"
| azy="true| f al se"

uni que="true| f al se"
not-nul | ="true| fal se"

optimstic-lock="true|fal se"

08600000000

gener at ed="never | i nsert| al ways"

node="el enent - nane| @ttribute-nane| el ement/ @ttribute|."
i ndex="i ndex_nane"

uni que_key="uni que_key_i d"

| engt h="1L"

preci si on="P"

scal e="S"

name: the name of the property, with an initial lowercase letter.

col umm (optional - defaults to the property name): the name of the mapped database table
column. This can also be specified by nested <col unn> element(s).
t ype (optional): a name that indicates the Hibernate type.

update, insert (optional - defaults to t r ue): specifies that the mapped columns should
be included in SQL UPDATE and/or | NSERT statements. Setting both to f al se allows a pure
"derived" property whose value is initialized from some other property that maps to the same
column(s), or by a trigger or other application.

formul a (optional): an SQL expression that defines the value for a computed property.
Computed properties do not have a column mapping of their own.

access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.

| azy (optional - defaults to f al se): specifies that this property should be fetched lazily when
the instance variable is first accessed. It requires build-time bytecode instrumentation.

uni que (optional): enables the DDL generation of a unique constraint for the columns. Also,
allow this to be the target of a property-ref.

not - nul | (optional): enables the DDL generation of a nullability constraint for the columns.

optim stic-1ock (optional - defaults to t r ue): specifies that updates to this property do or
do not require acquisition of the optimistic lock. In other words, it determines if a version
increment should occur when this property is dirty.

gener at ed (optional - defaults to never): specifies that this property value is actually
generated by the database. See the discussion of generated properties for more information.

typename could be:

1. The name of a Hibernate basic type: i nteger, string, character, date, tinestanp,

float, binary, serializable, object, blob etc.

102

Embedded objects (aka components)

2. The name of a Java class with a default basic type: i nt, float, char, java.lang. String,
java.util.Date, java.lang.Integer, java.sql.d ob etc.

3. The name of a serializable Java class.

4. The class name of a custom type: com i | | f1 ow. t ype. MyCust oniType etc.

If you do not specify a type, Hibernate will use reflection upon the named property and guess
the correct Hibernate type. Hibernate will attempt to interpret the name of the return class of the
property getter using, in order, rules 2, 3, and 4. In certain cases you will need the t ype attribute.
For example, to distinguish between Hi ber nat e. DATE and Hi ber nat e. TI MESTAMP, or to specify
a custom type.

The access attribute allows you to control how Hibernate accesses the property at runtime. By
default, Hibernate will call the property get/set pair. If you specify access="fi el d", Hibernate
will bypass the get/set pair and access the field directly using reflection. You can specify
your own strategy for property access by naming a class that implements the interface
org. hi bernate. property. PropertyAccessor.

A powerful feature is derived properties. These properties are by definition read-only. The property
value is computed at load time. You declare the computation as an SQL expression. This then
translates to a SELECT clause subquery in the SQL query that loads an instance:

<property name="total Price"
formul a="(SELECT SUM (li.quantity*p.price) FROM Lineltemli, Product p
VWHERE |i . productld = p.productld
AND |i.custonerld = custonerld
AND | i . order Nunber = order Nunber)"/>

You can reference the entity table by not declaring an alias on a particular column. This would be
cust oner | d in the given example. You can also use the nested <f or mul a> mapping element if
you do not want to use the attribute.

5.1.5. Embedded objects (aka components)

Embeddable objects (or components) are objects whose properties are mapped to the same table
as the owning entity's table. Components can, in turn, declare their own properties, components
or collections

It is possible to declare an embedded component inside an entity and even override its column
mapping. Component classes have to be annotated at the class level with the @nbeddabl e
annotation. It is possible to override the column mapping of an embedded object for a particular
entity using the @nbedded and @\t t ri but eOver ri de annotation in the associated property:

@ntity
public class Person inplenents Serializable {

/1 Persistent conponent using defaults

103

Chapter 5. Basic O/R Mapping

Addr ess honeAddr ess;

@nbedded

@\ttributeOverrides({
@\ttributeOverride(nane="iso2", colum = @ol um(nanme="bornl so2")),
@\ttributeOverride(nane="nanme", columm = @ol umm(nanme="bor nCount ryNane"))

)
Country bornln;

}
@nbeddabl e
public class Address inplenments Serializable {
String city;
Country nationality; //no overriding here
}
@nbeddabl e

public class Country inplenments Serializable {
private String iso2;
@ol um(nane="countryNane") private String nane;

public String getlso2() { return iso2; }
public void setlso2(String iso2) { this.iso2

iso2; }

public String getNane() { return nane; }
public void setNane(String name) { this.name = nane; }

An embeddable object inherits the access type of its owning entity (note that you can override
that using the @\ccess annotation).

The Person entity has two component properties, homeAddr ess and bornl n. honmeAddr ess
property has not been annotated, but Hibernate will guess that it is a persistent component by
looking for the @nbeddabl e annotation in the Address class. We also override the mapping of a
column name (to bor nCount r yNane) with the @nbedded and @t t ri but eOverri de annotations
for each mapped attribute of Country. As you can see, Country is also a nested component
of Addr ess, again using auto-detection by Hibernate and JPA defaults. Overriding columns of
embedded objects of embedded objects is through dotted expressions.

@nbedded
@\ttributeOverrides({
@\ttributeOverride(name="city", colum = @ol um(nanme="fld_city")),
@\t tributeOverride(name="nationality.iso2", colum = @ol um(nane="nat_Iso2")),
@\t tributeOverride(nane="nationality.nane", colum = @ol um(nanme="nat _CountryNane"))
/I nationality colums in honeAddress are overridden

1)

104

Embedded objects (aka components)

Addr ess honeAddr ess;

Hibernate Annotations supports something that is not explicitly supported by the JPA specification.
You can annotate a embedded object with the @mappedSuper cl ass annotation to make the
superclass properties persistent (see @mhappedSuper cl ass for more informations).

You can also use association annotations in an embeddable object (ie @neToOne,
@manyToOne, @neToMany or @anyToMany). To override the association columns you can use
@\ssoci ati onOverri de.

If you want to have the same embeddable object type twice in the same entity, the column name
defaulting will not work as several embedded objects would share the same set of columns. In
plain JPA, you need to override at least one set of columns. Hibernate, however, allows you to
enhance the default naming mechanism through the Nam ngSt r at egy interface. You can write a
strategy that prevent name clashing in such a situation. Def aul t Conponent Saf eNani ngSt r at egy
is an example of this.

If a property of the embedded object points back to the owning entity, annotate it with the @ar ent
annotation. Hibernate will make sure this property is properly loaded with the entity reference.

In XML, use the <conponent > element.

<comnponent
nanme="propertyNanme"
cl ass="cl assNane"
insert="true|fal se"
updat e="true] f al se"
access="fi el d| property| d assNane"
lazy="true| fal se"

optimstic-lock="true|fal se"

20000 BQO0CS

uni que="true] fal se"
node="el enent - nang| . "

<property />
<many-to-one />

</ conponent >

€ nane: the name of the property.

€ cl ass (optional - defaults to the property type determined by reflection): the name of the
component (child) class.
© insert: dothe mapped columns appear in SQL | NSERTs?

@ updat e: do the mapped columns appear in SQL UPDATEs?

105

Chapter 5. Basic O/R Mapping

€ access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.

© | azy (optional - defaults to f al se): specifies that this component should be fetched lazily
when the instance variable is first accessed. It requires build-time bytecode instrumentation.

€ optinistic-lock (optional - defaults to t r ue): specifies that updates to this component
either do or do not require acquisition of the optimistic lock. It determines if a version
increment should occur when this property is dirty.

€ uni que (optional - defaults to f al se): specifies that a unique constraint exists upon all
mapped columns of the component.

The child <pr oper t y> tags map properties of the child class to table columns.

The <conponent > element allows a <par ent > subelement that maps a property of the component
class as a reference back to the containing entity.

The <dynani c- conponent > element allows a Map to be mapped as a component, where the
property names refer to keys of the map. See Section 9.5, “Dynamic components” for more
information. This feature is not supported in annotations.

5.1.6. Inheritance strategy

Java is a language supporting polymorphism: a class can inherit from another. Several strategies
are possible to persist a class hierarchy:

» Single table per class hierarchy strategy: a single table hosts all the instances of a class
hierarchy

« Joined subclass strategy: one table per class and subclass is present and each table persist the
properties specific to a given subclass. The state of the entity is then stored in its corresponding
class table and all its superclasses

« Table per class strategy: one table per concrete class and subclass is present and each table
persist the properties of the class and its superclasses. The state of the entity is then stored
entirely in the dedicated table for its class.

5.1.6.1. Single table per class hierarchy strategy

With this approach the properties of all the subclasses in a given mapped class hierarchy are
stored in a single table.

Each subclass declares its own persistent properties and subclasses. Version and id properties
are assumed to be inherited from the root class. Each subclass in a hierarchy must define a unique
discriminator value. If this is not specified, the fully qualified Java class name is used.

@ntity

106

Inheritance strategy

@ nheritance(strategy=IlnheritanceType. SI NGLE_TABLE)
@i scrim nat or Col umm(

name="pl anet ype",

di scri m nat or Type=Di scri ni nat or Type. STRI NG

)

@i scri m nat or Val ue(" Pl ane")
public class Plane { ... }

@Entity
@i scri m nator Val ue(" A320")
public class A320 extends Plane { ... }

In hbm.xml, for the table-per-class-hierarchy mapping strategy, the <subcl ass> declaration is
used. For example:

<subcl ass
nane="C assNane"
di scri m nator-val ue="di scri m nat or _val ue"

proxy="Proxyl nterface"

Q00O

| azy="true|fal se"

dynami c-update="true| f al se"
dynami c-insert="true| fal se"
entity-nanme="EntityNane"
node="el ement - nane"

ext ends="Super cl assNane" >

<property />

</ subcl ass>

nane: the fully qualified class name of the subclass.

di scrim nat or - val ue (optional - defaults to the class name): a value that distinguishes
individual subclasses.
pr oxy (optional): specifies a class or interface used for lazy initializing proxies.

o0 oo

| azy (optional - defaults to t r ue): setting | azy="f al se" disables the use of lazy fetching.

For information about inheritance mappings see Chapter 10, Inheritance mapping.
5.1.6.1.1. Discriminator

Discriminators are required for polymorphic persistence using the table-per-class-hierarchy
mapping strategy. It declares a discriminator column of the table. The discriminator column
contains marker values that tell the persistence layer what subclass to instantiate for a particular
row. Hibernate Core supports the follwoing restricted set of types as discriminator column: st ri ng,
character,integer, byte, short, bool ean, yes_no, true_fal se.

Use the @i scri ni nat or Col urm to define the discriminator column as well as the discriminator
type.

107

Chapter 5. Basic O/R Mapping

(3

You can also use @i scri nmi nat or For mul a to express in SQL a virtual discriminator column. This
is particularly useful when the discriminator value can be extracted from one or more columns of
the table. Both @i scri i nat or Col utm and @i scri mi nat or For nul a are to be set on the root
entity (once per persisted hierarchy).

@r g. hi ber nat e. annot ati ons. Di scri i nat or Opt i ons allows to optionally specify Hibernate
specific discriminator options which are not standardized in JPA. The available options are f or ce
and i nsert. The force attribute is useful if the table contains rows with "extra" discriminator
values that are not mapped to a persistent class. This could for example occur when working with
alegacy database. If f or ce is set to t r ue Hibernate will specify the allowed discriminator values in
the SELECT query, even when retrieving all instances of the root class. The second option -i nsert
- tells Hibernate whether or not to include the discriminator column in SQL | NSERTs. Usually the
column should be part of the | NSERT statement, but if your discriminator column is also part of a
mapped composite identifier you have to set this option to f al se.

Tip

Q

There is also a @r g. hi ber nat e. annot at i ons. For ceDi scri ni nat or annotation
which is deprecated since version 3.6. Use @i scri ni nat or Opt i ons instead.

Finally, use @i scri nm nat or Val ue on each class of the hierarchy to specify the value stored in
the discriminator column for a given entity. If you do not set @i scri mi nat or Val ue on a class,
the fully qualified class name is used.

@ntity
@ nheritance(strategy=InheritanceType. SI NGLE_TABLE)
@i scrim nat or Col um(
nane="pl anet ype",
di scri m nat or Type=Di scri nmi nat or Type. STRI NG
)
@i scrim nat or Val ue(" Pl ane")
public class Plane { ... }

@ntity

@i scrim nator Val ue(" A320")
public class A320 extends Plane { ... }

In hbm.xml, the <di scri m nat or > element is used to define the discriminator column or formula:

108

Inheritance strategy

<di scri m nat or
col um="di scri m nat or _col um"
type="di scri m nat or _type"
force="true|fal se"

insert="true|fal se"

2000®

formul a="arbitrary sqgl expression”

e

col unm (optional - defaults to cl ass): the name of the discriminator column.

t ype (optional - defaults to st ri ng): a name that indicates the Hibernate type

® 0

f or ce (optional - defaults to f al se): "forces" Hibernate to specify the allowed discriminator

values, even when retrieving all instances of the root class.

@ insert (optional - defaults to t r ue): set this to f al se if your discriminator column is also part
of a mapped composite identifier. It tells Hibernate not to include the column in SQL | NSERTSs.

© formul a (optional): an arbitrary SQL expression that is executed when a type has to be

evaluated. It allows content-based discrimination.

Actual values of the discriminator column are specified by the di scri ni nat or - val ue attribute of
the <cl ass> and <subcl ass> elements.

The for mul a attribute allows you to declare an arbitrary SQL expression that will be used to
evaluate the type of a row. For example:

<di scri m nat or
formul a="case when CLASS_TYPE in ('a', 'b', '"c') then 0 else 1 end"
type="integer"/>

5.1.6.2. Joined subclass strategy

Each subclass can also be mapped to its own table. This is called the table-per-subclass mapping
strategy. An inherited state is retrieved by joining with the table of the superclass. A discriminator
column is not required for this mapping strategy. Each subclass must, however, declare a table
column holding the object identifier. The primary key of this table is also a foreign key to the
superclass table and described by the @r i mar yKeyJoi nCol urms or the <key> element.

@ntity @abl e(name="CATS")

@ nheritance(strategy=InheritanceType. JO NED)

public class Cat inplenents Serializable {
@d @ener at edVal ue(generat or ="cat - uui d")
@=neri cGener at or (name="cat - uui d", strategy="uuid")
String getld() { returnid; }

109

Chapter 5. Basic O/R Mapping

@ntity @abl e(nane="DOVESTI C_CATS")

@r i mar yKeyJoi nCol urm(name=" CAT")

public class DonesticCat extends Cat {
public String getNane() { return nane; }

(3

In hbm.xml, use the <j oi ned- subcl ass> element. For example:

<j oi ned- subcl ass
nane="C assNane"
t abl e="t abl enane"

proxy="Proxyl nterface"

o000

| azy="true| f al se"

dynani c-updat e="true| f al se"
dynami c-insert="true| fal se"
schema="schema"

cat al og="cat al 0g"

ext ends="Super cl assNane"
persi st er="Cl assNane"

subsel ect =" SQL expressi on"
entity-name="EntityNane"
node="el enent - nanme" >

<key >
<property />

</ j oi ned- subcl ass>

name: the fully qualified class name of the subclass.
t abl e: the name of the subclass table.

pr oxy (optional): specifies a class or interface to use for lazy initializing proxies.

oo0o0e

| azy (optional, defaults to t r ue): setting | azy="f al se" disables the use of lazy fetching.

Use the <key> element to declare the primary key / foreign key column. The mapping at the start
of the chapter would then be re-written as:

<?xm version="1.0"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C

110

Inheritance strategy

"-//H bernat e/ H bernate Mapping DID//EN'
"http://ww. hi bernate. or g/ dtd/ hi ber nat e- mappi ng- 3. 0. dt d" >

<hi ber nat e- mappi ng package="eg">
<cl ass name="Cat" tabl e="CATS">

<id nane="id" colum="uid" type="long">
<generator class="hilo"/>

</id>

<property name="birthdate" type="date"/>
<property name="color" not-null="true"/>
<property name="sex" not-null="true"/>

<property name="wei ght"/>
<many-to-one name="mate"/>
<set nanme="kittens">
<key col um="MOTHER"/ >
<one-to-nany cl ass="Cat"/>
</set>
<j oi ned- subcl ass nane="Donesti cCat" tabl e="DOVESTI C_CATS">
<key col um="CAT"/ >
<property name="nane" type="string"/>
</ j oi ned- subcl ass>
</cl ass>

<cl ass nane="eg. Dog" >
<I-- mapping for Dog could go here -->
</ cl ass>

</ hi ber nat e- mappi ng>

For information about inheritance mappings see Chapter 10, Inheritance mapping.

5.1.6.3. Table per class strategy

A third option is to map only the concrete classes of an inheritance hierarchy to tables. This
is called the table-per-concrete-class strategy. Each table defines all persistent states of the
class, including the inherited state. In Hibernate, it is not necessary to explicitty map such
inheritance hierarchies. You can map each class as a separate entity root. However, if you wish
use polymorphic associations (e.g. an association to the superclass of your hierarchy), you need
to use the union subclass mapping.

@ntity
@nheritance(strategy = InheritanceType. TABLE_PER CLASS)
public class Flight inplenents Serializable { ... }

Or in hbm.xml:

<uni on- subcl ass
name="C assNane" o

t abl e="t abl enane" 9

111

Chapter 5. Basic O/R Mapping

proxy="Proxyl nterface" e

lazy="true|fal se" 0
dynami c-updat e="true| fal se"
dynamni c-insert="true| fal se"
schema="schema"

cat al og="cat al og"

ext ends="Super cl assNane"
abstract="true| fal se"

persi st er="C assNange"
subsel ect =" SQL expressi on"
entity-nanme="EntityNane"
node="el ement - nane" >

<property />

</ uni on- subcl ass>

nane: the fully qualified class name of the subclass.
t abl e: the name of the subclass table.

pr oxy (optional): specifies a class or interface to use for lazy initializing proxies.

Q00 e

| azy (optional, defaults to t r ue): setting | azy=""f al se" disables the use of lazy fetching.

No discriminator column or key column is required for this mapping strategy.

For information about inheritance mappings see Chapter 10, Inheritance mapping.
5.1.6.4. Inherit properties from superclasses

This is sometimes useful to share common properties through a technical or a business superclass
without including it as a regular mapped entity (ie no specific table for this entity). For that purpose
you can map them as @mppedSuper cl ass.

@bappedSuper cl ass

public class BaseEntity {
@Basi ¢
@enpor al (Tenpor al Type. TI MESTAMP)
public Date getlLastUpdate() { ... }
public String getlLastUpdater() { ... }

}

@ntity class Order extends BaseEntity {
@d public Integer getld() { ... }

In database, this hierarchy will be represented as an Or der table having the i d, | ast Updat e and
| ast Updat er columns. The embedded superclass property mappings are copied into their entity
subclasses. Remember that the embeddable superclass is not the root of the hierarchy though.

112

Inheritance strategy

You can override columns defined in entity superclasses at the root entity level using the
@t tributeOverride annotation.

@mppedSuper cl ass
public class FlyingQbject inplenments Serializable {

public int getAltitude() {
return altitude;

@r ansi ent
public int getMetricA titude() {
return metricAltitude;

@manyToOne
public Propul si onType get Propul sion() {

113

Chapter 5. Basic O/R Mapping

return nmetricAltitude;

@ntity
@\ttributeOverride(nane="al titude", colum = @ol um(nanme="fld_altitude"))
@\ssoci ati onOverri de(

name="propul si on",

j oi nCol ums = @oi nCol um(nanme="f1d_propul si on_fk")

)

public class Plane extends FlyingObject {

The al titude property will be persisted in an fld_altitude column of table Pl ane and the
propulsion association will be materialized in a f | d_pr opul si on_f k foreign key column.

You can define @ttributeOverride(s) and @ssoci ati onOverride(s) on @ntity classes,
@mppedSuper cl ass classes and properties pointing to an @nbeddabl e object.

In hbm.xml, simply map the properties of the superclass in the <cl ass> element of the entity that
needs to inherit them.

5.1.6.5. Mapping one entity to several tables

While not recommended for a fresh schema, some legacy databases force your to map a single
entity on several tables.

Using the @econdar yTabl e or @econdar yTabl es class level annotations. To express that a
column is in a particular table, use the t abl e parameter of @ol um or @oi nCol um.

@Entity
@rabl e(name="Mai nCat ")
@secondar yTabl es({

@econdar yTabl e(name="Cat 1", pkJoi nCol utms={

@r i mar yKeyJoi nCol um(nane="cat _i d", referencedCol umNanme="id")

IE

@econdar yTabl e(name="Cat 2", uni queConstrai nt s={ @i queConstrai nt (col umNanes={"storyPart2"})})
b
public class Cat inplements Serializable {

private Integer id;
private String nang;
private String storyPart1;
private String storyPart2;

@d @ener at edVval ue
public Integer getld() {
return id;

public String getNane() {
return nang;

114

Inheritance strategy

}

@Col um(t abl e="Cat 1")
public String getStoryPart1() {
return storyPartl;

}

@col um(t abl e="Cat 2")
public String getStoryPart2() {
return storyPart2;

}

In this example, name will be in Mai nCat . st oryPart 1 will be in Cat 1 and st or yPart 2 will be in
Cat 2. Cat 1 will be joined to Mai nCat using the cat _i d as a foreign key, and Cat 2 using i d (ie
the same column name, the Mai nCat id column has). Plus a unique constraint on st oryPart 2
has been set.

There is also additional tuning accessible via the @rg. hi bernate. annot ati ons. Tabl e
annotation:

» fetch: If set to JOIN, the default, Hibernate will use an inner join to retrieve a secondary table
defined by a class or its superclasses and an outer join for a secondary table defined by a
subclass. If set to SELECT then Hibernate will use a sequential select for a secondary table
defined on a subclass, which will be issued only if a row turns out to represent an instance of
the subclass. Inner joins will still be used to retrieve a secondary defined by the class and its
superclasses.

e inverse: If true, Hibernate will not try to insert or update the properties defined by this join.
Default to false.

e optional : If enabled (the default), Hibernate will insert a row only if the properties defined by
this join are non-null and will always use an outer join to retrieve the properties.

 forei gnKey: defines the Foreign Key name of a secondary table pointing back to the primary
table.

Make sure to use the secondary table name in the appl i est o property

@Entity
@rabl e(nanme="Mai nCat ")
@econdar yTabl e(name="Cat 1")
@r g. hi ber nat e. annot at i ons. Tabl e(
appl i esTo="Cat 1",
f et ch=Fet chMbde. SELECT,
optional =true)
public class Cat inplements Serializable {

private Integer id;
private String nang;
private String storyPart1;
private String storyPart?2;

115

Chapter 5. Basic O/R Mapping

@d @zener at edVal ue
public Integer getld() {
return id;

public String getNane() {
return name;

@Col um(t abl e="Cat 1")
public String getStoryPart1() {
return storyPartl;

@col um(t abl e=" Cat 2")
public String getStoryPart2() {
return storyPart2;

In hbm.xml, use the <j oi n> element.

<join
tabl e="t abl enane"
schema="owner"
cat al og="cat al og"
fetch="join|select"

inverse="true|fal se"

Q00000O

optional ="true|fal se">
<key ... [>
<property ... />

</j oi n>

€ tabl e: the name of the joined table.

€ schenm (optional): overrides the schema name specified by the root <hi ber nat e- mappi ng>
element.

€ catal og (optional): overrides the catalog name specified by the root <hi ber nat e- mappi ng>
element.

@ fetch (optional - defaults to j oi n): if set to j oi n, the default, Hibernate will use an inner
join to retrieve a <j oi n> defined by a class or its superclasses. It will use an outer join for
a <j oi n> defined by a subclass. If set to sel ect then Hibernate will use a sequential select
for a <j oi n> defined on a subclass. This will be issued only if a row represents an instance
of the subclass. Inner joins will still be used to retrieve a <j oi n> defined by the class and
its superclasses.

116

Mapping one to one and one to many associations

© inverse (optional - defaults to f al se): if enabled, Hibernate will not insert or update the
properties defined by this join.

€ optional (optional - defaults to f al se): if enabled, Hibernate will insert a row only if the
properties defined by this join are non-null. It will always use an outer join to retrieve the
properties.

For example, address information for a person can be mapped to a separate table while preserving
value type semantics for all properties:

<cl ass nane="Person"
t abl e=" PERSON" >

<id name="id" colum="PERSON ID'>...</id>

<j oi n tabl e=" ADDRESS" >
<key col umm="ADDRESS | D'/ >
<property nanme="address"/>
<property name="zip"/>
<property name="country"/>
</join>

This feature is often only useful for legacy data models. We recommend fewer tables than classes
and a fine-grained domain model. However, it is useful for switching between inheritance mapping
strategies in a single hierarchy, as explained later.

5.1.7. Mapping one to one and one to many associations

To link one entity to an other, you need to map the association property as a to one association.
In the relational model, you can either use a foreign key or an association table, or (a bit less
common) share the same primary key value between the two entities.

To mark an association, use either @sanyToOne or @net oOne.

@manyToOne and @neToOne have a parameter named t ar get Ent i t y which describes the target
entity name. You usually don't need this parameter since the default value (the type of the property
that stores the association) is good in almost all cases. However this is useful when you want to
use interfaces as the return type instead of the regular entity.

Setting a value of the cascade attribute to any meaningful value other than nothing will propagate
certain operations to the associated object. The meaningful values are divided into three
categories.

1. basic operations, which include: persist, nmerge, delete, save-update, evict,
replicate, lock and refresh;

2. special values: del et e- or phan oral | ;

117

Chapter 5. Basic O/R Mapping

3. comma-separated combinations of operation names: cascade="persi st, merge, evi ct" or
cascade="al |, del et e-or phan". See Section 11.11, “Transitive persistence” for a full
explanation. Note that single valued many-to-one associations do not support orphan delete.

By default, single point associations are eagerly fetched in JPA 2. You can mark it as lazily
fetched by using @anyToOne(f et ch=Fet chType. LAZY) in which case Hibernate will proxy the
association and load it when the state of the associated entity is reached. You can force Hibernate
not to use a proxy by using @azyToOne(NO_PROXY) . In this case, the property is fetched lazily
when the instance variable is first accessed. This requires build-time bytecode instrumentation.
lazy="false" specifies that the association will always be eagerly fetched.

With the default JPA options, single-ended associations are loaded with a subsequent select if
set to LAZY, or a SQL JOIN is used for EAGER associations. You can however adjust the fetching
strategy, ie how data is fetched by using @et ch. Fet chMbde can be SELECT (a select is triggered
when the association needs to be loaded) or JO N (use a SQL JOIN to load the association while
loading the owner entity). JO Noverrides any lazy attribute (an association loaded through a JO N
strategy cannot be lazy).

5.1.7.1. Using a foreign key or an association table

An ordinary association to another persistent class is declared using a

* @manyTone if several entities can point to the the target entity
* @neToOne if only a single entity can point to the the target entity

and a foreign key in one table is referencing the primary key column(s) of the target table.

@Entity
public class Flight inplenments Serializable {
@manyToOne(cascade = {CascadeType. PERSI ST, CascadeType. MERGE})
@oi nCol um(nane="COWP_I| D")
publ i c Conpany get Conpany() {
return conpany;

}

The @oi nCol unm attribute is optional, the default value(s) is the concatenation of the name of
the relationship in the owner side, _ (underscore), and the name of the primary key column in the
owned side. In this example conpany_i d because the property name is conpany and the column
id of Company isi d.

@ntity
public class Flight inplenents Serializable {
@manyToOne(cascade = {CascadeType. PERSI ST, CascadeType. MERCE}, targetEntity=Conpanyl npl.class)
@oi nCol um(nane="COWP_I| D")
publ i c Conpany get Conpany() {
return conpany;

118

Mapping one to one and one to many associations

public interface Conpany {

You can also map a to one association through an association table. This association table
described by the @oi nTabl e annotation will contains a foreign key referencing back the entity
table (through @oi nTabl e. j oi nCol utms) and a a foreign key referencing the target entity table
(through @oi nTabl e. i nver seJoi nCol unms).

@ntity
public class Flight inplenents Serializable {
@manyToOne(cascade = {CascadeType. PERSI ST, CascadeType. MERGE})
@oi nTabl e(name="Fl i ght _Conpany",
j oi nCol ums = @oi nCol um(nane="FLI GHT_I D"),
i nver seJoi nCol ums = @oi nCol um(name="COWP_I D")
)
publ i c Conpany get Conpany() {
return conpany;

@ntity

public class Ticket inplenents Serializable {
@manyToOne
@oi nCol umOr Formul a(formul a="(firstname + ' ' + |lastnane)")

public Person getOaner() {
return person;

You can mark an association as mandatory by using the optional =fal se attribute. We
recommend to use Bean Validation's @t Nul | annotation as a better alternative however. As a
consequence, the foreign key column(s) will be marked as not nullable (if possible).

119

Chapter 5. Basic O/R Mapping

When Hibernate cannot resolve the association because the expected associated element is notin
database (wrong id on the association column), an exception is raised. This might be inconvenient
for legacy and badly maintained schemas. You can ask Hibernate to ignore such elements instead
of raising an exception using the @t Found annotation.

Example 5.1. @NotFound annotation

@ntity
public class Child {

@manyToOne

@\ot Found(act i on=Not FoundAct i on. | GNORE)
public Parent getParent() { ... }

Sometimes you want to delegate to your database the deletion of cascade when a given entity is
deleted. In this case Hibernate generates a cascade delete constraint at the database level.

Example 5.2. @OnDelete annotation

@ntity
public class Child {

@manyToOne

@nDel et e(act i on=0nDel et eAct i on. CASCADE)
public Parent getParent() { ... }

Foreign key constraints, while generated by Hibernate, have a fairly unreadable name. You can
override the constraint name using @or ei gnkey.

Example 5.3. @ForeignKey annotation

@ntity
public class Child {

@manyToOne

@or ei gnKey(nanme="FK_PARENT")
public Parent getParent() { ... }

}

alter table Child add constraint FK_PARENT foreign key (parent_id) references Parent

120

Mapping one to one and one to many associations

Sometimes, you want to link one entity to an other not by the target entity primary key but
by a different unique key. You can achieve that by referencing the unique key column(s) in
@oi nCol um. r ef er enceCol untmNane.

@ntity
cl ass Person {
@d | nteger personNunber;
String firstNang;
@Col um(nane="1")
String initial;
String | ast Nane;

}
@Entity
cl ass Hone {
@manyToOne
@oi nCol ums({
@oi nCol um(nanme="first_nanme", referencedCol umNane="firstNane"),
@oi nCol um(nanme="init", referencedCol utmName="1"),
@oi nCol um(nanme="1 ast _nanme", referencedCol umNane="1ast Nane"),
})
Per son owner
}

This is not encouraged however and should be reserved to legacy mappings.

In hbm.xml, mapping an association is similar. The main difference is that a @neToOne is mapped
as <many-t o-one uni que="true"/ >, let's dive into the subject.

<many-t o- one
name="pr opert yName"
col um="col unm_nang"
cl ass="C assNane"
cascade="cascade_styl e"
fetch="join|select"
updat e="true| f al se"
insert="true|fal se"
property-ref="propertyNanmeFromissoci at edd ass"
access="fi el d| property| C assNane"
uni que="true]| fal se"
not-null ="true|fal se"
optim stic-1lock="true|false"
| azy="pr oxy| no- proxy| fal se"
not - f ound="1i gnor e| excepti on"

entity-nane="EntityNane"

500000000 ODRQOOODOO

formul a="arbitrary SQ. expression"

121

Chapter 5. Basic O/R Mapping

®
&

node="el enent - name| @t tri bute-nane| el ement/ @ttribute|."
enbed- xm ="t rue| fal se"

i ndex="i ndex_nane"

uni que_key="uni que_key_i d"

forei gn-key="forei gn_key_nane"

nane: the name of the property.

col unm (optional): the name of the foreign key column. This can also be specified by nested
<col um> element(s).

cl ass (optional - defaults to the property type determined by reflection): the name of the
associated class.

cascade (optional): specifies which operations should be cascaded from the parent object
to the associated object.

fetch (optional - defaults to sel ect): chooses between outer-join fetching or sequential
select fetching.

updat e, insert (optional - defaults to t rue): specifies that the mapped columns should
be included in SQL UPDATE and/or | NSERT statements. Setting both to f al se allows a pure
"derived" association whose value is initialized from another property that maps to the same
column(s), or by a trigger or other application.

property-ref (optional): the name of a property of the associated class that is joined to this
foreign key. If not specified, the primary key of the associated class is used.

access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.

uni que (optional): enables the DDL generation of a unique constraint for the foreign-key
column. By allowing this to be the target of a pr operty-ref, you can make the association
multiplicity one-to-one.

not - nul | (optional): enables the DDL generation of a nullability constraint for the foreign
key columns.

optim stic-1lock (optional - defaults to t r ue): specifies that updates to this property do or
do not require acquisition of the optimistic lock. In other words, it determines if a version
increment should occur when this property is dirty.

| azy (optional - defaults to proxy): by default, single point associations are proxied.
| azy="no- proxy" specifies that the property should be fetched lazily when the instance
variable is first accessed. This requires build-time bytecode instrumentation. | azy="f al se"
specifies that the association will always be eagerly fetched.

not - f ound (optional - defaults to excepti on): specifies how foreign keys that reference
missing rows will be handled. i gnor e will treat a missing row as a null association.

enti ty-name (optional): the entity name of the associated class.

f or mul a (optional): an SQL expression that defines the value for a computed foreign key.

Setting a value of the cascade attribute to any meaningful value other than none will propagate
certain operations to the associated object. The meaningful values are divided into three
categories. First, basic operations, which include: persi st, nerge, delete, save-update,
evict, replicate, lock and refresh; second, special values: del et e- or phan; and third,al |

122

Mapping one to one and one to many associations

comma-separated combinations of operation names: cascade="persist, nerge, evict" or
cascade="al | , del ete-orphan". See Section 11.11, “Transitive persistence” for a full
explanation. Note that single valued, many-to-one and one-to-one, associations do not support
orphan delete.

Here is an example of a typical many- t o- one declaration:

<many-to-one name="product" class="Product"” col um="PRODUCT_I D"/ >

The property-ref attribute should only be used for mapping legacy data where a foreign key
refers to a unigue key of the associated table other than the primary key. This is a complicated
and confusing relational model. For example, if the Product class had a unique serial number
that is not the primary key. The uni que attribute controls Hibernate's DDL generation with the
SchemaExport tool.

<property nanme="serial Nunber" uni que="true" type="string" col um="SERI AL_NUVBER'/ >

Then the mapping for Or der | t emmight use:

<many-to-one name="product" property-ref="serial Nunber" col unm="PRODUCT_SERI AL_NUMBER'/ >

This is not encouraged, however.

If the referenced unique key comprises multiple properties of the associated entity, you should
map the referenced properties inside a named <pr oper ti es> element.

If the referenced unique key is the property of a component, you can specify a property path:

<many-to-one name="owner" property-ref="identity.ssn" colum="OMNER_SSN'/>

5.1.7.2. Sharing the primary key with the associated entity

The second approach is to ensure an entity and its associated entity share the same primary key.
In this case the primary key column is also a foreign key and there is no extra column. These
associations are always one to one.

Example 5.4. One to One association

@ntity
public class Body {
@d
public Long getld() { returnid; }

123

Chapter 5. Basic O/R Mapping

@neTone(cascade = CascadeType. ALL)

@mpsl d
public Heart getHeart() {
return heart;

@ntity
public class Heart {
@d
public Long getld() { ...}

(3

In hbm.xml, use the following mapping.

<one-to0- one
name="pr opert yNane"
cl ass="0d assNane"
cascade="cascade_styl e"
constrai ned="true| fal se"
fetch="join|select"
property-ref="propertyNameFromAssoci at edC ass"
access="fiel d| property| d assNanme"
formul a="any SQ expression”

| azy="pr oxy| no- proxy| f al se"

80000ODOCODOES®

entity-name="EntityNane"
node="el ement - nane| @t tri bute-nane| el ement/ @ttribute|."
enbed- xm ="true| f al se"
forei gn-key="forei gn_key_name"
/>

nane: the name of the property.

© e

cl ass (optional - defaults to the property type determined by reflection): the name of the
associated class.

® cascade (optional): specifies which operations should be cascaded from the parent object
to the associated object.

124

Mapping one to one and one to many associations

o

@

@ @9

10

const rai ned (optional): specifies that a foreign key constraint on the primary key of the
mapped table and references the table of the associated class. This option affects the order
in which save() and del et e() are cascaded, and determines whether the association can
be proxied. It is also used by the schema export tool.

fetch (optional - defaults to sel ect): chooses between outer-join fetching or sequential
select fetching.

property-ref (optional): the name of a property of the associated class that is joined to the
primary key of this class. If not specified, the primary key of the associated class is used.
access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.

f or mul a (optional): almost all one-to-one associations map to the primary key of the owning
entity. If this is not the case, you can specify another column, columns or expression to join
on using an SQL formula. See or g. hi ber nat e. t est . onet oonef or mul a for an example.

| azy (optional - defaults to proxy): by default, single point associations are proxied.
| azy="no- proxy" specifies that the property should be fetched lazily when the
instance variable is first accessed. It requires build-time bytecode instrumentation.
| azy="f al se" specifies that the association will always be eagerly fetched. Note that
if constrained="fal se", proxying is impossible and Hibernate will eagerly fetch the
association.

entity-name (optional): the entity name of the associated class.

Primary key associations do not need an extra table column. If two rows are related by the
association, then the two table rows share the same primary key value. To relate two objects by
a primary key association, ensure that they are assigned the same identifier value.

For a primary key association, add the following mappings to Enpl oyee and Per son respectively:

<one-to-one nane="person" class="Person"/>

<one-to-one nanme="enpl oyee" cl ass="Enpl oyee" constrai ned="true"/>

Ensure that the primary keys of the related rows in the PERSON and EMPLOYEE tables are
equal. You use a special Hibernate identifier generation strategy called f or ei gn:

<cl ass name="person" tabl e="PERSON'>

<id nane="id" col um="PERSON | D'>
<generator class="foreign">
<par am name="property" >enpl oyee</ par anr
</ gener at or >
</id>

<one-to-one name="enpl oyee"
cl ass="Enpl oyee"
constrai ned="true"/>

125

Chapter 5. Basic O/R Mapping

</cl ass>

A newly saved instance of Person is assigned the same primary key value as the Enpl oyee
instance referred with the enpl oyee property of that Per son.

5.1.8. Natural-id

Although we recommend the use of surrogate keys as primary keys, you should try to identify
natural keys for all entities. A natural key is a property or combination of properties that is unique
and non-null. It is also immutable. Map the properties of the natural key as @at ural | d or map
them inside the <nat ur al - i d> element. Hibernate will generate the necessary unique key and
nullability constraints and, as a result, your mapping will be more self-documenting.

@Entity

public class Citizen {
@d
@xner at edVal ue
private Integer id;
private String firstnane;
private String | astnane;

@Natural I d
@anyToOne
private State state;

@\aturalld
private String ssn;

//and | ater on query

List results = s.createCriteria(Citizen.class)
.add(Restrictions.naturalld().set("ssn", "1234").set("state", ste))
list();

Or in XML,

<natural -id nutabl e="true|fal se"/>
<property ... [>
<many-to-one ... />

</natural -id>

It is recommended that you implement equal s() and hashCode() to compare the natural key
properties of the entity.

This mapping is not intended for use with entities that have natural primary keys.

126

Any

« mut abl e (optional - defaults to f al se): by default, natural identifier properties are assumed to
be immutable (constant).

5.1.9. Any

There is one more type of property mapping. The @ny mapping defines a polymorphic association
to classes from multiple tables. This type of mapping requires more than one column. The first
column contains the type of the associated entity. The remaining columns contain the identifier. It
is impossible to specify a foreign key constraint for this kind of association. This is not the usual
way of mapping polymorphic associations and you should use this only in special cases. For
example, for audit logs, user session data, etc.

The @ny annotation describes the column holding the metadata information. To link the value of
the metadata information and an actual entity type, The @nyDef and @nyDef s annotations are
used. The et aType attribute allows the application to specify a custom type that maps database
column values to persistent classes that have identifier properties of the type specified by i dType.
You must specify the mapping from values of the net aType to class names.

@\ny(metaCol um = @ol um(nanme = "property_type"), fetch=FetchType. EAGER)

@\ny Met aDef (
idType = "integer",
met aType = "string",

met aVal ues = {
@kt aVal ue(value = "S", targetEntity = StringProperty.class),
@ktaVal ue(value = "I", targetEntity = IntegerProperty.class)
)
@oi nCol um(name = "property_id")
public Property get Mai nProperty() {
return mai nProperty;

}

Note that @nyDef can be mutualized and reused. It is recommended to place it as a package
metadata in this case.

//on a package
@\nyMet aDef (nanme="property"
idType = "integer",
met aType = "string",
met aVal ues = {
@kt aVal ue(val ue
@kt aVal ue(val ue
1)

package org. hi bernate.test.annotati ons. any;

"S", targetEntity = StringProperty.class),
"I", targetEntity = IntegerProperty.class)

/lin a class

@\ny(netaDef="property", netaColum = @ol um(nane = "property_type"), fetch=FetchType. EAGER)

@oi nCol um(name = "property_id")
public Property get Mai nProperty() {
return mai nProperty;

127

Chapter 5. Basic O/R Mapping

The hbm.xml equivalent is:

<any nanme="bei ng" id-type="long" neta-type="string">
<net a- val ue val ue="TBL_ANI MAL" cl ass="Ani mal "/ >
<net a-val ue val ue="TBL_HUVAN' cl ass="Hunman"/>
<met a- val ue val ue="TBL_ALI EN' class="Alien"/>
<col um nane="t abl e_nane"/ >
<col um nane="id"/>

</ any>

@ Note

You cannot mutualize the metadata in hbm.xml as you can in annotations.

<any
nanme="propertyNanme"
id-type="idtypenane"
nmet a- t ype="net at ypenane"
cascade="cascade_styl e"

access="fi el d| property| C assNane"

Q000080

optimstic-lock="true|fal se"

<neta-value ... />
<neta-value ... />
<colum />
<colum />

nane: the property name.

©

i d-t ype: the identifier type.

)

nmet a-type (optional - defaults to string): any type that is allowed for a discriminator
mapping.

cascade (optional- defaults to none): the cascade style.

access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.

optim stic-1ock (optional - defaults to t r ue): specifies that updates to this property either
do or do not require acquisition of the optimistic lock. It defines whether a version increment
should occur if this property is dirty.

@ 09

128

Properties

5.1.10. Properties

The <properti es> element allows the definition of a named, logical grouping of the properties
of a class. The most important use of the construct is that it allows a combination of properties
to be the target of a property-ref. It is also a convenient way to define a multi-column unique
constraint. For example:

<properties
nane="| ogi cal Nane"
insert="true|fal se"
updat e="true] f al se"

optimstic-lock="true|false"

2000®O

uni que="true| f al se"

<property />
<many-to-one />

</ properties>

nane: the logical name of the grouping. It is not an actual property name.
i nsert: do the mapped columns appear in SQL | NSERTs?
updat e: do the mapped columns appear in SQL UPDATES?

oo0o0o0e

optim stic-1ock (optional - defaults to t r ue): specifies that updates to these properties
either do or do not require acquisition of the optimistic lock. It determines if a version
increment should occur when these properties are dirty.

© uni que (optional - defaults to fal se): specifies that a unique constraint exists upon all
mapped columns of the component.

For example, if we have the following <pr operti es> mapping:

<cl ass nane="Person">
<i d nane="personNunber"/>

<properties nane="nane"
uni que="true" update="fal se">
<property nanme="firstName"/>
<property name="initial"/>
<property nanme="| ast Nane"/ >
</ properties>
</ cl ass>

You might have some legacy data association that refers to this unique key of the Per son table,
instead of to the primary key:

129

Chapter 5. Basic O/R Mapping

<many-to- one name="owner"
cl ass="Person" property-ref="npane">
<col um nanme="first Name"/>
<col um nane="initial"/>
<col um nane="1 ast Nanme"/ >
</ many-t o- one>

@ntity
class Person {
@d | nteger personNunber;
String firstNane;
@ol uim(nane="1")
String initial;
String | ast Nane;
}

@ntity
class Home {
@anyToOne
@oi nCol ums({
@oi nCol um(nane="first_nane", referencedCol umNanme="firstNane"),
@oi nCol um(nane="init", referencedCol umNanme="1"),
@oi nCol um(nane="1 ast _nane", referencedCol umNanme="| ast Nane"),

19

Per son owner

The use of this outside the context of mapping legacy data is not recommended.

5.1.11. Some hbm.xml specificities

The hbm.xml structure has some specificities naturally not present when using annotations, let's
describe them briefly.

5.1.11.1. Doctype

All XML mappings should declare the doctype shown. The actual DTD can be found at the
URL above, in the directory hi ber nat e- x. x. x/ src/ or g/ hi bernate , or in hi bernate3.jar.
Hibernate will always look for the DTD in its classpath first. If you experience lookups of the DTD
using an Internet connection, check the DTD declaration against the contents of your classpath.

130

Some hbm.xml specificities

5.1.11.1.1. EntityResolver

Hibernate will first attempt to resolve DTDs in its classpath. It does this is by registering a custom
org. xm . sax. EntityResol ver implementation with the SAXReader it uses to read in the xml
files. This custom Ent i t yResol ver recognizes two different systemld namespaces:

* ahi bernate nanespace is recognized whenever the resolver encounters a systemld starting
with ht t p: / / www. hi ber nat e. or g/ dt d/ . The resolver attempts to resolve these entities via the
classloader which loaded the Hibernate classes.

e a user nanespace is recognized whenever the resolver encounters a systemld using a
cl asspat h: // URL protocol. The resolver will attempt to resolve these entities via (1) the
current thread context classloader and (2) the classloader which loaded the Hibernate classes.

The following is an example of utilizing user namespacing:

<?xm version="1.0"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DTD 3. 0//EN"
"http://hibernate.sourceforge. net/hi bernate-nmappi ng-3.0.dtd" [
<IENTITY types SYSTEM "cl asspat h://your/donai n/types. xm ">
1>

<hi ber nat e- mappi ng package="your.domai n" >
<cl ass nane="MEntity">
<id nane="id" type="ny-customid-type">

</id>
<cl ass>
&t ypes;
</ hi ber nat e- mappi ng>

Where t ypes. xni is a resource in the your . donai n package and contains a custom typedef.

5.1.11.2. Hibernate-mapping

This element has several optional attributes. The schena and cat al og attributes specify that
tables referred to in this mapping belong to the named schema and/or catalog. If they are
specified, tablenames will be qualified by the given schema and catalog names. If they are
missing, tablenames will be unqualified. The def aul t - cascade attribute specifies what cascade
style should be assumed for properties and collections that do not specify a cascade attribute.
By default, the aut o-i nport attribute allows you to use unqualified class names in the query
language.

<hi ber nat e- mappi ng
schema="schenmaNange" o

cat al og="cat al ogNane" 9

131

Chapter 5. Basic O/R Mapping

def aul t - cascade="cascade_styl e"
defaul t-access="fi el d| property| O assNare"
defaul t-1azy="true| fal se"

aut o-i nport="true| fal se"

Q0000

package="package. name"
/>

schena (optional): the name of a database schema.
cat al og (optional): the name of a database catalog.
def aul t - cascade (optional - defaults to none): a default cascade style.

def aul t - access (optional - defaults to property): the strategy Hibernate should use for
accessing all properties. It can be a custom implementation of Pr opert yAccessor .

def aul t -1 azy (optional - defaults to t r ue): the default value for unspecified | azy attributes
of class and collection mappings.

aut o-i nport (optional - defaults to t r ue): specifies whether we can use unqualified class
names of classes in this mapping in the query language.

package (optional): specifies a package prefix to use for unqualified class names in the
mapping document.

@ © o000°

-~

If you have two persistent classes with the same unqualified name, you should set aut o-
i mport ="fal se". An exception will result if you attempt to assign two classes to the same
"imported" name.

The hi ber nat e- mappi ng element allows you to nest several persistent <cl ass> mappings, as
shown above. It is, however, good practice (and expected by some tools) to map only a single
persistent class, or a single class hierarchy, in one mapping file and name it after the persistent
superclass. For example, Cat . hbm xm , Dog. hbm xm , or if using inheritance, Ani mal . hbm xni .

5.1.11.3. Key

The <key> element is featured a few times within this guide. It appears anywhere the parent
mapping element defines a join to a new table that references the primary key of the original table.
It also defines the foreign key in the joined table:

<key
col um="col umnang"
on- del et e="noacti on| cascade"
property-ref="propertyNanme"
not-nul I ="true|fal se"

updat e="true] f al se"

Q0000®O

uni que="true] fal se"
/>

132

Some hbm.xml specificities

© col um (optional): the name of the foreign key column. This can also be specified by nested
<col utm> element(s).

on- del et e (optional - defaults to noact i on): specifies whether the foreign key constraint has
database-level cascade delete enabled.

e

@

property-ref (optional): specifies that the foreign key refers to columns that are not the
primary key of the original table. It is provided for legacy data.

not - nul | (optional): specifies that the foreign key columns are not nullable. This is implied
whenever the foreign key is also part of the primary key.

updat e (optional): specifies that the foreign key should never be updated. This is implied
whenever the foreign key is also part of the primary key.

uni que (optional): specifies that the foreign key should have a unique constraint. This is
implied whenever the foreign key is also the primary key.

@ o o

For systems where delete performance is important, we recommend that all keys should be
defined on- del et e="cascade" . Hibernate uses a database-level ON CASCADE DELETE constraint,
instead of many individual DELETE statements. Be aware that this feature bypasses Hibernate's
usual optimistic locking strategy for versioned data.

The not-nul | and update attributes are useful when mapping a unidirectional one-to-many
association. If you map a unidirectional one-to-many association to a non-nullable foreign key,
you must declare the key column using <key not-nul | ="true">.

5.1.11.4. Import

If your application has two persistent classes with the same name, and you do not want to specify
the fully qualified package name in Hibernate queries, classes can be "imported" explicitly, rather
than relying upon aut o-i nport ="t rue". You can also import classes and interfaces that are not
explicitly mapped:

<inport class="java.lang. Object" renanme="Universe"/>

<i nport
cl ass="C assNane" o

r enanme=" Shor t Nare" 9

€ cl ass: the fully qualified class name of any Java class.

€ renane (optional - defaults to the unqualified class name): a name that can be used in the
guery language.

133

Chapter 5. Basic O/R Mapping

@ Note

This feature is unique to hbm.xml and is not supported in annotations.

5.1.11.5. Column and formula elements

Mapping elements which accept a col uim attribute will alternatively accept a <col utm>
subelement. Likewise, <f or mul a> is an alternative to the f or mul a attribute. For example:

<col um
name="col umm_nane"
| engt h="N"
preci sion="N'
scal e="N'
not-nul I ="true| fal se"
uni que="true] fal se"
uni que- key="nul ti col unm_uni que_key_nane"
i ndex="i ndex_nane"
sql -type="sql _type_nane"
check="SQ. expression"
def aul t ="SQ. expression"
read="SQ. expression"
write="SQL expression"/>

<fornul a>SQL expr essi on</f or nul a>

Most of the attributes on col urm provide a means of tailoring the DDL during automatic schema
generation. The read and wri t e attributes allow you to specify custom SQL that Hibernate will
use to access the column's value. For more on this, see the discussion of column read and write
expressions.

The col urm and f or mul a elements can even be combined within the same property or association
mapping to express, for example, exotic join conditions.

<many-t o-one nanme="honeAddress" cl ass="Address"
insert="fal se" update="fal se">
<col umm nane="person_i d" not-null="true" |ength="10"/>
<fornul a>' MAI LI NG </ f or mul a>
</ many-t o- one>

5.2. Hibernate types

5.2.1. Entities and values

In relation to the persistence service, Java language-level objects are classified into two groups:

134

Basic value types

An entity exists independently of any other objects holding references to the entity. Contrast this
with the usual Java model, where an unreferenced object is garbage collected. Entities must be
explicitly saved and deleted. Saves and deletions, however, can be cascaded from a parent entity
to its children. This is different from the ODMG model of object persistence by reachability and
corresponds more closely to how application objects are usually used in large systems. Entities
support circular and shared references. They can also be versioned.

An entity's persistent state consists of references to other entities and instances of value types.
Values are primitives: collections (not what is inside a collection), components and certain
immutable objects. Unlike entities, values in particular collections and components, are persisted
and deleted by reachability. Since value objects and primitives are persisted and deleted along
with their containing entity, they cannot be independently versioned. Values have no independent
identity, so they cannot be shared by two entities or collections.

Until now, we have been using the term "persistent class" to refer to entities. We will continue to
do that. Not all user-defined classes with a persistent state, however, are entities. A component is
a user-defined class with value semantics. A Java property of type j ava. | ang. Stri ng also has
value semantics. Given this definition, all types (classes) provided by the JDK have value type
semantics in Java, while user-defined types can be mapped with entity or value type semantics.
This decision is up to the application developer. An entity class in a domain model will normally
have shared references to a single instance of that class, while composition or aggregation usually
translates to a value type.

We will revisit both concepts throughout this reference guide.

The challenge is to map the Java type system, and the developers' definition of entities and
value types, to the SQL/database type system. The bridge between both systems is provided
by Hibernate. For entities, <cl ass>, <subcl ass> and so on are used. For value types we use
<pr oper t y>, <conponent >etc., that usually have a t ype attribute. The value of this attribute is
the name of a Hibernate mapping type. Hibernate provides a range of mappings for standard
JDK value types out of the box. You can write your own mapping types and implement your own
custom conversion strategies.

With the exception of collections, all built-in Hibernate types support null semantics.

5.2.2. Basic value types

The built-in basic mapping types can be roughly categorized into the following:

i nteger, long, short, float, double, character, byte, bool ean, yes_no, true_fal se
Type mappings from Java primitives or wrapper classes to appropriate (vendor-specific) SQL
column types. bool ean, yes_no and true_f al se are all alternative encodings for a Java

bool ean or j ava. | ang. Bool ean.

string
A type mapping from j ava. | ang. St ri ng to VARCHAR (or Oracle VARCHAR?).

135

Chapter 5. Basic O/R Mapping

date, tine, tinmestanp
Type mappings from java. util.Date and its subclasses to SQL types DATE, TI M and
TI MESTAMP (Or equivalent).

cal endar, cal endar_date
Type mappings fromj ava. uti | . Cal endar to SQL types TI MESTAMP and DATE (or equivalent).

bi g_deci mal, bi g_integer
Type mappings from j ava. mat h. Bi gDeci nal and j ava. mat h. Bi gl nt eger to NUMERI C (or
Oracle NUMBER).

| ocal e, tinezone, currency
Type mappings from j ava. util.Local e, java. util.Ti meZone and java. util. Currency
to VARCHAR (or Oracle VARCHAR?). Instances of Local e and Cur r ency are mapped to their ISO
codes. Instances of Ti nezZone are mapped to their | D.

cl ass
Atype mapping fromj ava. | ang. C ass to VARCHAR (or Oracle VARCHAR?2). A d ass is mapped
to its fully qualified name.

bi nary
Maps byte arrays to an appropriate SQL binary type.

t ext
Maps long Java strings to a SQL LONGVARCHAR or TEXT type.

i mage
Maps long byte arrays to a SQL LONGVARBI NARY.

serializable
Maps serializable Java types to an appropriate SQL binary type. You can also indicate the
Hibernate type seri al i zabl e with the name of a serializable Java class or interface that does
not default to a basic type.

cl ob, bl ob
Type mappings for the JDBC classes j ava. sql . O ob and j ava. sql . Bl ob. These types can
be inconvenient for some applications, since the blob or clob object cannot be reused outside
of a transaction. Driver support is patchy and inconsistent.

materi al i zed_cl ob
Maps long Java strings to a SQL CLOB type. When read, the CLOB value is immediately
materialized into a Java string. Some drivers require the CLOB value to be read within a
transaction. Once materialized, the Java string is available outside of the transaction.

mat eri al i zed_bl ob
Maps long Java byte arrays to a SQL BLOB type. When read, the BLOB value is immediately
materialized into a byte array. Some drivers require the BLOB value to be read within a
transaction. Once materialized, the byte array is available outside of the transaction.

136

Custom value types

i mm _dat e, immtine, i mm_tinestanp, i mm_cal endar, i mm_cal endar _dat e,
i mm serializable, immbinary
Type mappings for what are considered mutable Java types. This is where Hibernate makes
certain optimizations appropriate only for immutable Java types, and the application treats
the object as immutable. For example, you should not call Dat e. set Ti me() for an instance
mapped asi nm ti mest anp. To change the value of the property, and have that change made
persistent, the application must assign a new, nonidentical, object to the property.

Unique identifiers of entities and collections can be of any basic type except bi nary, bl ob and
cl ob. Composite identifiers are also allowed. See below for more information.

The basic value types have corresponding Type constants defined on
or g. hi ber nat e. Hi ber nat e. For example, H ber nat e. STRI NG represents the st ri ng type.

5.2.3. Custom value types

It is relatively easy for developers to create their own value types. For example, you might want
to persist properties of type j ava. | ang. Bi gl nt eger to VARCHAR columns. Hibernate does not
provide a built-in type for this. Custom types are not limited to mapping a property, or collection
element, to a single table column. So, for example, you might have a Java property get Name() /
set Name() of type java. | ang. String that is persisted to the columns FI RST_NAME, | NI Tl AL,
SURNAME.

To implement a custom type, implement either org. hi bernate. UserType or
or g. hi ber nat e. Conposi t eUser Type and declare properties using the fully qualified classname
of the type. View or g. hi bernnat e. t est. Doubl eStri ngType to see the kind of things that are
possible.

<property nanme="twoStrings" type="org.hibernate.test.DoubleStringType">
<col um nane="first_string"/>
<col umm nanme="second_string"/>

</ property>

Notice the use of <col unn> tags to map a property to multiple columns.

The ConpositeUser Type, EnhancedUser Type, User Col | ecti onType, and User Ver si onType
interfaces provide support for more specialized uses.

You can even supply parameters to a User Type in the mapping file. To do this, your User Type must
implement the or g. hi ber nat e. usert ype. Par anet eri zedType interface. To supply parameters
to your custom type, you can use the <t ype> element in your mapping files.

<property name="priority">
<type nane="com nyconpany. usertypes. Def aul t Val uel nt eger Type" >
<par am nane="def aul t " >0</ par an»
</type>
</ property>

137

Chapter 5. Basic O/R Mapping

The User Type can now retrieve the value for the parameter named def aul t from the Properti es
object passed to it.

If you regularly use a certain User Type, it is useful to define a shorter name for it. You can do this
using the <t ypedef > element. Typedefs assign a name to a custom type, and can also contain a
list of default parameter values if the type is parameterized.

<typedef class="com nyconpany. usertypes. Defaul t Val uel nt eger Type" nane="defaul t _zero">
<par am nane="def aul t " >0</ par an»
</typedef >

<property name="priority" type="default_zero"/>

It is also possible to override the parameters supplied in a typedef on a case-by-case basis by
using type parameters on the property mapping.

Even though Hibernate's rich range of built-in types and support for components means you will
rarely need to use a custom type, it is considered good practice to use custom types for non-
entity classes that occur frequently in your application. For example, a Monet ar yAnount class is a
good candidate for a Conposi t eUser Type, even though it could be mapped as a component. One
reason for this is abstraction. With a custom type, your mapping documents would be protected
against changes to the way monetary values are represented.

5.3. Mapping a class more than once

It is possible to provide more than one mapping for a particular persistent class. In this case, you
must specify an entity name to disambiguate between instances of the two mapped entities. By
default, the entity name is the same as the class name. Hibernate lets you specify the entity name
when working with persistent objects, when writing queries, or when mapping associations to the
named entity.

<cl ass nane="Contract" tabl e="Contracts"
entity-name="Current Contract">

<set name="history" inverse="true"
order-by="effecti veEndDat e desc">
<key col um="current Contractld"/>
<one-to-nmany entity-nane="H storical Contract"/>
</ set>
</ cl ass>

<cl ass name="Contract" tabl e="ContractH story"
entity-name="Historical Contract">

<many-t o- one name="current Contract"
col um="current Contract|d"
entity-nanme="Current Contract"/>

138

SQL quoted identifiers

</ cl ass>
Associations are now specified using enti t y- nane instead of cl ass.

Note

This feature is not supported in Annotations

5.4. SQL quoted identifiers

You can force Hibernate to quote an identifier in the generated SQL by enclosing the table or
column name in backticks in the mapping document. Hibernate will use the correct quotation style
forthe SQL Di al ect . This is usually double quotes, but the SQL Server uses brackets and MySQL
uses backticks.

@ntity @abl e(nane=""Line Item")

class Lineltem {
@d @ol um(nanme=""ItemlIld ") Integer id;
@Col um(nane=""Iltem # ") int itemNunber

}

<cl ass nane="Linelten! table=""Line Item">

<id name="id" colum=""Item|d "/><generator class="assigned"/></id>
<property nanme="itemNunber" colum=""Item# "/>
</ cl ass>

5.5. Generated properties

Generated properties are properties that have their values generated by the database. Typically,
Hibernate applications needed to refresh objects that contain any properties for which the
database was generating values. Marking properties as generated, however, lets the application
delegate this responsibility to Hibernate. When Hibernate issues an SQL INSERT or UPDATE
for an entity that has defined generated properties, it immediately issues a select afterwards to
retrieve the generated values.

Properties marked as generated must additionally be non-insertable and non-updateable. Only
versions, timestamps, and simple properties, can be marked as generated.

never (the default): the given property value is not generated within the database.

i nsert: the given property value is generated on insert, but is not regenerated on subsequent
updates. Properties like created-date fall into this category. Even though version and timestamp
properties can be marked as generated, this option is not available.

al ways: the property value is generated both on insert and on update.

139

Chapter 5. Basic O/R Mapping

To mark a property as generated, use @=ner at ed.

5.6. Column transformers: read and write expressions

Hibernate allows you to customize the SQL it uses to read and write the values of columns mapped
to simple properties. For example, if your database provides a set of data encryption functions,
you can invoke them for individual columns like this:

@ntity
class CreditCard {
@ol um(nane="credi t_card_nun')
@ol utmTr ansf or mer (
read="decrypt (credit_card_num",
wite="encrypt(?)")
public String getCreditCardNunber() { return creditCardNunber; }
public void setCreditCardNunber(String nunber) { this.creditCardNunber = nunber; }
private String creditCardNunber;

or in XML

<property nanme="credit Car dNunber" >
<col um
nanme="credit_card_nunf
read="decrypt (credit_card_num"
write="encrypt(?)"/>
</ property>

@ Note

You can use the plural form @ol umTr ansf or mer s if more than one columns need
to define either of these rules.

If a property uses more that one column, you must use the f or Col umm attribute to specify which
column, the expressions are targeting.

@ntity
class User {
@vype(type="com acne. type. Credi t CardType")
@ol ums({
@Col um(nane="credit_card_nunt'),
@Col um(nane="exp_date") })
@Col uimTr ansf or mer (
forCol um="credit_card_nuni,
read="decrypt (credit_card_num",
wite="encrypt(?)")
public CreditCard getCreditCard() { return creditCard; }

140

Auxiliary database objects

public void setCreditCard(CreditCard card) { this.creditCard = card; }
private CreditCard creditCard;

Hibernate applies the custom expressions automatically whenever the property is referenced in a
query. This functionality is similar to a derived-property f or mul a with two differences:

» The property is backed by one or more columns that are exported as part of automatic schema
generation.
» The property is read-write, not read-only.

The wri t e expression, if specified, must contain exactly one '?' placeholder for the value.

5.7. Auxiliary database objects

Auxiliary database objects allow for the CREATE and DROP of arbitrary database objects.
In conjunction with Hibernate's schema evolution tools, they have the ability to fully define a
user schema within the Hibernate mapping files. Although designed specifically for creating and
dropping things like triggers or stored procedures, any SQL command that can be run via a
j ava. sgl . St at enent . execut e() method is valid (for example, ALTERS, INSERTS, etc.). There
are essentially two modes for defining auxiliary database objects:

The first mode is to explicitly list the CREATE and DROP commands in the mapping file:

<hi ber nat e- mappi ng>

<dat abase- obj ect >
<creat e>CREATE TRI GGER ny_trigger ...</create>
<dr op>DROP TRI GGER ny_tri gger </ drop>
</ dat abase- obj ect >
</ hi ber nat e- mappi ng>

The second mode is to supply a custom class that constructs the CREATE and DROP commands.
This custom class must implement the or g. hi ber nat e. mappi ng. Auxi | i ar yDat abaseQbj ect
interface.

<hi ber nat e- mappi ng>

<dat abase- obj ect >
<definition class="MTriggerDefinition"/>
</ dat abase- obj ect >
</ hi ber nat e- mappi ng>

Additionally, these database objects can be optionally scoped so that they only apply when certain
dialects are used.

141

Chapter 5. Basic O/R Mapping

<hi ber nat e- mappi ng>

<dat abase- obj ect >
<definition class="MTriggerDefinition"/>
<di al ect - scope nane="org. hi bernate. di al ect. Oracl e9i Di al ect"/>
<di al ect-scope nane="org. hi bernate. di al ect. Oracl e10gDi al ect"/ >
</ dat abase- obj ect >
</ hi ber nat e- mappi ng>

(3

142

Chapter 6.

Types

As an Object/Relational Mapping solution, Hibernate deals with both the Java and JDBC
representations of application data. An online catalog application, for example, most likely has
Product object with a number of attributes such as a sku, name, etc. For these individual
attributes, Hibernate must be able to read the values out of the database and write them
back. This 'marshalling’ is the function of a Hibernate type, which is an implementation of the
or g. hi ber nat e. t ype. Type interface. In addition, a Hibernate type describes various aspects of
behavior of the Java type such as "how is equality checked?" or "how are values cloned?".

Important

A Hibernate type is neither a Java type nor a SQL datatype; it provides a information
about both.

When you encounter the term type in regards to Hibernate be aware that usage
might refer to the Java type, the SQL/IDBC type or the Hibernate type.

Hibernate categorizes types into two high-level groups: value types (see Section 6.1, “Value
types”) and entity types (see Section 6.2, “Entity types”).

6.1. Value types

The main distinguishing characteristic of a value type is the fact that they do not define their own
lifecycle. We say that they are "owned" by something else (specifically an entity, as we will see
later) which defines their lifecycle. Value types are further classified into 3 sub-categories: basic
types (see Section 6.1.1, “Basic value types”), composite types (see Section 6.1.2, “Composite
types”) amd collection types (see Section 6.1.3, “Collection types”).

6.1.1. Basic value types

The norm for basic value types is that they map a single database value (column) to a single, non-
aggregated Java type. Hibernate provides a number of built-in basic types, which we will present
in the following sections by the Java type. Mainly these follow the natural mappings recommended
in the JDBC specification. We will later cover how to override these mapping and how to provide
and use alternative type mappings.

6.1.1.1. java.lang.String

org. hi bernate.type. StringType
Maps a string to the JDBC VARCHAR type. This is the standard mapping for a string if no
Hibernate type is specified.

Registered under stri ng and j ava. | ang. St ri ng in the type registry (see Section 6.5, “Type
registry”).

143

Chapter 6. Types

org. hi bernate.type. MaterializedCd ob
Maps a string to a JDBC CLOB type

Registered under mat eri al i zed_cl ob in the type registry (see Section 6.5, “Type registry”).

org. hi bernate. type. Text Type
Maps a string to a JDBC LONGVARCHAR type

Registered under t ext in the type registry (see Section 6.5, “Type registry”).

6.1.1.2. java.l ang. character (Or char primitive)
org. hi bernat e. type. Char act er Type
Maps a char orj ava. | ang. Char act er to a JDBC CHAR

Registered under char andj ava. | ang. Char act er in the type registry (see Section 6.5, “Type
registry”).

6.1.1.3. java.l ang. Bool ean (Or boolean primitive)
org. hi bernate. type. Bool eanType

Maps a boolean to a JDBC BIT type

Registered under bool ean and j ava. | ang. Bool ean in the type registry (see Section 6.5,
“Type registry”).

org. hi bernate. type. Nuneri cBool eanType
Maps a boolean to a JDBC INTEGER type as 0 = false, 1 = true

Registered under nurrer i c_bool ean in the type registry (see Section 6.5, “Type registry”).

org. hi bernate. type. YesNoType
Maps a boolean to a JDBC CHAR type as ('N'| 'n") = false, ('Y'|'y") = true

Registered under yes_no in the type registry (see Section 6.5, “Type registry”).

org. hi bernate. type. TrueFal seType
Maps a boolean to a JDBC CHAR type as ('F'| 'f') = false, ('T"|'t'") = true

Registered under t rue_f al se in the type registry (see Section 6.5, “Type registry”).

6.1.1.4. java.lang. Byte (Or byte primitive)
org. hi bernate. type. Byt eType
Maps a byte or j ava. | ang. Byt e to a JDBC TINYINT

Registered under byt e and j ava. | ang. Byt e in the type registry (see Section 6.5, “Type
registry”).

144

Basic value types

6.1.1.5. java.lang. short (Or short primitive)

org. hi bernat e. type. Short Type
Maps a short or j ava. | ang. Short to a JDBC SMALLINT

Registered under short and j ava. | ang. Short in the type registry (see Section 6.5, “Type
registry”).

6.1.1.6. java.lang. Integer (Or int primitive)

org. hi bernate. type. | nt eger Types
Maps anint or j ava. | ang. | nt eger to a JDBC INTEGER

Registered under i nt and j ava. | ang. | nt eger in the type registry (see Section 6.5, “Type
registry”).

6.1.1.7. java.lang. Long (Or long primitive)

or g. hi bernate. type. LongType
Maps a long or j ava. | ang. Long to a JDBC BIGINT

Registered under | ong and j ava. | ang. Long in the type registry (see Section 6.5, “Type
registry”).

6.1.1.8. java.lang. Float (Or float primitive)

org. hi bernate. type. Fl oat Type
Maps a float or j ava. | ang. Fl oat to a JDBC FLOAT

Registered under f| oat and j ava. | ang. Fl oat in the type registry (see Section 6.5, “Type
registry”).

6.1.1.9. java.l ang. boubl e (Or double primitive)

org. hi bernat e. type. Doubl eType
Maps a double or j ava. | ang. Doubl e to a JDBC DOUBLE

Registered under doubl e and j ava. | ang. Doubl e in the type registry (see Section 6.5, “Type
registry”).

6.1.1.10. j ava. nat h. Bi gl nt eger

or g. hi bernate. type. Bi gl nt eger Type
Maps a j ava. mat h. Bi gl nt eger to a JDBC NUMERIC

Registered under big_integer and java.math. Bi gl nteger in the type registry (see
Section 6.5, “Type registry”).

145

Chapter 6. Types

6.1.1.11. j ava. mat h. Bi gDeci mal

org. hi bernate. t ype. Bi gDeci nal Type
Maps aj ava. mat h. Bi gDeci nal to a JDBC NUMERIC

Registered under bi g _deci mal and java. mat h. Bi gDeci mal in the type registry (see
Section 6.5, “Type registry”).

6.1.1.12. java. util.Date OF java.sql . Ti nest anp

org. hi bernat e. type. Ti mest anpType
Maps aj ava. sql . Ti mest anp to a JDBC TIMESTAMP

Registered underti mest anp, j ava. sql . Ti mest anp andj ava. uti | . Dat e in the type registry
(see Section 6.5, “Type registry”).

6.1.1.13. java.sql. Tinme

org. hi bernate. type. Ti mreType
Maps a j ava. sql . Ti me to a JDBC TIME

Registered under ti me and j ava. sql . Ti ne in the type registry (see Section 6.5, “Type
registry”).

6.1.1.14. java.sql . Date

org. hi bernate. type. Dat eType
Maps a j ava. sql . Dat e to a JDBC DATE

Registered under date and j ava. sql . Date in the type registry (see Section 6.5, “Type
registry”).

6.1.1.15. java. util. Cal endar

org. hi bernate. type. Cal endar Type
Maps aj ava. util . Cal endar to a JDBC TIMESTAMP

Registered under cal endar, j ava. util. Cal endar and java. util.G egorianCal endar in
the type registry (see Section 6.5, “Type registry”).

org. hi bernat e. type. Cal endar Dat eType
Maps ajava. util. Cal endar to a JDBC DATE

Registered under cal endar _dat e in the type registry (see Section 6.5, “Type registry”).

6.1.1.16. java.util.Currency

org. hi bernate.type. CurrencyType
Maps aj ava. util . Currency to a JDBC VARCHAR (using the Currency code)

146

Basic value types

Registered under currency and j ava. uti | . Currency in the type registry (see Section 6.5,
“Type registry”).

6.1.1.17. java. util.Local e

org. hi bernate. type. Local eType
Maps aj ava. util . Local e to a JDBC VARCHAR (using the Locale code)

Registered under | ocal e and j ava. uti | . Local e in the type registry (see Section 6.5, “Type
registry”).

6.1.1.18. java. util. Ti nezone

org. hi bernate. type. Ti meZoneType
Maps aj ava. util . Ti neZone to a JDBC VARCHAR (using the TimeZone ID)

Registered under ti nezone and j ava. uti | . Ti meZone in the type registry (see Section 6.5,
“Type registry”).

6.1.1.19. j ava. net. URL

org. hi bernate.type. Ul Type
Maps a j ava. net. URL to a JDBC VARCHAR (using the external form)

Registered underur| andj ava. net . URL in the type registry (see Section 6.5, “Type registry”).

6.1.1.20. j ava. l ang. O ass

org. hi bernate.type. d assType
Maps aj ava. | ang. d ass to a JDBC VARCHAR (using the Class name)

Registered under cl ass and j ava. | ang. C ass in the type registry (see Section 6.5, “Type
registry”).

6.1.1.21. java.sql.Bl ob

org. hi bernate. type. Bl obType
Maps aj ava. sql . Bl ob to a JDBC BLOB

Registered under bl ob and j ava. sql . Bl ob in the type registry (see Section 6.5, “Type
registry”).

6.1.1.22. java. sql . G ob

org. hi bernate. type. d obType
Maps a j ava. sql . G ob to a JDBC CLOB

Registered under cl ob and j ava. sql . Cl ob in the type registry (see Section 6.5, “Type
registry”).

147

Chapter 6. Types

6.1.1.23. byte[]
org. hi bernat e. type. Bi naryType
Maps a primitive byte[] to a JDBC VARBINARY
Registered under bi nary and byt e[] in the type registry (see Section 6.5, “Type registry”).

org. hi bernate.type. Materi al i zedBl obType
Maps a primitive byte[] to a JDBC BLOB

Registered under nat eri al i zed_bl ob in the type registry (see Section 6.5, “Type registry”).

org. hi bernate. type. | nageType
Maps a primitive byte[] to a JDBC LONGVARBINARY

Registered under i mage in the type registry (see Section 6.5, “Type registry”).

6.1.1.24. Byte[]
org. hi bernat e. type. Bi naryType
Maps a java.lang.Byte[] to a JDBC VARBINARY

Registered under wr apper - bi nary, Byt e[] andj ava. | ang. Byt e[] in the type registry (see
Section 6.5, “Type registry”).

6.1.1.25. charf]
org. hi bernate. type. Char ArrayType
Maps a char[] to a JDBC VARCHAR

Registered under characters and char[] in the type registry (see Section 6.5, “Type
registry”).

6.1.1.26. Character(]
org. hi bernate. type. Character ArrayType
Maps a java.lang.Character[] to a JDBC VARCHAR

Registered under wr apper - characters, Character[] and java.l ang. Character[] in the
type registry (see Section 6.5, “Type registry”).

6.1.1.27. java.util.UU D

or g. hi bernate. type. UU DBi naryType
Maps a java.util.UUID to a JDBC BINARY

Registered under uui d- bi nary and j ava. util. UU Din the type registry (see Section 6.5,
“Type registry”).

148

Composite types

org. hi bernate. type. UU DChar Type
Maps a java.util.UUID to a JDBC CHAR (though VARCHAR is fine too for existing schemas)

Registered under uui d- char in the type registry (see Section 6.5, “Type registry”).

org. hi bernat e. type. Post gr esUUl DType
Maps a java.util. UUID to the PostgreSQL UUID data type (through Types#OTHER which is how
the PostgreSQL JDBC driver defines it).

Registered under pg- uui d in the type registry (see Section 6.5, “Type registry”).

6.1.1.28. java.io. Serializable

org. hi bernate.type. Seri al i zabl eType
Maps implementors of java.lang.Serializable to a JDBC VARBINARY

Unlike the other value types, there are multiple instances of this type. It gets registered
once under java.io. Serializable. Additionally it gets registered under the specific
java.io. Serial i zabl e implementation class names.

6.1.2. Composite types

@ Note

The Java Persistence API calls these embedded types, while Hibernate
traditionally called them components. Just be aware that both terms are used and
mean the same thing in the scope of discussing Hibernate.

Components represent aggregations of values into a single Java type. For example, you might
have an Address class that aggregates street, city, state, etc information or a Name class that
aggregates the parts of a person's Name. In many ways a component looks exactly like an entity.
They are both (generally speaking) classes written specifically for the application. They both might
have references to other application-specific classes, as well as to collections and simple JDK
types. As discussed before, the only distinguishing factory is the fact that a component does not
own its own lifecycle nor does it define an identifier.

6.1.3. Collection types

Important

It is critical understand that we mean the collection itself, not its contents. The
contents of the collection can in turn be basic, component or entity types (though
not collections), but the collection itself is owned.

Collections are covered in Chapter 7, Collection mapping.

149

Chapter 6. Types

6.2. Entity types

The definition of entities is covered in detail in Chapter 4, Persistent Classes. For the purpose of
this discussion, it is enough to say that entities are (generally application-specific) classes which
correlate to rows in a table. Specifically they correlate to the row by means of a unique identifier.
Because of this unique identifier, entities exist independently and define their own lifecycle. As an
example, when we delete a Menber shi p, both the User and G oup entities remain.

@ Note

This notion of entity independence can be modified by the application developer
using the concept of cascades. Cascades allow certain operations to continue (or
"cascade") across an association from one entity to another. Cascades are covered
in detail in

6.3. Significance of type categories

Why do we spend so much time categorizing the various types of types? What is the significance
of the distinction?

The main categorization was between entity types and value types. To review we said that entities,
by nature of their unique identifier, exist independently of other objects whereas values do not. An
application cannot "delete" a Product sku; instead, the sku is removed when the Product itself is
deleted (obviously you can update the sku of that Product to null to make it "go away", but even
there the access is done through the Product).

Nor can you define an association to that Product sku. You can define an association to Product
based on its sku, assuming sku is unique, but that is totally different.

TBC...

6.4. Custom types

Hibernate makes it relatively easy for developers to create their own value types. For example,
you might want to persist properties of type j ava. | ang. Bi gl nt eger to VARCHAR columns. Custom
types are not limited to mapping values to a single table column. So, for example, you might want
to concatenate together FI RST_NAME, | NI TI AL and SURNAME columns into a j ava. | ang. Stri ng.

There are 3 approaches to developing a custom Hibernate type. As a means of illustrating
the different approaches, lets consider a use case where we need to compose a
j ava. mat h. Bi gDeci mal and j ava. util. Currency together into a custom Money class.

6.4.1. Custom types using org. hi bernate. t ype. Type

The first approach is to directly implement the org. hi bernate. type. Type interface (or
one of its derivatives). Probably, you will be more interested in the more specific

150

Custom types using org.hibernate.type.Type

or g. hi bernate. t ype. Basi cType contract which would allow registration of the type (see
Section 6.5, “Type registry”). The benefit of this registration is that whenever the metadata for a
particular property does not specify the Hibernate type to use, Hibernate will consult the registry
for the exposed property type. In our example, the property type would be Money, which is the key
we would use to register our type in the registry:

Example 6.1. Defining and registering the custom Type

public class MneyType inpl enents BasicType {
public String[] getRegistrationKeys() {
return new String[] { Money.cl ass. get Name() };

public int[] sql Types(Mappi ng mappi ng) {
/I W will sinply use delegation to the standard basic types for BigDecinal and
Currency for many of the
/1 Type nethods. ..
return new int[] {
Bi gDeci mal Type. | NSTANCE. sql Type(),
CurrencyType. | NSTANCE. sqgl Type(),
}i
/1 we could al so have honored any registry overrides via...
[lreturn new int[] {
Il
mappi ngs. get TypeResol ver (). basi c(Bi gDeci mal . cl ass. get Nane()). sql Types(mappi ngs)[0],
/1 mappi ngs. get TypeResol ver (). basi c(Currency. cl ass. get Nane()). sql Types(mappi ngs)
[0]
11}

public O ass getReturnedC ass() {
return Money. cl ass;

public Object null SafeGet (ResultSet rs, String[] names, Sessionlnplenentor session, Cbject owner) throws SQLB
assert names.length == 2;
Bi gDeci mal anount = Bi gDeci mal Type. | NSTANCE. get (nanmes[0]); // already handl es null check
Currency currency = CurrencyType. | NSTANCE. get (nanes[1]); // already handl es null check
return anpunt == null && currency == null
? null
new Money(anount, currency);

public void null Saf eSet (PreparedStatenment st, Object value, int index, boolean[] settable, Sessionlnplenentor
throws SQ.Exception {

if (value == null) {
Bi gDeci mal Type. | NSTANCE. set (st, null, index);
CurrencyType. | NSTANCE. set (st, null, index+1);
}
el se {
final Money noney = (Mney) val ue;
Bi gDeci mal Type. | NSTANCE. set (st, noney.get Amount (), index);
CurrencyType. | NSTANCE. set (st, noney.getCurrency(), index+1l);
}

151

Chapter 6. Types

}

Conf
cfg.
cfg.

iguration cfg = new Configuration();
regi ster TypeOverride(new MoneyType());

I | Important

It is important that we registered the type before adding mappings.

6.4.2. Custom types using or g. hi bernat e. usertype. User Type

@ Note

Both org. hi bernat e. usertype. User Type and
or g. hi ber nat e. usert ype. Conposi t eUser Type were originally added to isolate
user code from internal changes to the or g. hi ber nat e. t ype. Type interfaces.

The second approach is the use the org. hi bernate. usertype. User Type interface, which
presents a somewhat simplified view of the org. hi bernate. type. Type interface. Using a

org

. hi bernat e. usertype. User Type, our Money custom type would look as follows:

Example 6.2. Defining the custom UserType

publ

ic class MoneyType inplenents User Type {
public int[] sql Types() {
return new int[] {
Bi gDeci mal Type. | NSTANCE. sql Type(),
CurrencyType. | NSTANCE. sql Type(),

}

public O ass getReturnedC ass() {
return Money. cl ass;

}

public Object null SafeGet(ResultSet rs, String[] nanmes, Object owner) throws SQLException {
assert names.length ==
Bi gDeci mal anpunt = Bi gDeci mal Type. | NSTANCE. get (names[0]); // already handl es null check
Currency currency = CurrencyType. | NSTANCE. get (nanmes[1]); // already handles null check
return anpbunt == null && currency == null
? null
new Money(anount, currency);

}

public void nul | Saf eSet (Prepar edSt at enent st, Object value, int index) throws SQ.Exception {
if (value == null) {
Bi gDeci mal Type. | NSTANCE. set (st, null, index);

152

Custom types using org.hibernate.usertype.CompositeUserType

CurrencyType. | NSTANCE. set (st, null, index+l);
}

el se {
final Money noney = (Mney) val ue;
Bi gDeci mal Type. | NSTANCE. set (st, noney. get Amount (), index);
CurrencyType. | NSTANCE. set (st, noney.getCurrency(), index+l);

There is not much difference between the org. hi bernate.type. Type example and the
or g. hi ber nat e. usert ype. User Type example, but that is only because of the snippets shown.
If you choose the or g. hi ber nat e. t ype. Type approach there are quite a few more methods you
would need to implement as compared to the or g. hi ber nat e. usert ype. User Type.

6.4.3. Custom types using or g. hi bernat e. usertype. Conposi t eUser Type

The third and final approach is the use the org. hi ber nat e. usert ype. Conposi t eUser Type
interface, which differs from or g. hi ber nat e. usert ype. User Type in that it gives us the ability to
provide Hibernate the information to handle the composition within the Money class (specifically
the 2 attributes). This would give us the capability, for example, to reference the anount attribute
in an HQL query. Using a or g. hi ber nat e. user t ype. Conposi t eUser Type, our Money custom
type would look as follows:

Example 6.3. Defining the custom CompositeUserType

public class MneyType inpl enents ConpositeUser Type {
public String[] getPropertyNanes() {

/1 ORDER 1S | MPORTANT! it nmust match the order the colums are defined in the
property mappi ng
return new String[] { "anount", "currency" };

}

public Type[] getPropertyTypes() {
return new Type[] { BigDecimal Type.| NSTANCE, CurrencyType. | NSTANCE };
}

public O ass getReturnedd ass() {
return Money. cl ass;

}
public Object getPropertyVal ue(Object conmponent, int propertylndex) {
if (conponent == null) {
return null;

}

final Money nmoney = (Mbney) conponent;
switch (propertylndex) {
case 0: {
return noney. get Amount () ;

153

Chapter 6. Types

case 1: {
return noney. getCurrency();
}
defaul t: {
t hrow new Hi ber nat eException("Invalid property index [" + propertylndex + "]");
}
}
}
public void setPropertyVal ue(CObject conponent, int propertylndex, Object value) throws Hi bernateException {
if (conmponent == null) {
return;

final Mney noney = (Mney) conponent;
switch (propertylndex) {

case 0: {
noney. set Amount ((Bi gDeci mal) val ue);
br eak;
}
case 1: {
noney. set Currency((Currency) value);
br eak;
}
defaul t: {
t hrow new Hi ber nat eExcepti on("Invalid property index [" + propertylndex + "]");
}

public Object null SafeGet (ResultSet rs, String[] names, Sessionlnplenentor session, Object owner) throws SQLBE
assert names.length == 2;
Bi gDeci mal anount = Bi gDeci mal Type. | NSTANCE. get (names[0]); // already handl es null check
Currency currency = CurrencyType. | NSTANCE. get (nanmes[1]); // already handles null check
return anpbunt == null && currency == null
? null
new Money(anobunt, currency);

}
public void null Saf eSet (Prepar edSt at ement st, bject value, int index, Sessionlnplenentor session) throws SQLI
if (value == null) {
Bi gDeci mal Type. | NSTANCE. set (st, null, index);
CurrencyType. | NSTANCE. set (st, null, index+1);
}
el se {

final Mney noney = (Mney) val ue;
Bi gDeci mal Type. | NSTANCE. set (st, noney. get Amount (), index);
CurrencyType. | NSTANCE. set (st, noney.getCurrency(), index+l);

154

Type registry

6.5. Type registry

Internally Hibernate uses a registry of basic types (see Section 6.1.1, “Basic value types”) when
it needs to resolve the specific or g. hi ber nat e. t ype. Type to use in certain situations. It also
provides a way for applications to add extra basic type registrations as well as override the
standard basic type registrations.

To register a new type or to override an existing type registration, applications would make
use of the regi st er TypeOverri de method of the org. hi ber nat e. cf g. Confi gurati on class
when bootstrapping Hibernate. For example, lets say you want Hibernate to use your custom
Super Duper St ri ngType; during bootstrap you would call:

Example 6.4. Overriding the standard stringType

Configuration cfg = ...;
cfg.regi ster TypeQverri de(new SuperDuper StringType());

The argument to regi ster TypeOverride is a org. hi bernate. type. Basi cType which is a
specialization of the or g. hi ber nat e. t ype. Type we saw before. It adds a single method:

Example 6.5. Snippet from BasicType.java

| **

* Get the names under which this type should be registered in the type registry.

*

* The keys under which to register this type.
*/
public String[] getRegistrationKeys();

One approach is to use inheritance (Super Duper Stri ngType extends
or g. hi bernat e. t ype. St ri ngType); another is to use delegation.

155

156

Chapter 7.

Collection mapping

7.1. Persistent collections

Naturally Hibernate also allows to persist collections. These persistent collections can contain
almost any other Hibernate type, including: basic types, custom types, components and
references to other entities. The distinction between value and reference semantics is in this
context very important. An object in a collection might be handled with "value" semantics (its life
cycle fully depends on the collection owner), or it might be a reference to another entity with its
own life cycle. In the latter case, only the "link" between the two objects is considered to be a
state held by the collection.

As a requirement persistent collection-valued fields must be declared as an interface type
(see Example 7.2, “Collection mapping using @OneToMany and @JoinColumn”). The actual
interface might be j ava. util . Set,java.util.Col |l ection,java.util.List,java.util.Map,
java.util.SortedSet, java. util.SortedMap or anything you like ("anything you like" means
you will have to write an implementation of or g. hi ber nat e. usert ype. User Col | ecti onType).

Notice how in Example 7.2, “Collection mapping using @OneToMany and @JoinColumn” the
instance variable par t s was initialized with an instance of HashSet . This is the best way to initialize
collection valued properties of newly instantiated (non-persistent) instances. When you make the
instance persistent, by calling persi st (), Hibernate will actually replace the HashSet with an
instance of Hibernate's own implementation of Set . Be aware of the following error:

Example 7.1. Hibernate uses its own collection implementations

Cat cat = new DonesticCat();
Cat kitten = new DonesticCat();

Set kittens = new HashSet ();
kittens. add(kitten);
cat.setKittens(kittens);
session. persist(cat);

kittens = cat.getKittens(); // Okay, kittens collection is a Set
(HashSet) cat.getKittens(); // Error!

The persistent collections injected by Hibernate behave like HashMap, HashSet , Tr eeMap, Tr eeSet
or Arrayli st, depending on the interface type.

Collections instances have the usual behavior of value types. They are automatically persisted
when referenced by a persistent object and are automatically deleted when unreferenced. If a
collection is passed from one persistent object to another, its elements might be moved from one
table to another. Two entities cannot share a reference to the same collection instance. Due to
the underlying relational model, collection-valued properties do not support null value semantics.
Hibernate does not distinguish between a null collection reference and an empty collection.

157

Chapter 7. Collection mapping

Note

Use persistent collections the same way you use ordinary Java collections.
However, ensure you understand the semantics of bidirectional associations (see

).

7.2. How to map collections

Using annotations you can map Col | ecti ons, Lists, Maps and Sets of associated entities
using @OneToMany and @ManyToMany. For collections of a basic or embeddable type use
@ElementCollection. In the simplest case a collection mapping looks like this:

Example 7.2. Collection mapping using @OneToMany and @JoinColumn

@ntity
public class Product {

private String serial Nunber;
private Set<Part> parts = new HashSet <Part>();

@d
public String getSerial Nunber() { return serial Nunber; }
voi d set Serial Nunber (String sn) { serial Nunber = sn; }

@neToMany

@oi nCol um(nane="PART_I| D")

public Set<Part> getParts() { return parts; }
void setParts(Set parts) { this.parts = parts; }

@ntity
public class Part {

}

Product describes a unidirectional relationship with Part using the join column PART_ID. In this
unidirectional one to many scenario you can also use a join table as seen in Example 7.3,
“Collection mapping using @OneToMany and @JoinTable”.

Example 7.3. Collection mapping using @OneToMany and @JoinTable

@ntity
public class Product {

private String serial Nunmber;
private Set<Part> parts = new HashSet <Part >();

158

How to map collections

@d
public String getSerial Nunber() { return serial Nunber; }
void set Serial Nunber (String sn) { serial Nunber = sn; }

@neToMany
@oi nTabl e(
nanme=" PROCDUCT_PARTS",
joinCol ums = @oi nCol um(nane="PRODUCT_I D"),
i nver seJoi nCol ums = @oi nCol um(nanme="PART_I D")

)

public Set<Part> getParts() { return parts; }
void setParts(Set parts) { this.parts = parts; }

@ntity
public class Part {

}

Without describing any physical mapping (no @oi nCol unm or @oi nTabl e), a unidirectional one
to many with join table is used. The table name is the concatenation of the owner table name,
_, and the other side table name. The foreign key name(s) referencing the owner table is the
concatenation of the owner table, _, and the owner primary key column(s) name. The foreign key
name(s) referencing the other side is the concatenation of the owner property name, _, and the
other side primary key column(s) name. A unique constraint is added to the foreign key referencing
the other side table to reflect the one to many.

Lets have a look now how collections are mapped using Hibernate mapping files. In this case the
first step is to chose the right mapping element. It depends on the type of interface. For example,
a <set > element is used for mapping properties of type Set .

Example 7.4. Mapping a Set using <set>

<cl ass name="Product ">
<id nane="seri al Nunber" col um="product Seri al Nunber"/>
<set name="parts">
<key col um="product Seri al Nunber" not-null="true"/>
<one-to-many class="Part"/>
</ set>
</ cl ass>

In Example 7.4, “Mapping a Set using <set>" a one-to-many association links the Product and
Part entities. This association requires the existence of a foreign key column and possibly an
index column to the Par t table. This mapping loses certain semantics of normal Java collections:

« An instance of the contained entity class cannot belong to more than one instance of the
collection.

« An instance of the contained entity class cannot appear at more than one value of the collection
index.

159

Chapter 7. Collection mapping

Looking closer at the used <one- t o- many> tag we see that it has the following options.

Example 7.5. options of <one-to-many> element

<one-t o- many
cl ass="d assNane"

not - f ound="1i gnor e| excepti on"

o080

entity-name="EntityName"

node="el enent - nane"

enbed- xm ="true| fal se"
/>

€ cl ass (required): the name of the associated class.

not - f ound (optional - defaults to except i on): specifies how cached identifiers that reference
missing rows will be handled. i gnor e will treat a missing row as a null association.
© entity-nane (optional): the entity name of the associated class, as an alternative to cl ass.

The <one-t o- many> element does not need to declare any columns. Nor is it necessary to specify
the t abl e name anywhere.

Warning

If the foreign key column of a <one-to-many> association is declared NOT
NULL, you must declare the <key> mapping not-null="true" or use a
bidirectional association with the collection mapping marked i nver se="true".
See Section 7.3.2, “Bidirectional associations”.

Apart from the <set > tag as shown in Example 7.4, “Mapping a Set using <set>", there is also
<li st >, <map>, <bag>, <array>and <pri ni ti ve- arr ay> mapping elements. The <map> element
is representative:

Example 7.6. Elements of the <map> mapping

<rTap
nanme="propertyNanme"
tabl e="t abl e_nane"
schema="schenma_nane"
lazy="true| extra|fal se"
inverse="true|fal se"
cascade="al | | none| save- updat e| del et e| al | - del et e- or phan| del et e- or phan"

sort ="unsort ed| nat ural | conpar at or Cl ass"

200000080

or der - by="col um_nane asc| desc"

160

How to map collections

where="arbitrary sql where condition"
fetch="join| sel ect|subsel ect"

bat ch-si ze="N
access="fi el d| property| O assNane"

optimstic-lock="true|false"

00060

mut abl e="true| f al se"
node="el enent - nang| . "
enbed- xm ="t rue| fal se"

<key />

<map-key />

<elerment />
</ map>

® e 6 e © o900 o

B

name: the collection property name

t abl e (optional - defaults to property name): the name of the collection table. It is not used
for one-to-many associations.

schema (optional): the name of a table schema to override the schema declared on the root
element

| azy (optional - defaults to t r ue): disables lazy fetching and specifies that the association
is always eagerly fetched. It can also be used to enable "extra-lazy" fetching where most
operations do not initialize the collection. This is suitable for large collections.

i nverse (optional - defaults to f al se): marks this collection as the "inverse" end of a
bidirectional association.

cascade (optional - defaults to none): enables operations to cascade to child entities.

sort (optional): specifies a sorted collection with nat ur al sort order or a given comparator
class.

or der - by (optional): specifies a table column or columns that define the iteration order of the
Map, Set or bag, together with an optional asc or desc.

wher e (optional): specifies an arbitrary SQL WHERE condition that is used when retrieving or
removing the collection. This is useful if the collection needs to contain only a subset of the
available data.

fetch (optional, defaults to sel ect): chooses between outer-join fetching, fetching by
sequential select, and fetching by sequential subselect.

bat ch- si ze (optional, defaults to 1): specifies a "batch size" for lazily fetching instances of
this collection.

access (optional - defaults to property): the strategy Hibernate uses for accessing the
collection property value.

optim stic-1ock (optional - defaults to t rue): specifies that changes to the state of the
collection results in increments of the owning entity's version. For one-to-many associations
you may want to disable this setting.

nut abl e (optional - defaults to true): a value of f al se specifies that the elements of the
collection never change. This allows for minor performance optimization in some cases.

161

Chapter 7. Collection mapping

After exploring the basic mapping of collections in the preceding paragraphs we will now focus
details like physical mapping considerations, indexed collections and collections of value types.

7.2.1. Collection foreign keys

On the database level collection instances are distinguished by the foreign key of the entity that
owns the collection. This foreign key is referred to as the collection key column, or columns, of the
collection table. The collection key column is mapped by the @oi nCol urm annotation respectively
the <key> XML element.

There can be a nullability constraint on the foreign key column. For most collections, this is implied.
For unidirectional one-to-many associations, the foreign key column is nullable by default, so you
may need to specify

@oi nCol um(nul | abl e=f al se)

or

<key col umm="product Seri al Nunber" not-nul | ="true"/>

The foreign key constraint can use ON DELETE CASCADE. In XML this can be expressed via:
<key col umm="product Seri al Nunber" on-del et e="cascade"/ >

In annotations the Hibernate specific annotation @OnDelete has to be used.

@nDel et e(acti on=0nDel et eAct i on. CASCADE)

See Section 5.1.11.3, “Key” for more information about the <key> element.

7.2.2. Indexed collections

In the following paragraphs we have a closer at the indexed collections Li st and Map how the
their index can be mapped in Hibernate.

7.2.2.1. Lists

Lists can be mapped in two different ways:

* as ordered lists, where the order is not materialized in the database

162

Indexed collections

* as indexed lists, where the order is materialized in the database

To order lists in memory, add @ avax. persi st ence. Or der By to your property. This annotation
takes as parameter a list of comma separated properties (of the target entity) and orders the
collection accordingly (eg firstnane asc, age desc), if the string is empty, the collection will
be ordered by the primary key of the target entity.

Example 7.7. Ordered lists using @ der By

@ntity

public class Custoner {
@d @eneratedVal ue public Integer getld() { returnid; }
public void setld(Integer id) { this.id =id; }
private Integer id;

@neToMany(mappedBy="cust oner")

@ der By(" nunber ")

public List<Order> getOrders() { return orders; }

public void setOrders(List<Order> orders) { this.orders = orders; }
private List<Order> orders;

@ntity

public class Oder {
@d @=neratedVal ue public Integer getld() { returnid; }
public void setld(Integer id) { this.id =id; }
private Integer id;

public String getNunmber() { return nunber; }
public void setNunber(String nunber) { this.nunber = nunber; }
private String nunber;

@manyToOne

public Custoner getCustomer() { return custorer; }

public void setCustomner(Custoner custoner) { this.customer = custoner; }
private Custoner nunber;

-- Table schema

| Oder | | Customer |
22222020002 | [=emmem2aes |
| id | | id |
| nunber | [---------- |

To store the index value in a dedicated column, use the @ avax. persi stence. O der Col um
annotation on your property. This annotations describes the column name and attributes of the
column keeping the index value. This column is hosted on the table containing the association
foreign key. If the column name is not specified, the default is the name of the referencing property,
followed by underscore, followed by ORDER (in the following example, it would be or der s_ ORDER).

163

Chapter 7. Collection mapping

Example 7.8. Explicit index column using @ der Col um

@ntity

public class Custoner {
@d @=xneratedVal ue public Integer getld() { returnid; }
public void setld(Integer id) { this.id =id; }
private Integer id;

@neToMany(mappedBy="cust oner")

@ der Col utm(nane="or der s_i ndex")

public List<Order> getOrders() { return orders; }

public void setOrders(List<Order> orders) { this.orders = orders; }
private List<Order> orders;

@ntity

public class Order {
@d @eneratedValue public Integer getld() { returnid; }
public void setld(Integer id) { this.id =id; }
private Integer id;

public String getNunber() { return nunber; }
public void setNunber(String nunber) { this.nunber = nunber; }
private String numnber;

@manyToOne

public Custoner getCustoner() { return custoner; }

public void setCustoner(Custoner custonmer) { this.custoner = custoner;
private Custoner nunber;

-- Tabl e schema

| Order | | Customner |
R | [=e2ezcens |
id | id |
nunber [EEEE T |

| |
| |
| custoner_id |
| orders_order |

}

164

Indexed collections

Looking again at the Hibernate mapping file equivalent, the index of an array or list is always of
type i nt eger and is mapped using the <l i st -i ndex> element. The mapped column contains
sequential integers that are numbered from zero by default.

Example 7.9. index-list element for indexed collections in xml mapping

<list-index

col um="col unm_nange" 1]
base="0| 1]..."/>

€ col um_nane (required): the name of the column holding the collection index values.

€ base (optional - defaults to 0): the value of the index column that corresponds to the first
element of the list or array.

If your table does not have an index column, and you still wish to use Li st as the property type,
you can map the property as a Hibernate <bag>. A bag does not retain its order when it is retrieved
from the database, but it can be optionally sorted or ordered.

7.2.2.2. Maps

The question with Maps is where the key value is stored. There are everal options. Maps can
borrow their keys from one of the associated entity properties or have dedicated columns to store
an explicit key.

To use one of the target entity property as a key of the map, use @apKey(nanme="nyProperty"),
where nyPr operty is a property name in the target entity. When using @apKey without the name
attribuate, the target entity primary key is used. The map key uses the same column as the property
pointed out. There is no additional column defined to hold the map key, because the map key
represent a target property. Be aware that once loaded, the key is no longer kept in sync with the
property. In other words, if you change the property value, the key will not change automatically
in your Java model.

Example 7.10. Use of target entity property as map key via @mpkey

@ntity

public class Custoner {
@d @eneratedVal ue public Integer getld() { returnid; }
public void setld(Integer id) { this.id =id; }
private Integer id;

@neToMany(mappedBy="cust oner")
@mpKey(nane="nunber")
public Map<String, Order> getOrders() { return orders; }
public void setOrders(Map<String, Order> order) { this.orders = orders; }
private Map<String, Order> orders;
}

@ntity

165

Chapter 7. Collection mapping

public class Oder {
@d @xeneratedValue public Integer getld() { returnid; }
public void setld(Integer id) { this.id =id; }
private Integer id;

public String getNunmber() { return nunber; }
public void setNunber(String nunber) { this.nunber = nunber; }
private String nunber;

@manyToOne

public Custoner getCustoner() { return custoner; }

public void setCustoner(Custoner custoner) { this.customer = custoner; }
private Custoner nunber;

}

-- Table schema
[commmmnmoaes | [oemeemeaee |
| Order | | Custoner |
[comsmazzccce | [oeoeeccace !
| id | | id |
| nunber | [---------- |

Alternatively the map key is mapped to a dedicated column or columns. In order to customize the
mapping use one of the following annotations:

* @MapKeyCol umm if the map key is a basic type. If you don't specify the column name, the name
of the property followed by underscore followed by KEY is used (for example or der s_KEY).

e @mpKeyEnuner at ed / @/apKeyTenpor al if the map key type is respectively an enum or a Dat e.
e @mpKeyJoi nCol unmm/@apKeyJoi nCol umms if the map key type is another entity.

e @ttributeOverride/@ttributeOverrides whenthe map key is a embeddable object. Use
key. as a prefix for your embeddable object property names.

You can also use @hpKeyd ass to define the type of the key if you don't use generics.

Example 7.11. Map key as basic type using @apKeyCol um

@Entity

public class Custoner {
@d @eneratedVal ue public Integer getld() { returnid; }
public void setld(Integer id) { this.id =id; }
private Integer id;

@neToMany @oi nTabl e(nane="Cust _Order")
@mpKeyCol um(nanme="or der s_nunber")
public Map<String, Order> getOrders() { return orders; }
public void setOrders(Map<String, Order> orders) { this.orders = orders; }
private Map<String, Order> orders;
}

@ntity

166

Indexed collections

public class Oder {
@d @xeneratedValue public Integer getld() { returnid; }
public void setld(Integer id) { this.id =id; }
private Integer id;

public String getNunmber() { return nunber; }
public void setNunber(String nunber) { this.nunber = nunber; }
private String nunber;

@manyToOne

public Custoner getCustoner() { return custoner; }

public void setCustoner(Custoner custoner) { this.customer = custoner; }
private Custoner nunber;

}

-- Table schema

[commmmnmoaes | [oemeemeaee e |
| Order | | Custoner | | Cust_Order |
[comsmazzccce | [oeoeeccace | [eeossccenssacsc !
id		id		custoner_id
nunber		----------		order_id
customer_id		orders_nunber		

@ Note

We recommend you to migrate from @r g. hi ber nat e. annot at i ons. MapKey /
@r g. hi ber nat e. annot at i on. MapKeyMany ToMany to the new standard approach
described above

Using Hibernate mapping files there exists equivalent concepts to the descibed annotations. You
have to use <map- key>, <map- key- many-t o- many> and <conposi t e- map- key>. <nmap- key> is
used for any basic type, <map- key- many- t o- rany> for an entity reference and <conposi t e- nap-
key> for a composite type.

Example 7.12. map-key xml mapping element

<map- key
col um="col unm_nange"

formul a="any SQL expression"

00

type="type_nange"
node=" @t tri but e- nane"
| engt h="N"/ >

€ col um (optional): the name of the column holding the collection index values.
@ formul a (optional): a SQL formula used to evaluate the key of the map.

© type (required): the type of the map keys.

167

Chapter 7. Collection mapping

Example 7.13. map-key-many-to-many

<map- key- many-t o- many
col um="col unm_nange" 0

formul a="any SQL expression" 99
cl ass="C assNane"
/>

€ col um (optional): the name of the foreign key column for the collection index values.
@ formul a (optional): a SQ formula used to evaluate the foreign key of the map key.

€ cl ass (required): the entity class used as the map key.

7.2.3. Collections of basic types and embeddable objects

In some situations you don't need to associate two entities but simply create a collection of basic
types or embeddable objects. Use the @l enent Col | ect i on for this case.

Example 7.14. Collection of basic types mapped via @l enent Col | ecti on

@ntity
public class User {

[...]
public String getLastnane() { ...}

@&l enent Col | ecti on

@ol | ecti onTabl e(name="Ni cknanes", joi nCol ums=@oi nCol um(nane="user _i d"))
@ol utm(name="ni ckname")
public Set<String> getNi cknanmes() { ... }

The collection table holding the collection data is set using the @ol | ecti onTabl e annotation.
If omitted the collection table name defaults to the concatenation of the hame of the containing
entity and the name of the collection attribute, separated by an underscore. In our example, it
would be User _ni cknanes.

The column holding the basic type is set using the @ol urm annotation. If omitted, the column
name defaults to the property name: in our example, it would be ni cknamnes.

But you are not limited to basic types, the collection type can be any embeddable
object. To override the columns of the embeddable object in the collection table, use the
@\t tribut eOverri de annotation.

Example 7.15. @ElementCollection for embeddable objects

@ntity
public class User {

168

Collections of basic types and embeddable objects

[...]
public String getLastnane() { ...}

@l enent Col | ecti on
@ol | ecti onTabl e(name="Addr esses", j oi nCol ums=@oi nCol um(nane="user _i d"))
@\ttributeOverrides({
@\t tributeOverride(name="streetl1", colum=@ol um(nane="fld_street"))
})
public Set<Address> get Addresses() { ... }
}

@nbeddabl e

public class Address {
public String getStreet1() {...}
[...]

Such an embeddable object cannot contains a collection itself.

@ntity
public class User {
@ enent Col | ecti on
@\ttributeOverrides({
@\t tributeOverride(nane="key.streetl1l", colum=@ol um(nanme="fld_street")),
@\t tributeOverride(nane="val ue.stars", colum=@ol um(nanme="fld_note"))
b

publi c Map<Address, Rati ng> get FavHormes() { ... }

(3

Using the mapping file approach a collection of values is mapped using the <el enent > tag. For
example:

Example 7.16. <element> tag for collection values using mapping files

<el enent

169

Chapter 7. Collection mapping

col um="col um_nange"

formul a="any SQ. expression"

00

type="typenane"

| engt h="L"
preci si on="P"

scal e="S"
not-nul | ="true| fal se"
uni que="true| f al se"
node="el ement - nane"

€ col um (optional): the name of the column holding the collection element values.
@ formul a (optional): an SQL formula used to evaluate the element.

© type (required): the type of the collection element.
7.3. Advanced collection mappings

7.3.1. Sorted collections

Hibernate supports collections implementing j ava. uti | . SortedMap andj ava. uti | . Sort edSet.
With annotations you declare a sort comparator using @or t . You chose between the comparator
types unsorted, natural or custom. If you want to use your own comparator implementation, you'l
also have to specify the implementation class using the conpar at or attribute. Note that you need
to use either a Sort edSet or a Sort edMap interface.

Example 7.17. Sorted collection with @Sort

@neToMany(cascade=CascadeType. ALL, fetch=FetchType. EAGER)
@oi nCol um(nanme="CUST_I| D")
@ort (type = Sort Type. COMPARATOR, conparator = Ti cket Conpar at or. cl ass)
public SortedSet<Ti cket> get Ti ckets() {
return tickets

}

Using Hibernate mapping files you specify a comparator in the mapping file with <sort >:

Example 7.18. Sorted collection using xml mapping

<set nanme="al i ases"
tabl e="person_al i ases"
sort="natural ">
<key col um="person"/>
<el enent col um="nane" type="string"/>
</ set>

<map nane="hol i days" sort="my.custom Hol i dayConpar at or ">
<key colum="year _id"/>

170

Bidirectional associations

<map- key col um="hol _nane" type="string"/>
<el enent col um="hol _date" type="date"/>
</ map>

Allowed values of the sor t attribute are unsort ed, nat ur al and the name of a class implementing
java.util . Conparat or.

Tip

Q

Sorted collections actually behave like java.util.TreeSet (o]
java.util . TreeMap.

If you want the database itself to order the collection elements, use the or der - by attribute of set ,
bag or map mappings. This solution is implemented using Li nkedHashSet or Li nkedHashMap and
performs the ordering in the SQL query and not in the memory.

Example 7.19. Sorting in database using order-by

<set nane="al i ases" tabl e="person_aliases" order-by="| ower(nane) asc">
<key col uim="person"/>
<el enent col um="nanme" type="string"/>

</set>

<map nanme="hol i days" order-by="hol _date, hol _name">
<key colum="year _id"/>
<map- key col um="hol _name" type="string"/>
<el enent col um="hol _date type="date"/>

</ map>

(3

Associations can even be sorted by arbitrary criteria at runtime using a collection filter():

Example 7.20. Sorting via a query filter

sortedUsers = s.createFilter(group.getUsers(), "order by this.nanme").list();

7.3.2. Bidirectional associations

A bidirectional association allows navigation from both "ends" of the association. Two kinds of
bidirectional association are supported:

171

Chapter 7. Collection mapping

one-to-many
set or bag valued at one end and single-valued at the other

many-to-many
set or bag valued at both ends

Often there exists a many to one association which is the owner side of a bidirectional
relationship. The corresponding one to many association is in this case annotated by
@neToMany(mappedBy=. . .)

Example 7.21. Bidirectional one to many with many to one side as
association owner

@ntity
public class Troop {
@neToMany(mappedBy="tr oop")
public Set<Sol di er> getSoldiers() {

}

@ntity

public class Soldier {
@manyToOne
@oi nCol um(nane="troop_fk")
public Troop getTroop() {

Tr oop has a bidirectional one to many relationship with Sol di er through the t r oop property. You
don't have to (must not) define any physical mapping in the mappedBy side.

To map a bidirectional one to many, with the one-to-many side as the owning side, you have to
remove the mappedBy element and set the many to one @oi nCol umm as insertable and updatable
to false. This solution is not optimized and will produce additional UPDATE statements.

Example 7.22. Bidirectional associtaion with one to many side as owner

@ntity

public class Troop {
@neToMany
@oi nCol um(name="troop_fk") //we need to duplicate the physical information
public Set<Sol di er> get Sol diers() {

}

@ntity

public class Soldier {
@manyToOne
@oi nCol um(nane="troop_fk", insertabl e=fal se, updatabl e=fal se)
public Troop getTroop() {

172

Bidirectional associations

How does the mappping of a bidirectional mapping look like in Hibernate mapping xml? There
you define a bidirectional one-to-many association by mapping a one-to-many association to
the same table column(s) as a many-to-one association and declaring the many-valued end

i nverse="true".

Example 7.23. Bidirectional one to many via Hibernate mapping files

<cl ass nane="Parent">
<id nane="id" colum="parent_id"/>

<set name="children" inverse="true">
<key col um="parent _id"/>
<one-to-nmany class="Child"/>
</ set>
</ cl ass>

<cl ass nanme="Chil d">
<id nane="id" colum="child_id"/>

<many-t o-one name="parent"
cl ass="Parent"
col um="parent _i d"
not-nul | ="true"/>
</cl ass>

Mapping one end of an association with i nverse="true" does not affect the operation of
cascades as these are orthogonal concepts.

A many-to-many association is defined logically using the @/any ToMany annotation. You also have
to describe the association table and the join conditions using the @oi nTabl e annotation. If the
association is bidirectional, one side has to be the owner and one side has to be the inverse end
(ie. it will be ignored when updating the relationship values in the association table):

Example 7.24. Many to many association via @ManyToMany

@Entity
public class Enployer inplenents Serializable {
@manyToMany (
target Entity=org. hi bernate. test. metadata. nanyt omany. Enpl oyee. cl ass,
cascade={ CascadeType. PERSI ST, CascadeType. VERGE}
)
@oi nTabl e(
nane="EMPLOYER_EMPLOYEE",
j 0i nCol ums=@oi nCol um(nane="EMPER_| D"),
i nver seJoi nCol ums=@oi nCol um(nane="EMPEE_| D")
)
public Collection getEnpl oyees() {
return enpl oyees;

173

Chapter 7. Collection mapping

@ntity
public class Enployee inplenents Serializable {
@manyToMany (
cascade = {CascadeType. PERSI ST, CascadeType. MERGE},
mappedBy = "enpl oyees",
targetEntity = Enployer.cl ass

)
public Collection getEnployers() {

return enpl oyers;

}

In this example @oi nTabl e defines a nanme, an array of join columns, and an array of inverse join
columns. The latter ones are the columns of the association table which refer to the Enpl oyee
primary key (the "other side"). As seen previously, the other side don't have to (must not) describe
the physical mapping: a simple mappedBy argument containing the owner side property name bind
the two.

As any other annotations, most values are guessed in a many to many relationship. Without
describing any physical mapping in a unidirectional many to many the following rules applied. The
table name is the concatenation of the owner table name, _ and the other side table name. The
foreign key name(s) referencing the owner table is the concatenation of the owner table name, _
and the owner primary key column(s). The foreign key name(s) referencing the other side is the
concatenation of the owner property name, _, and the other side primary key column(s). These
are the same rules used for a unidirectional one to many relationship.

Example 7.25. Default values for @anyTomany (uni-directional)

@ntity

public class Store {
@manyToMany(cascade = CascadeType. PERSI ST)
public Set<City> getlnplantedin() {

}
}

@ntity
public class Gty {
. //no bidirectional relationship

}

A Store_City isused as the join table. The St ore_i d column is a foreign key to the St or e table.
The i npl ant edl n_i d column is a foreign key to the Ci ty table.

174

Bidirectional associations

Without describing any physical mapping in a bidirectional many to many the following rules
applied. The table name is the concatenation of the owner table name, _ and the other side table
name. The foreign key name(s) referencing the owner table is the concatenation of the other side
property name, _, and the owner primary key column(s). The foreign key name(s) referencing the
other side is the concatenation of the owner property name, _, and the other side primary key
column(s). These are the same rules used for a unidirectional one to many relationship.

Example 7.26. Default values for @anyTomany (bi-directional)

@ntity

public class Store {
@manyToMany(cascade = {CascadeType. PERSI ST, CascadeType. MERGE})
publ i c Set <Cust omer> get Custoners() {

}
}

@ntity

public class Custoner {
@anyToMany(nappedBy="cust oners")
public Set<Store> getStores() {

}

A St or e_Cust oner is used as the join table. The st ores_i d column is a foreign key to the St ore
table. The cust oners_i d column is a foreign key to the Cust oner table.

Using Hibernate mapping files you can map a bidirectional many-to-many association by mapping
two many-to-many associations to the same database table and declaring one end as inverse.

@ Note

You cannot select an indexed collection.

Example 7.27, “Many to many association using Hibernate mapping files” shows a bidirectional
many-to-many association that illustrates how each category can have many items and each item
can be in many categories:

Example 7.27. Many to many association using Hibernate mapping files

<cl ass nane="Cat egory" >
<id nane="id" col um="CATEGORY_| D'/ >

<bag nanme="itens" tabl e="CATEGORY_| TEM >
<key col um="CATEGORY_I D'/ >
<many-to-many class="Itenl colum="1TEM I|D"'/>

175

Chapter 7. Collection mapping

</ bag>
</cl ass>

<cl ass nane="Itent' >
<id nane="id" colum="1TEM ID"'/>

<I-- inverse end -->
<bag nanme="cat egories" tabl e="CATEGORY_| TEM' inverse="true">
<key colum="|1TEM | D'/ >
<many-to- many cl ass="Category" col um="CATEGORY_| D'/ >
</ bag>
</ cl ass>

Changes made only to the inverse end of the association are not persisted. This means that
Hibernate has two representations in memory for every bidirectional association: one link from A
to B and another link from B to A. This is easier to understand if you think about the Java object
model and how a many-to-many relationship in Javais created:

Example 7.28. Effect of inverse vs. non-inverse side of many to many
associations

category.getltens().add(item; /] The category now "knows" about the relationship
i tem get Cat egori es() . add(cat egory); /1 The item now "knows" about the relationship
session.persist(iten; /1 The relationship won't be saved!

sessi on. persi st (category); /1 The relationship will be saved

The non-inverse side is used to save the in-memory representation to the database.

7.3.3. Bidirectional associations with indexed collections

There are some additional considerations for bidirectional mappings with indexed collections
(where one end is represented as a <l i st > or <map>) when using Hibernate mapping files. If there
is a property of the child class that maps to the index column you can use i nver se="true" on
the collection mapping:

Example 7.29. Bidirectional association with indexed collection

<cl ass nane="Parent">
<id nane="id" colum="parent_id"/>

<map name="children" inverse="true">
<key col um="parent _id"/>
<map- key col utm="nanme"
type="string"/>
<one-to-nmany class="Child"/>
</ map>
</ cl ass>

176

Ternary associations

<cl ass nane="Chil d">
<id nanme="id" colum="child_id"/>

<property nanme="nane"
not-null="true"/>
<many-to-one name="parent"
cl ass="Parent"
col um="parent _i d"
not-nul I ="true"/>
</ cl ass>

If there is no such property on the child class, the association cannot be considered truly
bidirectional. That is, there is information available at one end of the association that is not
available at the other end. In this case, you cannot map the collection i nver se="t rue" . Instead,
you could use the following mapping:

Example 7.30. Bidirectional association with indexed collection, but no
index column

<cl ass nane="Parent">
<id nane="id" colum="parent_id"/>

<map nane="chil dren">
<key col um="parent _i d"
not-null="true"/>
<map- key col um="name"
type="string"/>
<one-to-nmany class="Child"/>
</ map>
</ cl ass>

<cl ass nanme="Chil d">
<id nane="id" colum="child_id"/>

<many-t o-one name="parent"
cl ass="Parent"
col um="parent _i d"
insert="fal se"
updat e="f al se"
not-null="true"/>
</cl ass>

Note that in this mapping, the collection-valued end of the association is responsible for updates
to the foreign key.

7.3.4. Ternary associations

There are three possible approaches to mapping a ternary association. One approach is to use
a Map with an association as its index:

177

Chapter 7. Collection mapping

Example 7.31. Ternary association mapping

@ntity

public class Conmpany {
@d
int id;

@neToMany // wunidirectional
@mpKeyJoi nCol uim(name="enpl oyee_i d")
Map<Enpl oyee, Contract> contracts

}

/1l or

<map name="contracts">
<key col um="enpl oyer id" not-null="true"/>
<map- key- many-t o- many col utm="enpl oyee_i d" cl ass="Enpl oyee"/ >
<one-to-nmany cl ass="Contract"/>

</ map>

A second approach is to remodel the association as an entity class. This is the most common
approach. A final alternative is to use composite elements, which will be discussed later.

7.3.5. usi ng an <i dbag>

The majority of the many-to-many associations and collections of values shown previously all
map to tables with composite keys, even though it has been suggested that entities should have
synthetic identifiers (surrogate keys). A pure association table does not seem to benefit much
from a surrogate key, although a collection of composite values might. For this reason Hibernate
provides a feature that allows you to map many-to-many associations and collections of values
to a table with a surrogate key.

The <i dbag> element lets you map a Li st (or Col | ecti on) with bag semantics. For example:

<i dbag nane="| overs" tabl e="LOVERS">
<col l ection-id colum="1D" type="long">
<generator class="sequence"/>
</col |l ection-id>
<key col um="PERSONL"/ >
<many-t o- nany col um="PERSON2" cl ass="Person" fetch="join"/>
</ i dbag>

An <i dbag> has a synthetic id generator, just like an entity class. A different surrogate key
is assigned to each collection row. Hibernate does not, however, provide any mechanism for
discovering the surrogate key value of a particular row.

The update performance of an <i dbag> supersedes a regular <bag>. Hibernate can locate
individual rows efficiently and update or delete them individually, similar to a list, map or set.

178

Collection examples

In the current implementation, the nati ve identifier generation strategy is not supported for

<i dbag> collection identifiers.

7.4. Collection examples

This section covers collection examples.

The following class has a collection of Chi | d instances:

Example 7.32. Example classes parent and child

public class Parent {
private long id;
private Set<Child> children;

/'l getter/setter

public class Child {
private long id;
private String name

/] getter/setter

If each child has, at most, one parent, the most natural mapping is a one-to-many association:

Example 7.33. One to many unidirectional pParent-child relationship using

annotations

public class Parent {
@d
@=ner at edVal ue
private long id;

@neToMany
private Set<Child> children;

Il getter/setter

public class Child {
@d
@:ener at edVal ue
private long id;
private String nane;

179

Chapter 7. Collection mapping

/] getter/setter

Example 7.34. One to many unidirectional parent-child relationship using
mapping files

<hi ber nat e- mappi ng>

<cl ass nane="Parent">
<id nane="id">
<gener at or cl ass="sequence"/>
</id>
<set name="children">
<key col um="parent _id"/>
<one-to-nmany class="Child"/>
</ set>
</cl ass>

<cl ass nanme="Chil d">
<id name="id">
<gener at or cl ass="sequence"/>
</id>
<property nanme="nanme"/>
</ cl ass>

</ hi ber nat e- mappi ng>

This maps to the following table definitions:

Example 7.35. Table definitions for unidirectional Parent -chi | d relationship

create table parent (id bigint not null primary key)
create table child (id bigint not null primary key, nane varchar(255), parent_id bigint)
alter table child add constraint childfkO (parent_id) references parent

If the parent is required, use a bidirectional one-to-many association:

Example 7.36. One to many bidirectional parent-child relationship using
annotations

public class Parent {
@d
@=xner at edVal ue
private long id;

@neToMany(mappedBy="parent ")

180

Collection examples

private Set<Child> children;

/1 getter/setter

public class Child {
@d
@:=ener at edVval ue
private long id;

private String nane

@manyToOne
private Parent parent

/] getter/setter

Example 7.37. One to many bidirectional Parent-child relationship using
mapping files

<hi ber nat e- mappi ng>

<cl ass nane="Parent">
<id nane="id">
<gener at or cl ass="sequence"/>
</id>
<set nanme="children" inverse="true">
<key col um="parent _id"/>
<one-to-nmany class="Child"/>
</ set>
</cl ass>

<cl ass nanme="Chil d">
<id name="id">
<gener at or cl ass="sequence"/>

</id>

<property nanme="nane"/>

<many-to-one name="parent" class="Parent" colum="parent_id" not-null="true"/>
</cl ass>

</ hi ber nat e- mappi ng>

Notice the NOT NULL constraint:

Example 7.38. Table definitions for bidirectional parent -chi I d relationship

create table parent (id bigint not null primary key)

181

Chapter 7. Collection mapping

create table child (id bigint not null
primary key,
name var char (255),
parent _id bigint not null)
alter table child add constraint childfkO (parent_id) references parent

Alternatively, if this association must be unidirectional you can enforce the NOT NULL constraint.

Example 7.39. Enforcing NOT NULL constraint in unidirectional relation
using annotations

public class Parent {
@d
@:=xner at edVal ue
private long id;

@neToMany(opti onal =f al se)
private Set<Child> children;

/1 getter/setter

public class Child {
@d
@:=ener at edVal ue
private long id;
private String nane;

/] getter/setter

Example 7.40. Enforcing NOT NULL constraint in unidirectional relation
using mapping files

<hi ber nat e- mappi ng>

<cl ass name="Parent">
<id name="id">
<generator class="sequence"/>

</id>
<set nane="children">
<key colum="parent _id" not-null="true"/>
<one-to-many class="Child"/>
</set>
</ cl ass>

<cl ass nane="Chil d">
<id nane="id">

182

Collection examples

<gener at or cl ass="sequence"/>
</id>
<property nanme="nanme"/>
</ cl ass>

</ hi ber nat e- mappi ng>

On the other hand, if a child has multiple parents, a many-to-many association is appropriate.

Example 7.41. Many to many Parent - Chi | d relationship using annotations

public class Parent {
@d
@:xner at edVal ue
private long id;

@/anyToMany
private Set<Chil d> children;

/] getter/setter

public class Child {
@d
@=xner at edVal ue
private long id;

private String nane;

/] getter/setter

Example 7.42. Many to many Parent - chi | d relationship using mapping files

<hi ber nat e- mappi ng>

<cl ass name="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set nanme="children" tabl e="chil dset">
<key colum="parent _id"/>
<many-to-nmany class="Child" colum="child_id"/>
</set>
</ cl ass>

<cl ass nanme="Chil d">
<id nane="id">
<generator class="sequence"/>

183

Chapter 7. Collection mapping

</id>
<property name="nane"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Table definitions:

Example 7.43. Table definitions for many to many releationship

create table parent (id bigint not null prinmary key)
create table child (id bigint not null prinmary key, nane varchar (255))
create table childset (parent_id bigint not null,

child_id bigint not null,

primary key (parent_id, child_id))
alter table childset add constraint childsetfkO (parent_id) references parent
alter table childset add constraint childsetfkl (child_id) references child

For more examples and a complete explanation of a parent/child relationship mapping, see
Chapter 24, Example: Parent/Child for more information. Even more complex association
mappings are covered in the next chapter.

184

Chapter 8.

Association Mappings

8.1. Introduction

Association mappings are often the most difficult thing to implement correctly. In this section
we examine some canonical cases one by one, starting with unidirectional mappings and then
bidirectional cases. We will use Per son and Addr ess in all the examples.

Associations will be classified by multiplicity and whether or not they map to an intervening join
table.

Nullable foreign keys are not considered to be good practice in traditional data modelling, so
our examples do not use nullable foreign keys. This is not a requirement of Hibernate, and the
mappings will work if you drop the nullability constraints.

8.2. Unidirectional associations

8.2.1. Many-to-one

A unidirectional many-to-one association is the most common kind of unidirectional association.

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<many-t o-one nane="address"
col um="addr essl| d"
not-null="true"/>
</cl ass>

<cl ass nane="Address" >
<id nane="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primary key, addresslid bigint not null)
create tabl e Address (addressld bigint not null primary key)

8.2.2. One-to-one

A unidirectional one-to-one association on a foreign key is almost identical. The only difference
is the column unique constraint.

185

Chapter 8. Association Mappings

<cl ass nane="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
<many-to- one nanme="address"
col um="addr essl| d"
uni que="true"
not-nul I ="true"/>
</ cl ass>

<cl ass nanme="Address">
<id nane="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primry key, addresslid bigint not null unique)
create table Address (addressld bigint not null primary key)

A unidirectional one-to-one association on a primary key usually uses a special id generator In
this example, however, we have reversed the direction of the association:

<cl ass nane="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>

</ cl ass>

<cl ass nane="Address">
<id nane="id" col um="personld">
<generator class="foreign">
<par am name="property" >person</ par ans
</ gener at or >
</id>
<one-to-one nane="person" constrai ned="true"/>
</ cl ass>

create table Person (personld bigint not null primary key)
create table Address (personld bigint not null primary key)

8.2.3. One-to-many

A unidirectional one-to-many association on a foreign key is an unusual case, and is not
recommended.

186

Unidirectional associations with join tables

<cl ass nane="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
<set name="addresses">
<key col um="personl d"
not-nul I ="true"/>
<one-to-nmany cl ass="Address"/>
</ set>
</ cl ass>

<cl ass nanme="Address">
<id name="id" col um="addressld">
<generator class="native"/>
</id>

</ cl ass>

create table Person (personld bigint not null primry key)
create table Address (addressld bigint not null primary key, personld bigint not null)

You should instead use a join table for this kind of association.
8.3. Unidirectional associations with join tables

8.3.1. One-to-many

A unidirectional one-to-many association on a join table is the preferred option. Specifying
uni que="true", changes the multiplicity from many-to-many to one-to-many.

<cl ass nane="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
<set nane="addresses" tabl e="PersonAddress">
<key col um="personl d"/>
<many-t o- many col um="addr essl d"
uni que="true"
cl ass="Address"/>
</set>
</cl ass>

<cl ass nane="Address">
<id nane="id" col um="addressld">
<generator class="native"/>
</id>
</cl ass>

187

Chapter 8. Association Mappings

create table Person (personld bigint not null primary key)
create table PersonAddress (personld not null, addressid bigint not null primary key)
create table Address (addressld bigint not null primary key)

8.3.2. Many-to-one

A unidirectional many-to-one association on a join table is common when the association is
optional. For example:

<cl ass nane="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
<j oi n tabl e="PersonAddr ess"
optional ="true">
<key col um="personl d" uni que="true"/>
<many-t o-one nare="address"
col um="addr essl d"
not-nul I ="true"/>
</join>
</cl ass>

<cl ass nane="Address" >
<id nane="id" col um="addressld">
<generator class="native"/>
</id>
</cl ass>

create table Person (personld bigint not null primry key)
create tabl e PersonAddress (personld bigint not null primary key, addressld bigint not null)
create table Address (addressld bigint not null primary key)

8.3.3. One-to-one

A unidirectional one-to-one association on a join table is possible, but extremely unusual.

<cl ass name="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
<j oi n tabl e="PersonAddr ess"
optional ="true">
<key col um="personl d"
uni que="true"/>
<many-t o-one name="address"

188

Many-to-many

col um="addr essl d"
not-nul I ="true"
uni que="true"/>
</j oi n>
</ cl ass>

<cl ass nane="Address">
<id nane="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primary key)

create table PersonAddress (personld bigint not null primary key, addresslid bigint not nul
uni que)

create table Address (addressld bigint not null primary key)

8.3.4. Many-to-many

Finally, here is an example of a unidirectional many-to-many association.

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<set nane="addresses" tabl e="PersonAddress">
<key col um="personl d"/>
<many-to- many col um="addr essl d"
cl ass="Address"/>
</set>
</ cl ass>

<cl ass nane="Address" >
<id nane="id" col um="addressld">
<generator class="native"/>
</id>
</cl ass>

create table Person (personld bigint not null primry key)

create table PersonAddress (personld bigint not null, addressld bigint not null, prinmary key
(personld, addresslid))

create table Address (addressld bigint not null primary key)

189

Chapter 8. Association Mappings

8.4. Bidirectional associations

8.4.1. one-to-many / many-to-one

A bidirectional many-to-one association is the most common kind of association. The following
example illustrates the standard parent/child relationship.

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<many-t o- one nane="address"
col um="addr essl d"
not-null="true"/>
</ cl ass>

<cl ass nanme="Address">
<id name="id" col um="addressl d">
<generator class="native"/>
</id>
<set nane="peopl e" inverse="true">
<key col um="addressl d"/>
<one-to-nmany cl ass="Person"/>
</set>
</cl ass>

create table Person (personld bigint not null primary key, addresslid bigint not null)
create table Address (addressld bigint not null primary key)

If you use a Li st , or other indexed collection, set the key column of the foreign key to not nul I .
Hibernate will manage the association from the collections side to maintain the index of each
element, making the other side virtually inverse by setting updat e="f al se" andi nsert="fal se":

<cl ass nane="Person">
<id nane="id"/>

<many-t o-one name="address"
col um="addr essl d"
not-nul | ="true"
insert="fal se"
updat e="fal se"/ >
</cl ass>

<cl ass nane="Address">
<id nane="id"/>

<l i st nane="peopl e">
<key col um="addressld" not-null="true"/>

190

One-to-one

<list-index colum="peopl el dx"/>
<one-to- many cl ass="Person"/>
</list>
</ cl ass>

If the underlying foreign key column is NOT NULL, it is important that you define not - nul | ="t r ue"
on the <key> element of the collection mapping. Do not only declare not-nul | ="true" on a
possible nested <col uim> element, but on the <key> element.

8.4.2. One-to-one

A bidirectional one-to-one association on a foreign key is common:

<cl ass name="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
<many-to-one name="address"
col um="addr essl| d"
uni que="true"
not-nul I ="true"/>
</ cl ass>

<cl ass nane="Address">
<id nane="id" col um="addressld">
<generator class="native"/>
</id>
<one-t o- one nane="person"
property-ref="address"/>
</ cl ass>

create table Person (personld bigint not null primary key, addressld bigint not null unique)
create table Address (addressld bigint not null primary key)

A bidirectional one-to-one association on a primary key uses the special id generator:

<cl ass nane="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
<one-to-one name="address"/>
</cl ass>

<cl ass nanme="Address">
<id nane="id" col um="personld">
<generator class="foreign">
<par am nane="property" >per son</ par ant
</ gener at or >

191

Chapter 8. Association Mappings

</id>
<one-t o0-one name="person"
constrai ned="true"/>

</ cl ass>

create table Person (personld bigint not null primary key)
create table Address (personld bigint not null primary key)

8.5. Bidirectional associations with join tables

8.5.1. one-to-many / many-to-one

The following is an example of a bidirectional one-to-many association on a join table. The
i nverse="true" can go on either end of the association, on the collection, or on the join.

<cl ass nane="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
<set nanme="addresses"
t abl e="Per sonAddr ess" >
<key col um="personl d"/>
<many-t o- many col um="addr essl d"
uni que="true"
cl ass="Address"/ >
</set>
</cl ass>

<cl ass name="Address">
<id name="id" col um="addressld">
<generator class="native"/>
</id>
<j oi n tabl e="PersonAddress"
inverse="true"
optional ="true">
<key col um="addressl d"/>
<many-t o-one name="person"
col um="per sonl d"
not-nul I ="true"/>
</j oi n>
</ cl ass>

create tabl e Person (personld bigint not null primry key)
create tabl e PersonAddress (personld bigint not null, addressld bigint not null primry key)
create tabl e Address (addressld bigint not null primry key)

192

one to one

8.5.2. one to one

A bidirectional one-to-one association on a join table is possible, but extremely unusual.

<cl ass name="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
<j oin tabl e="PersonAddress"
optional ="true">
<key col umm="personl d"
uni que="true"/>
<many-t o- one nane="address"
col um="addr essl| d"
not-nul I ="true"
uni que="true"/>
</join>
</ cl ass>

<cl ass nanme="Address">
<id name="id" col um="addressld">
<generator class="native"/>
</id>
<j oin tabl e="PersonAddr ess"
optional ="true"
inverse="true">
<key col um="addr essl| d"
uni que="true"/>
<many-to- one name="person”
col um="per sonl d"
not-nul I ="true"
uni que="true"/>
</join>
</cl ass>

create tabl e Person (personld bigint not null primry key)

create table PersonAddress (personld bigint not null primry key, addressld bigint not nul
uni que)

create table Address (addressld bigint not null primary key)

8.5.3. Many-to-many

Here is an example of a bidirectional many-to-many association.

<cl ass nane="Person">
<id nane="id" col um="personld">
<generator class="native"/>
</id>
<set nane="addresses" tabl e="PersonAddress">

193

Chapter 8. Association Mappings

<key col um="personld"/>
<many-t o- many col um="addr essl d"
cl ass="Address"/ >
</ set>
</ cl ass>

<cl ass nanme="Address" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
<set nanme="peopl e" inverse="true" tabl e="PersonAddress">
<key col um="addressl d"/>
<many-t o- many col utm="per sonl d"
cl ass="Person"/>
</set>
</cl ass>

create table Person (personld bigint not null primary key)

create table PersonAddress (personld bigint not null, addressld bigint not null, prinmary key
(personld, addressid))

create table Address (addressld bigint not null primary key)

8.6. More complex association mappings

More complex association joins are extremely rare. Hibernate handles more complex situations
by using SQL fragments embedded in the mapping document. For example, if a table
with historical account information data defines account Number, effectiveEndDate and
ef f ecti veSt art Dat ecolumns, it would be mapped as follows:

<properties name="currentAccount Key">
<property nanme="account Nunber" type="string" not-null="true"/>
<property nanme="currentAccount" type="bool ean">
<fornmul a>case when effectiveEndDate is null then 1 else 0 end</fornul a>
</ property>
</ properties>
<property nanme="effectiveEndDate" type="date"/>
<property nane="effectiveStateDate" type="date" not-null="true"/>

You can then map an association to the current instance, the one with null ef f ect i veEndDat e,
by using:

<many-t o-one name="current Account | nf 0"
property-ref="current Account Key"
cl ass="Account | nf 0" >

<col umm nane="account Nunber"/ >
<formul a>' 1' </ fornul a>

194

More complex association mappings

</ many-t o- one>

In a more complex example, imagine that the association between Enpl oyee and Or gani zat i on
is maintained in an Enpl oynent table full of historical employment data. An association to the
employee's most recent employer, the one with the most recent st art Dat e, could be mapped in
the following way:

<j oi n>
<key col um="enpl oyeel d"/ >
<subsel ect >
sel ect enpl oyeeld, orgld
from Enpl oynment s
group by orgld
havi ng startDate = nax(startDate)
</ subsel ect >
<many-t o- one nane="nost Recent Enpl oyer"
cl ass="Organi zati on"
col um="orgl d"/>
</j oi n>

This functionality allows a degree of creativity and flexibility, but it is more practical to handle these
kinds of cases using HQL or a criteria query.

195

196

Chapter 9.

Component Mapping

The notion of a component is re-used in several different contexts and purposes throughout
Hibernate.

9.1. Dependent objects

A component is a contained object that is persisted as a value type and not an entity reference.
The term "component" refers to the object-oriented notion of composition and not to architecture-
level components. For example, you can model a person like this:

public class Person {
private java.util.Date birthday;
private Nane narne;
private String key;
public String getKey() {
return key;

}

private void setKey(String key) {
thi s. key=key;

}

public java.util.Date getBirthday() {
return birthday;

}

public void setBirthday(java.util.Date birthday) {
this.birthday = birthday;

}

public Nane get Nane() {
return nang;

}

public void set Nane(Nane nane) {
t hi s. nane = nane;

public class Nane {

char initial;

String first;

String last;

public String getFirst() {
return first;

}

void setFirst(String first) {
this.first = first;

}

public String getLast() {
return | ast;

}

void setlLast(String last) {

197

Chapter 9. Component Mapping

this.last = | ast

}
public char getlnitial () {

return initial

}
void setlnitial (char initial) {
this.initial = initial

Now Name can be persisted as a component of Per son. Nane defines getter and setter methods
for its persistent properties, but it does not need to declare any interfaces or identifier properties.

Our Hibernate mapping would look like this:
<cl ass name="eg. Person" tabl e="person">

<id name="Key" colum="pid" type="string">
<generat or class="uuid"/>

</id>
<property nanme="birthday" type="date"/>
<conponent nane="Nane" class="eg. Name"> <!-- class attribute optional -->

<property name="initial"/>
<property name="first"/>
<property name="|ast"/>
</ conponent >
</ cl ass>

The person table would have the columns pi d, bi rt hday, initial,first and| ast.

Like value types, components do not support shared references. In other words, two persons
could have the same name, but the two person objects would contain two independent name
objects that were only "the same" by value. The null value semantics of a component are ad hoc.
When reloading the containing object, Hibernate will assume that if all component columns are
null, then the entire component is null. This is suitable for most purposes.

The properties of a component can be of any Hibernate type (collections, many-to-one
associations, other components, etc). Nested components should not be considered an exotic
usage. Hibernate is intended to support a fine-grained object model.

The <conponent > element allows a <par ent > subelement that maps a property of the component
class as a reference back to the containing entity.

<cl ass nane="eg. Person" tabl e="person">

<i d nane="Key" colum="pid" type="string">
<generator class="uuid"/>

</id>

<property nanme="birthday" type="date"/>

<conmponent nane="Nane" cl ass="eg. Name" uni que="true">
<par ent nanme="nanmedPerson"/> <!-- reference back to the Person -->
<property name="initial"/>
<property name="first"/>

198

Collections of dependent objects

<property name="|ast"/>
</ conponent >
</ cl ass>

9.2. Collections of dependent objects

Collections of components are supported (e.g. an array of type Name). Declare your component
collection by replacing the <el enent > tag with a <conposi t e- el enent > tag:

<set nanme="soneNanes" table="sonme_nanes" |azy="true">
<key col um="id"/>
<conposi te-el ement class="eg. Nanme"> <!-- class attribute required -->
<property name="initial"/>
<property name="first"/>
<property name="|ast"/>
</ conposi t e- el ement >
</set>

e | Important

If you define a Set of composite elements, it is important to implement equal s()
and hashCode() correctly.

Composite elements can contain components but not collections. If your composite element
contains components, use the <nest ed- conposi t e- el enent > tag. This case is a collection of
components which themselves have components. You may want to consider if a one-to-many
association is more appropriate. Remodel the composite element as an entity, but be aware that
even though the Java model is the same, the relational model and persistence semantics are still
slightly different.

A composite element mapping does not support null-able properties if you are using a <set >.
There is no separate primary key column in the composite element table. Hibernate uses each
column's value to identify a record when deleting objects, which is not possible with null values.
You have to either use only not-null properties in a composite-element or choose a <l i st >, <map>,
<bag> or <i dbag>.

A special case of a composite element is a composite element with a nested <many-t o- one>
element. This mapping allows you to map extra columns of a many-to-many association table to
the composite element class. The following is a many-to-many association from Or der to I t em
where pur chaseDat e, pri ce and quanti ty are properties of the association:

<cl ass nane="eg. Order" >

<set name="purchasedltens" tabl e="purchase_itens" |azy="true">
<key col um="order _id">

199

Chapter 9. Component Mapping

<conposi te-el enent cl ass="eg. Purchase">
<property name="purchaseDate"/>
<property nanme="price"/>
<property name="quantity"/>
<many-to-one name="itenl' class="eg.lten'/> <l-- class attribute is optional -->

</ conposi t e- el ement >

</ set>
</ cl ass>

There cannot be a reference to the purchase on the other side for bidirectional association
navigation. Components are value types and do not allow shared references. A single Pur chase
can be in the set of an Or der, but it cannot be referenced by the | t emat the same time.

Even ternary (or quaternary, etc) associations are possible:

<cl ass name="eg.Order" >

<set name="purchasedltens" tabl e="purchase_itens" |azy="true">
<key col um="order _id">
<conposi te-el ement cl ass="eg. OrderLine">
<many-to-one nane="purchaseDetails class="eg. Purchase"/>
<many-to-one nane="itenm' class="eg.ltenl/>
</ conposi te-el ement >
</set>
</ cl ass>

Composite elements can appear in queries using the same syntax as associations to other entities.

9.3. Components as Map indices

The <conposi t e- map- key> element allows you to map a component class as the key of a Map.
Ensure that you override hashCode() and equal s() correctly on the component class.

9.4. Components as composite identifiers

You can use a component as an identifier of an entity class. Your component class must satisfy
certain requirements:

* It mustimplementj ava. i o. Seri al i zabl e.

It must re-implement equal s() and hashCode() consistently with the database's notion of
composite key equality.

Note

In Hibernate3, although the second requirement is not an absolutely hard
requirement of Hibernate, it is recommended.

200

Components as composite identifiers

You cannot use an | denti fi er Gener at or to generate composite keys. Instead the application
must assign its own identifiers.

Use the <conposite-id> tag, with nested <key- property> elements, in place of the usual
<i d> declaration. For example, the Or der Li ne class has a primary key that depends upon the
(composite) primary key of Or der .

<cl ass name="0OrderLine">

<conposite-id name="id" cl ass="OrderLineld">
<key- property name="Ilineld"/>
<key- property nanme="orderld"/>
<key- property name="custonerld"/>

</ conposi te-id>

<property name="nane"/>

<many-t o-one name="order" class="0Order"
insert="fal se" update="fal se">
<col um nane="order|d"/>
<col um name="cust oner|d"/>
</ many-t o- one>

</ cl ass>

Any foreign keys referencing the OrderLi ne table are now composite. Declare this in your
mappings for other classes. An association to Or der Li ne is mapped like this:

<many-to- one nane="orderLine" class="0OrderLine">
<l-- the "class" attribute is optional, as usual -->
<col um nane="1ineld"/>
<col um nane="orderld"/>
<col um nane="custoner!d"/>
</ many-t o- one>

Tip

The col um element is an alternative to the col unm attribute everywhere. Using
the col unm element just gives more declaration options, which are mostly useful
when utilizing hbn2ddl

A nany- t o- neny association to Or der Li ne also uses the composite foreign key:

<set name="undel i ver edOr der Li nes" >
<key col um nane="war ehousel d"/ >
<many-to- many cl ass="Or derLi ne">

201

Chapter 9. Component Mapping

<col um nane="1ineld"/>
<col um nanme="orderld"/>
<col um nane="custonmer!d"/>
</ many-t o- many>
</ set>

The collection of Or der Li nes in Or der would use:

<set name="orderLines" inverse="true">
<key>
<col um nanme="orderld"/>
<col um nane="custoner!d"/>
</ key>
<one-to-nmany cl ass="0OrderLine"/>
</set>

The <one-t o- many> element declares no columns.

If O der Li ne itself owns a collection, it also has a composite foreign key.

<cl ass nane="OrderLi ne">

<list nane="deliveryAttenpts">

<key> <l-- a collection inherits the conposite key type -->
<col um nane="1inel d"/>
<col um name="orderld"/>
<col um nane="custoner|d"/>

</ key>

<list-index colum="attenptld" base="1"/>

<conposi te-el ement class="DeliveryAttenpt">

</ conposi t e- el ement >
</ set>
</cl ass>

9.5. Dynamic components

You can also map a property of type Map:

<dynami c- conponent nane="userAttri butes">
<property nanme="foo" colum="FOO" type="string"/>
<property name="bar" col um="BAR"' type="integer"/>
<many-to-one nanme="baz" cl ass="Baz" colum="BAZ | D'/ >
</ dynami c- conponent >

The semantics of a <dynani c- conponent > mapping are identical to <conponent >. The advantage
of this kind of mapping is the ability to determine the actual properties of the bean at deployment

202

Dynamic components

time just by editing the mapping document. Runtime manipulation of the mapping document is
also possible, using a DOM parser. You can also access, and change, Hibernate's configuration-
time metamodel via the Confi gur ati on object.

203

204

Chapter 10.

Inheritance mapping

10.1. The three strategies
Hibernate supports the three basic inheritance mapping strategies:

« table per class hierarchy
« table per subclass
« table per concrete class

In addition, Hibernate supports a fourth, slightly different kind of polymorphism:
* implicit polymorphism

It is possible to use different mapping strategies for different branches of the same inheritance
hierarchy. You can then make use of implicit polymorphism to achieve polymorphism across the
whole hierarchy. However, Hibernate does not support mixing <subcl ass>, <j oi ned- subcl ass>
and <uni on- subcl ass> mappings under the same root <cl ass> element. It is possible to mix
together the table per hierarchy and table per subclass strategies under the the same <cl ass>
element, by combining the <subcl ass> and <j oi n> elements (see below for an example).

It is possible to define subcl ass, uni on- subcl ass, and j oi ned- subcl ass mappings in separate
mapping documents directly beneath hi ber nat e- mappi ng. This allows you to extend a class
hierarchy by adding a new mapping file. You must specify an ext ends attribute in the subclass
mapping, naming a previously mapped superclass. Previously this feature made the ordering of
the mapping documents important. Since Hibernate3, the ordering of mapping files is irrelevant
when using the extends keyword. The ordering inside a single mapping file still needs to be defined
as superclasses before subclasses.

<hi ber nat e- mappi ng>
<subcl ass nane="DonesticCat" extends="Cat" discrim nator-val ue="D">
<property nanme="nanme" type="string"/>
</ subcl ass>
</ hi ber nat e- mappi ng>

10.1.1. Table per class hierarchy

Suppose we have an interface Paynment with the implementors Credit CardPaynent,
CashPaynent , and ChequePayment . The table per hierarchy mapping would display in the following
way:

<cl ass nane="Paynent" tabl e=" PAYMENT" >
<id nane="id" type="long" col umm="PAYMENT_ | D"'>
<generator class="native"/>

205

Chapter 10. Inheritance mapping

</id>
<di scrim nator col um="PAYMENT_TYPE" type="string"/>
<property nanme="anmount" col utm="AMOUNT"/ >

<subcl ass nane="Credit CardPaynent" di scri m nator-val ue="CREDI T" >
<property nanme="creditCardType" col um="CCTYPE"/ >

</ subcl ass>
<subcl ass name="CashPaynment" di scri m nator-val ue=" CASH' >

</ subcl ass>
<subcl ass nanme="ChequePaynent" di scri nm nator-val ue=" CHEQUE" >

</ subcl ass>
</cl ass>

Exactly one table is required. There is a limitation of this mapping strategy: columns declared by
the subclasses, such as CCTYPE, cannot have NOT NULL constraints.

10.1.2. Table per subclass

A table per subclass mapping looks like this:

<cl ass nane="Paynent" tabl e=" PAYMENT" >
<id nane="id" type="long" col umm="PAYMENT_ | D"'>
<generator class="native"/>
</id>
<property nanme="anount" col urm="AMOUNT"/ >

<j oi ned-subcl ass nanme="Credi t CardPaynent" tabl e=" CREDI T_PAYMENT" >
<key col umm="PAYMENT_| D'/ >
<property nanme="creditCardType" col um="CCTYPE"/ >

</ j oi ned- subcl ass>
<j ol ned- subcl ass nane="CashPaynent" tabl e=" CASH PAYMENT" >
<key col urm="PAYMENT_| D'/ >

</ j oi ned- subcl ass>
<j oi ned- subcl ass nane="ChequePaynent" tabl e=" CHEQUE PAYMENT" >
<key col um="PAYMENT_I D'/ >

</'j oi ned- subcl ass>
</ cl ass>

Four tables are required. The three subclass tables have primary key associations to the
superclass table so the relational model is actually a one-to-one association.

10.1.3. Table per subclass: using a discriminator

Hibernate's implementation of table per subclass does not require a discriminator column. Other
object/relational mappers use a different implementation of table per subclass that requires a type
discriminator column in the superclass table. The approach taken by Hibernate is much more

206

Mixing table per class hierarchy with table per subclass

difficult to implement, but arguably more correct from a relational point of view. If you want to use a
discriminator column with the table per subclass strategy, you can combine the use of <subcl ass>
and <j oi n>, as follows:

<cl ass nane="Paynent" tabl e=" PAYMENT" >
<id name="id" type="long" col um="PAYMENT_| D' >
<generator class="native"/>
</id>
<di scrim nator col um="PAYMENT_TYPE" type="string"/>
<property nanme="anmount" col utm="AMOUNT"/ >

<subcl ass name="Credit CardPaynent" discrim nator-val ue="CREDI T">
<j oi n tabl e=" CREDI T_PAYMENT" >
<key col um="PAYMENT | D'/ >
<property nanme="creditCardType" col um="CCTYPE"/ >

</j oi n>
</ subcl ass>
<subcl ass nanme="CashPaynment" di scri m nator-val ue="CASH"'>
<j oi n tabl e=" CASH_PAYMENT" >
<key col unmm="PAYMENT | D'/ >

</j oi n>
</ subcl ass>
<subcl ass nanme="ChequePaynent" di scri nm nator-val ue=" CHEQUE" >
<j oi n tabl e=" CHEQUE_PAYMENT" fetch="sel ect">
<key col um="PAYMENT_I D"/ >

</join>
</ subcl ass>
</ cl ass>

The optional fetch="sel ect" declaration tells Hibernate not to fetch the ChequePaynent
subclass data using an outer join when querying the superclass.

10.1.4. Mixing table per class hierarchy with table per subclass

You can even mix the table per hierarchy and table per subclass strategies using the following
approach:

<cl ass name="Paynent" tabl e=" PAYMENT" >
<id nane="id" type="long" col um="PAYMENT | D"'>
<generator class="native"/>
</id>
<di scrim nator col um="PAYMENT_TYPE" type="string"/>
<property nanme="anmount" col urm="AMOUNT"/ >

<subcl ass nanme="Credit CardPaynent" discrinm nator-val ue="CREDI T" >
<j oi n tabl e=" CREDI T_PAYMENT" >
<property nanme="creditCardType" col um="CCTYPE"/ >

</j oi n>
</ subcl ass>

207

Chapter 10. Inheritance mapping

<subcl ass nanme="CashPaynment" di scri m nator-val ue=" CASH' >

</ subcl ass>
<subcl ass nanme="ChequePaynent" di scri nm nator-val ue=" CHEQUE" >

</ subcl ass>
</cl ass>

For any of these mapping strategies, a polymorphic association to the root Paynent class is
mapped using <nany-t o- one>.

<many-to-one nane="payment" col unm="PAYMENT_I D' cl ass="Paynent"/>

10.1.5. Table per concrete class

There are two ways we can map the table per concrete class strategy. First, you can use <uni on-
subcl ass>.

<cl ass nane="Paynent ">
<id nane="id" type="long" col umm="PAYMENT_ | D"'>
<generator class="sequence"/>
</id>

<property name="anount" col umm="AMOUNT" />

<uni on-subcl ass nane="Credi t CardPaynment" tabl e=" CREDI T_PAYMENT" >
<property nanme="creditCardType" col um="CCTYPE"/ >

</ uni on- subcl ass>
<uni on-subcl ass nane="CashPaynent" tabl e=" CASH PAYMENT" >

</ uni on- subcl ass>
<uni on-subcl ass nane="ChequePaynent" tabl e=" CHEQUE_PAYMENT" >

</ uni on- subcl ass>
</ cl ass>

Three tables are involved for the subclasses. Each table defines columns for all properties of the
class, including inherited properties.

The limitation of this approach is that if a property is mapped on the superclass, the column name
must be the same on all subclass tables. The identity generator strategy is not allowed in union
subclass inheritance. The primary key seed has to be shared across all unioned subclasses of
a hierarchy.

If your superclass is abstract, map it with abst r act ="t r ue" . If it is not abstract, an additional table
(it defaults to PAYMENT in the example above), is needed to hold instances of the superclass.

208

Table per concrete class using implicit polymorphism

10.1.6. Table per concrete class using implicit polymorphism

An alternative approach is to make use of implicit polymorphism:

<cl ass nane="Credit CardPaynment" tabl e=" CREDI T_PAYMENT" >
<id nane="id" type="long" col um="CREDI T_PAYMENT_| D' >
<generator class="native"/>
</id>
<property nanme="anmount" col um="CREDI T_AMOUNT"/ >

</ cl ass>
<cl ass nane="CashPaynent" tabl e=" CASH PAYMENT" >
<id nane="id" type="long" col um="CASH PAYMENT_ I D' >
<generator class="native"/>

</id>
<property nanme="anmount" col um="CASH AMOUNT"/ >

</ cl ass>
<cl ass nane="ChequePaynent" tabl e=" CHEQUE_PAYMENT" >
<id nane="id" type="long" col um="CHEQUE_PAYMENT_| D" >
<generator class="native"/>

</id>
<property nanme="anmount" col um="CHEQUE_AMOUNT"/ >

</ cl ass>

Notice that the Paynent interface is not mentioned explicitly. Also notice that properties of Paynent
are mapped in each of the subclasses. If you want to avoid duplication, consider using XML entities
(for example, [<! ENTITY all properties SYSTEM "al | properties.xm ">] in the DOCTYPE
declaration and &al | properti es; in the mapping).

The disadvantage of this approach is that Hibernate does not generate SQL UNI ONs when
performing polymorphic queries.

For this mapping strategy, a polymorphic association to Payment is usually mapped using <any>.

<any nanme="payment" neta-type="string" id-type="1ong">
<met a- val ue val ue="CREDI T" cl ass="Credi t CardPaynent"/>
<net a-val ue val ue="CASH' cl ass="CashPaynent"/ >
<net a-val ue val ue="CHEQUE" cl ass="ChequePaynent"/>
<col umm nane="PAYMENT_CLASS"/ >
<col umm nane="PAYMENT_I D'/ >

</ any>

209

Chapter 10. Inheritance mapping

10.1.7. Mixing implicit polymorphism with other inheritance
mappings

Since the subclasses are each mapped in their own <cl ass> element, and since Paynent is just
an interface), each of the subclasses could easily be part of another inheritance hierarchy. You
can still use polymorphic queries against the Paynent interface.

<cl ass nane="Credit CardPaynent" tabl e="CREDI T_PAYMENT" >
<id name="id" type="long" col um="CREDI T_PAYMENT_| D"'>
<generator class="native"/>
</id>
<di scrim nator col um="CREDI T_CARD" type="string"/>
<property nanme="anount" col utmm="CREDI T_AMOUNT"/ >

<subcl ass name="Mast er Car dPaynent " di scri m nat or-val ue="MDC"/ >
<subcl ass name="Vi saPaynent" di scri m nator-val ue="VI SA"/ >
</ cl ass>

<cl ass nane="Nonel ectroni cTransacti on" tabl e="NONELECTRONI C_TXN' >
<id nane="id" type="long" colum="TXN_|ID"'>
<generator class="native"/>
</id>

<j oi ned-subcl ass nanme="CashPaynent" tabl e=" CASH_PAYMENT" >
<key col um="PAYMENT | D'/ >
<property nanme="anmount" col utm="CASH AMOUNT"/ >

</ j oi ned- subcl ass>

<j ol ned- subcl ass nane="ChequePaynent" tabl e=" CHEQUE_PAYMENT" >
<key col um="PAYMENT_I D"/ >
<property name="anmount" col um="CHEQUE_AMOUNT"/ >

</ j oi ned- subcl ass>
</ cl ass>

Once again, Payment is not mentioned explicitly. If we execute a query against the
Paynent interface, for example from Paynent, Hibernate automatically returns instances of
Credi t CardPayment (and its subclasses, since they also implement Paynent), CashPaynent and
ChequePaynent , but not instances of Nonel ect r oni cTransact i on.

10.2. Limitations

There are limitations to the "implicit polymorphism" approach to the table per concrete-
class mapping strategy. There are somewhat less restrictive limitations to <uni on- subcl ass>
mappings.

The following table shows the limitations of table per concrete-class mappings, and of implicit
polymorphism, in Hibernate.

210

Limitations

Table 10.1. Features of inheritance mappings

Inheritani Polymorg Polymorg Polymorg Polymorg Polymorgp Polymorg Polymorg Outer
strategy many- one-to- Kone-to- | many- |load()/ queries joins join
to-one one many to-many get () fetching

table per <many- <one- <one- <many- | s. get (Payiheom. cl afs,om supported
class- t o-one> to-one> to- to- id) Paynent Order
hierarchy many> many> p 0 join

0. payment

p
table per <many- <one- <one- <many- | s. get (Payiheom. cl afs,om supported
subclass to-one> to-one> to- to- id) Paynent Order

many> many> p o join

0. paynment

p
table per <many- <one- <one- <many- | s. get (Payiheom. cl afs,om supported
concrete- to-one> to-one> |to- to- id) Payment Order
class many> many> p o0 join
(union- (for 0. paynent
subclass) i nverse="true" p

only)

table per <any> not not <many- s. creat eCri omr i a(Petnent . clnads) . add(Restrictions.
concrete supported supported t o- any> Payment supported supported
class p
(implicit
polymorphism)

211

212

Chapter 11.

Working with objects

Hibernate is a full object/relational mapping solution that not only shields the developer from
the details of the underlying database management system, but also offers state management
of objects. This is, contrary to the management of SQL st at enments in common JDBC/SQL
persistence layers, a natural object-oriented view of persistence in Java applications.

In other words, Hibernate application developers should always think about the state of their
objects, and not necessarily about the execution of SQL statements. This part is taken care of
by Hibernate and is only relevant for the application developer when tuning the performance of
the system.

11.1. Hibernate object states

Hibernate defines and supports the following object states:

« Transient - an object is transient if it has just been instantiated using the new operator, and it
is not associated with a Hibernate Sessi on. It has no persistent representation in the database
and no identifier value has been assigned. Transient instances will be destroyed by the garbage
collector if the application does not hold a reference anymore. Use the Hibernate Sessi on to
make an object persistent (and let Hibernate take care of the SQL statements that need to be
executed for this transition).

» Persistent - a persistent instance has a representation in the database and an identifier value.
It might just have been saved or loaded, however, it is by definition in the scope of a Sessi on.
Hibernate will detect any changes made to an object in persistent state and synchronize the
state with the database when the unit of work completes. Developers do not execute manual
UPDATE statements, or DELETE statements when an object should be made transient.

« Detached - a detached instance is an object that has been persistent, but its Sessi on has been
closed. The reference to the object is still valid, of course, and the detached instance might
even be modified in this state. A detached instance can be reattached to a new Sessi on at a
later point in time, making it (and all the modifications) persistent again. This feature enables
a programming model for long running units of work that require user think-time. We call them
application transactions, i.e., a unit of work from the point of view of the user.

We will now discuss the states and state transitions (and the Hibernate methods that trigger a
transition) in more detail.

11.2. Making objects persistent

Newly instantiated instances of a persistent class are considered transient by Hibernate. We can
make a transient instance persistent by associating it with a session:

DonesticCat fritz = new DonesticCat();

213

Chapter 11. Working with objects

fritz.setCol or (Col or. d NGER) ;
fritz.setSex('M);

fritz.setName("Fritz");

Long generatedld = (Long) sess.save(fritz);

If Cat has a generated identifier, the identifier is generated and assigned to the cat when save()
is called. If Cat has an assi gned identifier, or a composite key, the identifier should be assigned
to the cat instance before calling save() . You can also use per si st () instead of save(), with
the semantics defined in the EJB3 early draft.

« persist() makes a transient instance persistent. However, it does not guarantee that the
identifier value will be assigned to the persistent instance immediately, the assignment might
happen at flush time. persi st () also guarantees that it will not execute an | NSERT statement
if it is called outside of transaction boundaries. This is useful in long-running conversations with
an extended Session/persistence context.

* save() does guarantee to return an identifier. If an INSERT has to be executed to get the
identifier (e.g. "identity" generator, not "sequence"), this INSERT happens immediately, no
matter if you are inside or outside of a transaction. This is problematic in a long-running
conversation with an extended Session/persistence context.

Alternatively, you can assign the identifier using an overloaded version of save() .

Donesti cCat pk = new DonesticCat();
pk. set Col or (Col or. TABBY) ;

pk.set Sex(' F');

pk. set Name(" PK") ;

pk.setKittens(new HashSet());
pk.addKitten(fritz);

sess. save(pk, new Long(1234));

If the object you make persistent has associated objects (e.g. the ki ttens collection in the
previous example), these objects can be made persistent in any order you like unless you have
a NOT NULL constraint upon a foreign key column. There is never a risk of violating foreign key
constraints. However, you might violate a NOT NULL constraint if you save() the objects in the
wrong order.

Usually you do not bother with this detail, as you will normally use Hibernate's transitive
persistence feature to save the associated objects automatically. Then, even NOT NULL constraint
violations do not occur - Hibernate will take care of everything. Transitive persistence is discussed
later in this chapter.

11.3. Loading an object

The | oad() methods of Sessi on provide a way of retrieving a persistent instance if you know its
identifier. | oad() takes a class object and loads the state into a newly instantiated instance of
that class in a persistent state.

214

Loading an object

Cat fritz = (Cat) sess.load(Cat.class, generatedld);

/1 you need to wap primtive identifiers
long id = 1234;
DonesticCat pk = (DonesticCat) sess.|load(DonesticCat.class, new Long(id));

Alternatively, you can load state into a given instance:

Cat cat = new DonesticCat();

/1 load pk's state into cat

sess. |l oad(cat, new Long(pkld));
Set kittens = cat.getKittens();

Be aware that | oad() will throw an unrecoverable exception if there is no matching database
row. If the class is mapped with a proxy, | oad() just returns an uninitialized proxy and does not
actually hit the database until you invoke a method of the proxy. This is useful if you wish to create
an association to an object without actually loading it from the database. It also allows multiple
instances to be loaded as a batch if bat ch- si ze is defined for the class mapping.

If you are not certain that a matching row exists, you should use the get () method which hits the
database immediately and returns null if there is no matching row.

Cat cat = (Cat) sess.get(Cat.class, id);
if (cat==null) {

cat = new Cat();

sess.save(cat, id);

}

return cat;

You can even load an object using an SQL SELECT ... FOR UPDATE, using a LockMbde. See
the API documentation for more information.

Cat cat = (Cat) sess.get(Cat.class, id, LockWbde. UPGRADE);

Any associated instances or contained collections will not be selected FOR UPDATE, unless you
decide to specify | ock or al | as a cascade style for the association.

It is possible to re-load an object and all its collections at any time, using the r ef resh() method.

This is useful when database triggers are used to initialize some of the properties of the object.

sess. save(cat);
sess. flush(); //force the SQ | NSERT

215

Chapter 11. Working with objects

sess.refresh(cat); //re-read the state (after the trigger executes)

How much does Hibernate load from the database and how many SQL SELECTs will it use? This
depends on the fetching strategy. This is explained in Section 21.1, “Fetching strategies”.

11.4. Querying

If you do not know the identifiers of the objects you are looking for, you need a query. Hibernate
supports an easy-to-use but powerful object oriented query language (HQL). For programmatic
query creation, Hibernate supports a sophisticated Criteria and Example query feature (QBC and
QBE). You can also express your query in the native SQL of your database, with optional support
from Hibernate for result set conversion into objects.

11.4.1. Executing queries

HQL and native SQL queries are represented with an instance of or g. hi ber nat e. Query. This
interface offers methods for parameter binding, result set handling, and for the execution of the
actual query. You always obtain a Quer y using the current Sessi on:

Li st cats = session.createQuery(
"from Cat as cat where cat.birthdate < ?")
.setDate(0, date)
ist();

Li st nmothers = session. createQuery(
"sel ect nother from Cat as cat join cat.nother as nother where cat.nane = ?")
.setString(0, nane)
dist();

Li st kittens = session.createQuery(
"from Cat as cat where cat.nother = ?")
.setEntity(0, pk)
Llist();

Cat nother = (Cat) session.createQuery(
"sel ect cat.nother from Cat as cat where cat = ?")
.setEntity(0, izi)
.uni queResul t(); 1]

Query nothersWthKittens = (Cat) session.createQuery(
"select nother from Cat as nother left join fetch nother.kittens");
Set uni queMdt hers = new HashSet (not hersWthKittens.list());

A query is usually executed by invoking | i st () . The result of the query will be loaded completely
into a collection in memory. Entity instances retrieved by a query are in a persistent state. The
uni queResul t () method offers a shortcut if you know your query will only return a single object.
Queries that make use of eager fetching of collections usually return duplicates of the root objects,
but with their collections initialized. You can filter these duplicates through a Set .

216

Executing queries

11.4.1.1. lterating results

Occasionally, you might be able to achieve better performance by executing the query using the
i terate() method. This will usually be the case if you expect that the actual entity instances
returned by the query will already be in the session or second-level cache. If they are not already
cached, it erat e() will be slower than i st () and might require many database hits for a simple
query, usually 1 for the initial select which only returns identifiers, and n additional selects to
initialize the actual instances.

[l fetch ids
Iterator iter = sess.createQuery("fromeg. Qux q order by q.likeliness").iterate();
while (iter.hasNext()) {
Qux qux = (Qux) iter.next(); // fetch the object
/1 sonething we coul dnt express in the query
if (qux.cal cul ateConplicatedAlgorithm()) {
/1 delete the current instance
iter.renove();
/1 dont need to process the rest
br eak;

11.4.1.2. Queries that return tuples

Hibernate queries sometimes return tuples of objects. Each tuple is returned as an array:

Iterator kittensAndMothers = sess. createQuery(
"select kitten, nother fromCat kitten join Kitten.nother nother")
list()
.iterator();

while (kittensAndMot hers. hasNext ()) {
Obj ect[] tuple = (Object[]) kittensAndMot hers. next();
Cat kitten = (Cat) tuple[O];
Cat nother = (Cat) tuple[1];

11.4.1.3. Scalar results

Queries can specify a property of a class in the sel ect clause. They can even call SQL aggregate
functions. Properties or aggregates are considered "scalar" results and not entities in persistent
state.

Iterator results = sess.createQuery(
"sel ect cat.color, mn(cat.birthdate), count(cat) from Cat cat " +
"group by cat.color")
Llist()

217

Chapter 11. Working with objects

.iterator();

while (results.hasNext()) {
Object[] row = (Qbject[]) results.next();
Col or type = (Color) row0];
Date ol dest = (Date) rowf 1];
I nteger count = (Integer) row 2];

11.4.1.4. Bind parameters

Methods on Query are provided for binding values to named parameters or JDBC-style ?
parameters. Contrary to JDBC, Hibernate numbers parameters from zero. Named parameters
are identifiers of the form : name in the query string. The advantages of named parameters are
as follows:

* named parameters are insensitive to the order they occur in the query string
« they can occur multiple times in the same query
« they are self-documenting

/I naned paraneter (preferred)
Query q = sess.createQery("from DonesticCat cat where cat.nane = :nane");
g.setString("nanme", "Fritz");
Iterator cats = g.iterate();

[/ posi tional paraneter

Query q = sess.createQery("from DonesticCat cat where cat.nanme = ?");
g.setString(0, "lzi");

Iterator cats = qg.iterate();

/I naned paraneter |ist

Li st names = new Arraylist();

names. add("1zi");

names. add("Fritz");

Query q = sess.createQuery("from DonesticCat cat where cat.nane in (:namesList)");
g. set Par anet er Li st ("nanesLi st", nanes);

List cats = qg.list();

11.4.1.5. Pagination

If you need to specify bounds upon your result set, that is, the maximum number of rows you want
to retrieve and/or the first row you want to retrieve, you can use methods of the Query interface:

Query q = sess.createQuery("from DomesticCat cat");
q. set Fi rst Resul t (20) ;

218

Executing queries

g. set MaxResul t s(10) ;
List cats = g.list();

Hibernate knows how to translate this limit query into the native SQL of your DBMS.
11.4.1.6. Scrollable iteration

If your JDBC driver supports scrollable Resul t Set s, the Query interface can be used to obtain a
Scr ol | abl eResul t s object that allows flexible navigation of the query results.

Query q = sess.createQery("select cat.nane, cat from DonesticCat cat " +
"order by cat.nane");

Scrol | abl eResults cats = g.scroll();

if (cats.first()) {

/1 find the first name on each page of an al phabetical |ist of cats by nane
firstNamesOf Pages = new ArraylList();
do {

String nanme = cats.getString(0);
firstNamesOf Pages. add(nane) ;

}
while (cats.scroll (PAGE_SIZE));

/1 Now get the first page of cats

pageOf Cats = new ArraylList();

cats. beforeFirst();

int i=0;

while((PACE_SIZE > i++) && cats.next()) pageOfCats.add(cats.get(1));

}

cats.close()

Note that an open database connection and cursor is required for this functionality. Use
set MaxResul t () /set Fi rst Resul t () if you need offline pagination functionality.

11.4.1.7. Externalizing named queries

Queries can also be configured as so called nhamed queries using annotations or Hibernate
mapping documents. @anmedQuer y and @amedQuer i es can be defined at the class level as seen
in Example 11.1, “Defining a named query using @NamedQuery” . However their definitions are
global to the session factory/entity manager factory scope. A named query is defined by its name
and the actual query string.

Example 11.1. Defining a named query using @anedQuery

@Entity
@NamedQuer y(nane="ni ght . nor eRecent Than", query="select n from N ght n where n.date >= :date")
public class N ght {

}

219

Chapter 11. Working with objects

public class MyDao {
doStuff () {
Query q = s.get NanedQuery("ni ght.noreRecent Than");
g.setDate("date", aMonthAgo);
List results = qg.list();

Using a mapping document can be configured using the <quer y> node. Remember to use a CDATA
section if your query contains characters that could be interpreted as markup.

Example 11.2. Defining a named query using <query>

<query name="ByNaneAndMaxi mumAgi ght " ><! [CDATA
from eg. DonesticCat as cat
where cat.nane = ?
and cat.weight > ?
] 1></query>

Parameter binding and executing is done programatically as seen in Example 11.3, “Parameter
binding of a named query”.

Example 11.3. Parameter binding of a named query

Query q = sess. get NanmedQuer y(" ByNameAndMaxi nunméi ght ") ;
g.setString(0, nane);

g.setInt(1, mnWight);

List cats = qg.list();

The actual program code is independent of the query language that is used. You can also define
native SQL queries in metadata, or migrate existing queries to Hibernate by placing them in
mapping files.

Also note that a query declaration inside a <hi ber nat e- mappi ng> element requires a global
unigue name for the query, while a query declaration inside a <cl ass> element is made
uniqgue automatically by prepending the fully qualified name of the class. For example
eg. Cat . ByNaneAndMaxi munéi ght .

11.4.2. Filtering collections

A collection filter is a special type of query that can be applied to a persistent collection or array.
The query string can refer to t hi s, meaning the current collection element.

Col | ection blackKittens = session.createFilter(

220

Criteria queries

pk.getKittens(),

"where this.color = ?")

.set Paranet er (Col or. BLACK, Hi bernate. custon(Col orUser Type. cl ass))
Llist()

The returned collection is considered a bag that is a copy of the given collection. The original
collection is not modified. This is contrary to the implication of the name "filter", but consistent
with expected behavior.

Observe that filters do not require a f r omclause, although they can have one if required. Filters
are not limited to returning the collection elements themselves.

Col | ection bl ackKittenMates = session.createFilter(
pk.getKittens(),
"select this.mate where this.color = eg. Col or. BLACK. i nt Val ue")
ist();

Even an empty filter query is useful, e.g. to load a subset of elements in a large collection:

Col l ection tenKittens = session.createFilter(
nmot her. getKittens(), "")
.set FirstResul t(0).set MaxResul t s(10)
ist();

11.4.3. Criteria queries

HQL is extremely powerful, but some developers prefer to build queries dynamically using an
object-oriented API, rather than building query strings. Hibernate provides an intuitive Criteria
query API for these cases:

Criteria crit = session.createCriteria(Cat.class);
crit.add(Restrictions.eq("color", eg.Color.BLACK));
crit.set MaxResul ts(10);

List cats = crit.list();

The Cri t eri a and the associated Exanpl e APl are discussed in more detail in Chapter 17, Criteria
Queries.

11.4.4. Queries in native SQL

You can express a query in SQL, using createSQ.Query() and let Hibernate manage the
mapping from result sets to objects. You can at any time call sessi on. connection() and use
the JDBC Connect i on directly. If you choose to use the Hibernate API, you must enclose SQL
aliases in braces:

221

Chapter 11. Working with objects

Li st cats = session.createSQQuery("SELECT {cat.*} FROM CAT {cat} WHERE ROANUM<10")
.addEntity("cat", Cat.class)
list();

Li st cats = session. createSQQuery(
"SELECT {cat}.ID AS {cat.id}, {cat}.SEX AS {cat.sex}, " +
"{cat}. MATE AS {cat.mate}, {cat}.SUBCLASS AS {cat.class}, ... " +
"FROM CAT {cat} WHERE ROANUMK10")
.addEntity("cat", Cat.class)
Llist()

SQL queries can contain named and positional parameters, just like Hibernate queries. More
information about native SQL queries in Hibernate can be found in Chapter 18, Native SQL.

11.5. Modifying persistent objects

Transactional persistent instances (i.e. objects loaded, saved, created or queried by the Sessi on)
can be manipulated by the application, and any changes to persistent state will be persisted when
the Sessi on is flushed. This is discussed later in this chapter. There is no need to call a particular
method (like updat e() , which has a different purpose) to make your modifications persistent. The
most straightforward way to update the state of an object is to | oad() it and then manipulate it
directly while the Sessi on is open:

DonesticCat cat = (DonmesticCat) sess.load(Cat.class, new Long(69));
cat. set Name("PK");
sess.flush(); // changes to cat are automatically detected and persisted

Sometimes this programming model is inefficient, as it requires in the same session both an SQL
SELECT to load an object and an SQL UPDATE to persist its updated state. Hibernate offers an
alternate approach by using detached instances.

11.6. Modifying detached objects

Many applications need to retrieve an object in one transaction, send it to the Ul layer for
manipulation, then save the changes in a new transaction. Applications that use this kind of
approach in a high-concurrency environment usually use versioned data to ensure isolation for
the "long" unit of work.

Hibernate supports this model by providing for reattachment of detached instances using the
Sessi on. updat e() or Sessi on. mer ge() methods:

/1 in the first session
Cat cat = (Cat) firstSession.load(Cat.class, catld);
Cat potential Mate = new Cat();

222

Automatic state detection

firstSession.save(potential Mate);

/1 in a higher layer of the application
cat.set Mat e(pot enti al Mate);

/] later, in a new session
secondSessi on. update(cat); // update cat
secondSessi on. update(mate); // update nate

If the Cat with identifier cat | d had already been loaded by secondSessi on when the application
tried to reattach it, an exception would have been thrown.

Use updat e() if you are certain that the session does not contain an already persistent instance
with the same identifier. Use ner ge() if you want to merge your modifications at any time without
consideration of the state of the session. In other words, updat e() is usually the first method you
would call in a fresh session, ensuring that the reattachment of your detached instances is the
first operation that is executed.

The application should individually updat e() detached instances that are reachable from the given
detached instance only if it wants their state to be updated. This can be automated using transitive
persistence. See Section 11.11, “Transitive persistence” for more information.

The 1 ock() method also allows an application to reassociate an object with a new session.
However, the detached instance has to be unmodified.

/1just reassoci ate:

sess. lock(fritz, LockMbde. NONE);

//do a version check, then reassoci ate:

sess. |l ock(izi, LockMdde. READ);

//do a version check, using SELECT ... FOR UPDATE, then reassoci ate:
sess. | ock(pk, LockMdde. UPGRADE) ;

Note that | ock() can be used with various LockMbdes. See the APl documentation and the
chapter on transaction handling for more information. Reattachment is not the only usecase for
I ock() .

Other models for long units of work are discussed in Section 13.3, “Optimistic concurrency control”.

11.7. Automatic state detection

Hibernate users have requested a general purpose method that either saves a transient instance
by generating a new identifier or updates/reattaches the detached instances associated with its
current identifier. The saveOr Updat e() method implements this functionality.

/1 in the first session
Cat cat = (Cat) firstSession.load(Cat.class, catlD);

/1 in a higher tier of the application

223

Chapter 11. Working with objects

Cat mate = new Cat();
cat.set Mate(mate);

/]l later, in a new session
secondSessi on. saveOr Updat e(cat) ; /] update existing state (cat has a non-null id)
secondSessi on. saveOr Update(mate); // save the new instance (nate has a null id)

The usage and semantics of saveOr Updat e() seems to be confusing for new users. Firstly, so
long as you are not trying to use instances from one session in another new session, you should
not need to use updat e(), saveOr Updat e(), or mer ge() . Some whole applications will never use
either of these methods.

Usually updat e() or saveOr Updat e() are used in the following scenario:

* the application loads an object in the first session

« the object is passed up to the Ul tier

« some modifications are made to the object

« the object is passed back down to the business logic tier

* the application persists these modifications by calling updat e() in a second session

saveOr Updat e() does the following:

« if the object is already persistent in this session, do nothing

« if another object associated with the session has the same identifier, throw an exception

« if the object has no identifier property, save() it

« if the object's identifier has the value assigned to a newly instantiated object, save() it

« if the object is versioned by a <ver si on> or <t i mest anp>, and the version property value is the
same value assigned to a newly instantiated object, save() it

« otherwise updat e() the object

and mer ge() is very different:

« if there is a persistent instance with the same identifier currently associated with the session,
copy the state of the given object onto the persistent instance

« if there is no persistent instance currently associated with the session, try to load it from the
database, or create a new persistent instance

« the persistent instance is returned

« the given instance does not become associated with the session, it remains detached

11.8. Deleting persistent objects

Sessi on. del et e() will remove an object's state from the database. Your application, however,
can still hold a reference to a deleted object. It is best to think of del et e() as making a persistent
instance, transient.

sess. del et e(cat);

224

Replicating object between two different datastores

You can delete objects in any order, without risk of foreign key constraint violations. It is still
possible to violate a NOT NULL constraint on a foreign key column by deleting objects in the wrong
order, e.g. if you delete the parent, but forget to delete the children.

11.9. Replicating object between two different
datastores

It is sometimes useful to be able to take a graph of persistent instances and make them persistent
in a different datastore, without regenerating identifier values.

/lretrieve a cat from one database

Session sessionl = factoryl. openSession();
Transaction tx1l = sessionl. begi nTransaction();
Cat cat = sessionl.get(Cat.class, catld);
tx1.commit();

sessionl. cl ose();

//reconcile with a second dat abase

Sessi on session2 = factory2. openSession();

Transaction tx2 = session2. begi nTransaction();
session2.replicate(cat, ReplicationMde. LATEST_VERSI ON);
tx2.commit();

session2. cl ose();

The Repl i cati onMode determines how r epl i cat e() will deal with conflicts with existing rows in
the database:

e Replicati onMbde. | GNORE: ignores the object when there is an existing database row with the
same identifier

* Replicati onMbde. OVERWRI TE: overwrites any existing database row with the same identifier

* Replicati onMbde. EXCEPTI ON: throws an exception if there is an existing database row with
the same identifier

* ReplicationMde. LATEST VERSI ON: overwrites the row if its version number is earlier than the
version number of the object, or ignore the object otherwise

Usecases for this feature include reconciling data entered into different database instances,
upgrading system configuration information during product upgrades, rolling back changes made
during non-ACID transactions and more.

11.10. Flushing the Session

Sometimes the Sessi on will execute the SQL statements needed to synchronize the JDBC
connection's state with the state of objects held in memory. This process, called flush, occurs by
default at the following points:

» before some query executions
e from org. hi bernate. Transacti on. conmi t ()

225

Chapter 11. Working with objects

» from Sessi on. fl ush()

The SQL statements are issued in the following order:

1. all entity insertions in the same order the corresponding objects were saved using
Sessi on. save()

. all entity updates

. all collection deletions

. all collection element deletions, updates and insertions

. all collection insertions

. all entity deletions in the same order the corresponding objects were deleted using
Sessi on. del ete()

o U~ WDN

An exception is that objects using nat i ve ID generation are inserted when they are saved.

Except when you explicitly f | ush(), there are absolutely no guarantees about when the Sessi on
executes the JDBC calls, only the order in which they are executed. However, Hibernate does
guarantee that the Query. I'i st (..) will never return stale or incorrect data.

It is possible to change the default behavior so that flush occurs less frequently. The FI ushivbde
class defines three different modes: only flush at commit time when the Hibernate Tr ansacti on
APl is used, flush automatically using the explained routine, or never flush unless f | ush() is called
explicitly. The last mode is useful for long running units of work, where a Sessi on is kept open and
disconnected for a long time (see Section 13.3.2, “Extended session and automatic versioning”).

sess = sf.openSession();
Transaction tx = sess. begi nTransaction();
sess. set Fl ushMbde(Fl ushMbde. COWM T); // allow queries to return stale state

Cat izi = (Cat) sess.load(Cat.class, id);
izi.setNane(iznizi);

/] mght return stale data
sess.find("fromCat as cat left outer join cat.kittens kitten");

/1 change to izi is not flushed!

tx.commit(); // flush occurs
sess. cl ose();

During flush, an exception might occur (e.g. if a DML operation violates a constraint). Since
handling exceptions involves some understanding of Hibernate's transactional behavior, we
discuss it in Chapter 13, Transactions and Concurrency.

11.11. Transitive persistence

It is quite cumbersome to save, delete, or reattach individual objects, especially if you deal with a
graph of associated objects. A common case is a parent/child relationship. Consider the following
example:

226

Transitive persistence

If the children in a parent/child relationship would be value typed (e.g. a collection of addresses
or strings), their life cycle would depend on the parent and no further action would be required
for convenient "cascading" of state changes. When the parent is saved, the value-typed child
objects are saved and when the parent is deleted, the children will be deleted, etc. This works for
operations such as the removal of a child from the collection. Since value-typed objects cannot
have shared references, Hibernate will detect this and delete the child from the database.

Now consider the same scenario with parent and child objects being entities, not value-types (e.g.
categories and items, or parent and child cats). Entities have their own life cycle and support
shared references. Removing an entity from the collection does not mean it can be deleted), and
there is by default no cascading of state from one entity to any other associated entities. Hibernate
does not implement persistence by reachability by default.

For each basic operation of the Hibernate session - including persist(), nerge(),
saveOr Update(), delete(), lock(), refresh(), evict(), replicate() - there is a
corresponding cascade style. Respectively, the cascade styles are named create, nerge,
save-update, delete, lock, refresh, evict, replicate. If youwant an operation to be
cascaded along an association, you must indicate that in the mapping document. For example:

<one-to-one nane="person" cascade="persist"/>

Cascade styles my be combined:

<one-to-one nanme="person" cascade="persist, del ete, | ock"/>

You can even use cascade="al | " to specify that all operations should be cascaded along the
association. The default cascade="none" specifies that no operations are to be cascaded.

In case you are using annotatons you probably have noticed the cascade attribute taking an
array of CascadeType as a value. The cascade concept in JPA is very is similar to the transitive
persistence and cascading of operations as described above, but with slightly different semantics
and cascading types:

* CascadeType. PERSI ST: cascades the persist (create) operation to associated entities persist()
is called or if the entity is managed

* CascadeType. MERGE: cascades the merge operation to associated entities if merge() is called
or if the entity is managed

» CascadeType. REMOVE: cascades the remove operation to associated entities if delete() is called

* CascadeType. REFRESH: cascades the refresh operation to associated entities if refresh() is
called

* CascadeType. DETACH: cascades the detach operation to associated entities if detach() is called

227

Chapter 11. Working with objects

e CascadeType. ALL: all of the above

@ Note

CascadeType.ALL also covers Hibernate specific operations like save-update, lock
etc...

A special cascade style, del et e- or phan, applies only to one-to-many associations, and indicates
that the del et e() operation should be applied to any child object that is removed from the
association. Using annotations there is no CascadeType. DELETE- ORPHAN equivalent. Instead
you can use the attribute or phanRenoval as seen in Example 11.4, “@OneToMany with
orphanRemoval”. If an entity is removed from a @neToMany collection or an associated entity is
dereferenced from a @nheToOne association, this associated entity can be marked for deletion if

or phanRenoval is set to true.

Example 11.4. @neToMany With or phanRenoval

@ntity
public class Custoner {

}

private Set<Order> orders;

@neToMany(cascade=CascadeType. ALL, or phanRenoval =true)
public Set<Order> getOrders() { return orders; }

public void setOrders(Set<Order> orders) { this.orders = orders; }

[...1]

@Entity
public class Oder { ... }

Cust oner custonmer = em find(Custoner.class, 11);
O der order = emfind(Order.class, 11);
custoner.getOrders().renmove(order); //order will be del eted by cascade

Recommendations:

It does not usually make sense to enable cascade on a many-to-one or many-to-many
association. In fact the @anyToOne and @manyToMany don't even offer a or phanRenoval
attribute. Cascading is often useful for one-to-one and one-to-many associations.

If the child object's lifespan is bounded by the Ilifespan of the parent
object, make it a life «cycle object by specifying cascade="all, delete-
or phan" (@neToMany(cascade=CascadeType. ALL, orphanRenoval =true)).

Otherwise, you might not need cascade at all. But if you think that you will often be working with
the parent and children together in the same transaction, and you want to save yourself some
typing, consider using cascade="per si st, mer ge, save- updat e".

228

Using metadata

Mapping an association (either a single valued association, or a collection) with cascade="al | "
marks the association as a parent/child style relationship where save/update/delete of the parent
results in save/update/delete of the child or children.

Furthermore, a mere reference to a child from a persistent parent will result in save/update of
the child. This metaphor is incomplete, however. A child which becomes unreferenced by its
parent is not automatically deleted, except in the case of a one-to-many association mapped with
cascade="del et e- or phan". The precise semantics of cascading operations for a parent/child
relationship are as follows:

« If a parent is passed to persi st (), all children are passed to persi st ()

« If a parent is passed to ner ge(), all children are passed to mer ge()

« If a parent is passed to save(), update() or saveO Update(), all children are passed to
saveOr Updat e()

« If a transient or detached child becomes referenced by a persistent parent, it is passed to
saveOr Updat e()

 If a parent is deleted, all children are passed to del et e()

« Ifachildis dereferenced by a persistent parent, nothing special happens - the application should
explicitly delete the child if necessary - unless cascade="del et e- or phan", in which case the
"orphaned" child is deleted.

Finally, note that cascading of operations can be applied to an object graph at call time or at flush
time. All operations, if enabled, are cascaded to associated entities reachable when the operation
is executed. However, save- updat e and del et e- or phan are transitive for all associated entities
reachable during flush of the Sessi on.

11.12. Using metadata

Hibernate requires a rich meta-level model of all entity and value types. This model can be useful to
the application itself. For example, the application might use Hibernate's metadata to implement a
"smart” deep-copy algorithm that understands which objects should be copied (eg. mutable value
types) and which objects that should not (e.g. immutable value types and, possibly, associated
entities).

Hibernate exposes metadata via the C assMetadata and Col | ecti onMet adat a interfaces
and the Type hierarchy. Instances of the metadata interfaces can be obtained from the
Sessi onFactory.

Cat fritz = ;
Cl assMet adat a cat Meta = sessi onfactory. get Cl assMet adat a(Cat . cl ass);

Obj ect[] propertyValues = cat Meta. get PropertyVal ues(fritz);
String[] propertyNanes = cat Meta. get PropertyNanmes();
Type[] propertyTypes = cat Meta. get PropertyTypes();

/] get a Map of all properties which are not collections or associations
Map nanmedVal ues = new HashMap();

229

Chapter 11. Working with objects

for (int i=0; i<propertyNames.length; i++) {
if (!propertyTypes[i].isEntityType() && !propertyTypes[i].isCollectionType()) {
namedVal ues. put (propertyNanmes[i], propertyValues[i]);

230

Chapter 12.

Read-only entities

e | Important

Hibernate's treatment of read-only entities may differ from what you may have
encountered elsewhere. Incorrect usage may cause unexpected results.

When an entity is read-only:

« Hibernate does not dirty-check the entity's simple properties or single-ended associations;
» Hibernate will not update simple properties or updatable single-ended associations;

« Hibernate will not update the version of the read-only entity if only simple properties or single-
ended updatable associations are changed;

In some ways, Hibernate treats read-only entities the same as entities that are not read-only:

« Hibernate cascades operations to associations as defined in the entity mapping.
» Hibernate updates the version if the entity has a collection with changes that dirties the entity;
* A read-only entity can be deleted.

Even if an entity is not read-only, its collection association can be affected if it contains a read-
only entity.

For details about the affect of read-only entities on different property and association types, see
Section 12.2, “Read-only affect on property type”.

For details about how to make entities read-only, see Section 12.1, “Making persistent entities
read-only”

Hibernate does some optimizing for read-only entities:

« It saves execution time by not dirty-checking simple properties or single-ended associations.

« It saves memory by deleting database snapshots.

12.1. Making persistent entities read-only

Only persistent entities can be made read-only. Transient and detached entities must be put in
persistent state before they can be made read-only.

Hibernate provides the following ways to make persistent entities read-only:

e you can map an entity class as immutable; when an entity of an immutable class is
made persistent, Hibernate automatically makes it read-only. see Section 12.1.1, “Entities of
immutable classes” for details

231

Chapter 12. Read-only entities

« you can change a default so that entities loaded into the session by Hibernate are automatically
made read-only; see Section 12.1.2, “Loading persistent entities as read-only” for details

e you can make an HQL query or criteria read-only so that entities loaded when the query or
criteria executes, scrolls, or iterates, are automatically made read-only; see Section 12.1.3,
“Loading read-only entities from an HQL query/criteria” for details

e you can make a persistent entity that is already in the in the session read-only; see
Section 12.1.4, “Making a persistent entity read-only” for details

12.1.1. Entities of immutable classes

When an entity instance of an immutable class is made persistent, Hibernate automatically makes
it read-only.

An entity of an immutable class can created and deleted the same as an entity of a mutable class.

Hibernate treats a persistent entity of an immutable class the same way as a read-only persistent
entity of a mutable class. The only exception is that Hibernate will not allow an entity of an
immutable class to be changed so it is not read-only.

12.1.2. Loading persistent entities as read-only

Note

Entities of immutable classes are automatically loaded as read-only.

To change the default behavior so Hibernate loads entity instances of mutable classes into the
session and automatically makes them read-only, call:

Sessi on. set Def aul t ReadOnl y(true);

To change the default back so entities loaded by Hibernate are not made read-only, call:
Sessi on. set Def aul t ReadOnl y(fal se);

You can determine the current setting by calling:

Sessi on. i sDef aul t ReadOnl y() ;

If Session.isDefaultReadOnly() returns true, entities loaded by the following are automatically
made read-only:

232

Loading read-only entities from an HQL query/criteria

» Session.load()
« Session.get()
« Session.merge()

« executing, scrolling, or iterating HQL queries and criteria; to override this setting for a particular
HQL query or criteria see Section 12.1.3, “Loading read-only entities from an HQL query/criteria”

Changing this default has no effect on:

 persistent entities already in the session when the default was changed

* persistent entities that are refreshed via Session.refresh(); a refreshed persistent entity will only
be read-only if it was read-only before refreshing

« persistent entities added by the application via Session.persist(), Session.save(), and
Session.update() Session.saveOrUpdate()

12.1.3. Loading read-only entities from an HQL query/criteria

Note

Entities of immutable classes are automatically loaded as read-only.
If Session.isDefaultReadOnly() returns false (the default) when an HQL query or criteria executes,
then entities and proxies of mutable classes loaded by the query will not be read-only.

You can override this behavior so that entities and proxies loaded by an HQL query or criteria are
automatically made read-only.

For an HQL query, call:

Query. set ReadOnl y(true);

Query. set ReadOnl y(true) must be called before Query. list(), Query. uni queResul t (),
Query.scroll(),orQuery.iterate()

For an HQL criteria, call:
Criteria.setReadOnly(true);

Criteria. set ReadOnl y(true) must be called before Citeria.list(),
Criteria.uniqueResult(),orCriteria.scroll ()

233

Chapter 12. Read-only entities

Entities and proxies that exist in the session before being returned by an HQL query or criteria
are not affected.

Uninitialized persistent collections returned by the query are not affected. Later, when
the collection is initialized, entities loaded into the session will be read-only if
Session.isDefaultReadOnly() returns true.

Using Query. set ReadOnly(true) or Criteria.set ReadOnly(true) works well when a
single HQL query or criteria loads all the entities and intializes all the proxies and collections that
the application needs to be read-only.

When it is not possible to load and initialize all necessary entities in a single query or criteria,
you can temporarily change the session default to load entities as read-only before the query is
executed. Then you can explicitly initialize proxies and collections before restoring the session
default.

Sessi on session = factory. openSession();
Transaction tx = session. begi nTransaction();

set Def aul t ReadOnl y(true);
Contract contract =
(Contract) session.createQuery(

"from Contract where custonmerNane = ' Sherman'")
.uni queResul t ();

Hi bernate.initialize(contract.getPlan());

Hi bernate.initialize(contract.getVariations());

Hi bernate.initialize(contract.getNotes());

set Def aul t ReadOnl y(fal se);

tx.commt();
session. cl ose();

If Session.isDefaultReadOnly() returns true, then you can use Query.setReadOnly(false) and
Criteria.setReadOnly(false) to override this session setting and load entities that are not read-
only.

12.1.4. Making a persistent entity read-only

@ Note

Persistent entities of immutable classes are automatically made read-only.
To make a persistent entity or proxy read-only, call:

Sessi on. set ReadOnl y(entityOr Proxy, true)

234

Read-only affect on property type

To change a read-only entity or proxy of a mutable class so it is no longer read-only, call:

Sessi on. set ReadOnl y(entityOr Proxy, false)

Important

When a read-only entity or proxy is changed so it is no longer read-only, Hibernate
assumes that the current state of the read-only entity is consistent with its database
representation. If this is not true, then any non-flushed changes made before or
while the entity was read-only, will be ignored.

To throw away non-flushed changes and make the persistent entity consistent with its database
representation, call:

session.refresh(entity);

To flush changes made before or while the entity was read-only and make the database
representation consistent with the current state of the persistent entity:

/] evict the read-only entity so it is detached
session.evict(entity);

/1 make the detached entity (with the non-flushed changes) persistent
session.update(entity);

/1 now entity is no |onger read-only and its changes can be flushed
s. flush();

12.2. Read-only affect on property type

The following table summarizes how different property types are affected by making an entity
read-only.

Table 12.1. Affect of read-only entity on property types

Property/Association Type Changes flushed to DB?

Simple no*

(Section 12.2.1, “Simple properties”)

Unidirectional one-to-one no*

Unidirectional many-to-one no*

235

Chapter 12. Read-only entities

Property/Association Type Changes flushed to DB?

(Section 12.2.2.1, “Unidirectional one-to-one
and many-to-one”)

Unidirectional one-to-many yes
Unidirectional many-to-many yes

(Section 12.2.2.2, “Unidirectional one-to-many
and many-to-many”)

Bidirectional one-to-one only if the owning entity is not read-only*

(Section 12.2.3.1, “Bidirectional one-to-one”)

Bidirectional one-to-many/many-to-one
only added/removed entities that are not read-

inverse collection only*

non-inverse collection yes

(Section 12.2.3.2, “Bidirectional one-to-many/
many-to-one”)

Bidirectional many-to-many yes

(Section 12.2.3.3, “Bidirectional many-to-
many”)

* Behavior is different when the entity having the property/association is read-only, compared to
when it is not read-only.

12.2.1. Simple properties

When a persistent object is read-only, Hibernate does not dirty-check simple properties.

Hibernate will not synchronize simple property state changes to the database. If you have
automatic versioning, Hibernate will not increment the version if any simple properties change.

Session session = factory. openSession();
Transaction tx = session. begi nTransaction();

/] get a contract and nmeke it read-only
Contract contract = (Contract) session.get(Contract.class, contractld);
sessi on. set ReadOnl y(contract, true);

/1 contract.get CustonerNane() is "Sherman"
contract. set Custoner Name("Yogi ");

tx.commit();

tx = session. begi nTransaction();

236

Unidirectional associations

contract = (Contract) session.get(Contract.class, contractld);
/1 contract.getCustonerNane() is still "Shernman"

tx.commit();
session. cl ose();

12.2.2. Unidirectional associations

12.2.2.1. Unidirectional one-to-one and many-to-one

Hibernate treats unidirectional one-to-one and many-to-one associations in the same way when
the owning entity is read-only.

We use the term unidirectional single-ended association when referring to functionality that is
common to unidirectional one-to-one and many-to-one associations.

Hibernate does not dirty-check unidirectional single-ended associations when the owning entity
is read-only.

If you change a read-only entity's reference to a unidirectional single-ended association to null, or
to refer to a different entity, that change will not be flushed to the database.

@ Note

If an entity is of an immutable class, then its references to unidirectional single-
ended associations must be assigned when that entity is first created. Because the
entity is automatically made read-only, these references can not be updated.

If automatic versioning is used, Hibernate will not increment the version due to local changes to
unidirectional single-ended associations.

In the following examples, Contract has a unidirectional many-to-one association with Plan.
Contract cascades save and update operations to the association.

The following shows that changing a read-only entity's many-to-one association reference to null
has no effect on the entity's database representation.

// get a contract with an existing plan;

/1 make the contract read-only and set its plan to null

tx = session. begi nTransaction();

Contract contract = (Contract) session.get(Contract.class, contractld);
sessi on. set ReadOnl y(contract, true);

contract.setPlan(null);

tx.commt();

/'l get the sane contract
tx = session. begi nTransaction();

237

Chapter 12. Read-only entities

contract = (Contract) session.get(Contract.class, contractld);
/] contract.getPlan() still refers to the original plan;

tx.commt();
session. cl ose();

The following shows that, even though an update to a read-only entity's many-to-one association
has no affect on the entity's database representation, flush still cascades the save-update
operation to the locally changed association.

/1 get a contract with an existing plan;

/1 make the contract read-only and change to a new pl an

tx = session. begi nTransaction();

Contract contract = (Contract) session.get(Contract.class, contractld);
sessi on. set ReadOnl y(contract, true);

Pl an newPl an = new Pl an("new pl an"

contract.setPlan(newPl an);

tx.commt();

/1 get the sane contract

tx = session. begi nTransaction();

contract = (Contract) session.get(Contract.class, contractld);
newPlan = (Contract) session.get(Plan.class, newPl an.getld());
[/ contract.getPlan() still refers to the original plan;

/1 newPlan is non-null because it was persisted when

/1 the previous transaction was commtted;

tx.commt();
session. cl ose();

12.2.2.2. Unidirectional one-to-many and many-to-many

Hibernate treats unidirectional one-to-many and many-to-many associations owned by a read-
only entity the same as when owned by an entity that is not read-only.

Hibernate dirty-checks unidirectional one-to-many and many-to-many associations;
The collection can contain entities that are read-only, as well as entities that are not read-only.
Entities can be added and removed from the collection; changes are flushed to the database.

If automatic versioning is used, Hibernate will update the version due to changes in the collection
if they dirty the owning entity.

12.2.3. Bidirectional associations

12.2.3.1. Bidirectional one-to-one

If a read-only entity owns a bidirectional one-to-one association:

238

Bidirectional associations

» Hibernate does not dirty-check the association.

« updates that change the association reference to null or to refer to a different entity will not be
flushed to the database.

« If automatic versioning is used, Hibernate will not increment the version due to local changes
to the association.

@ Note

If an entity is of an immutable class, and it owns a bidirectional one-to-one
association, then its reference must be assigned when that entity is first created.
Because the entity is automatically made read-only, these references cannot be
updated.

When the owner is not read-only, Hibernate treats an association with a read-only entity the same
as when the association is with an entity that is not read-only.

12.2.3.2. Bidirectional one-to-many/many-to-one

A read-only entity has no impact on a bidirectional one-to-many/many-to-one association if:

« the read-only entity is on the one-to-many side using an inverse collection;
« the read-only entity is on the one-to-many side using a non-inverse collection;
 the one-to-many side uses a non-inverse collection that contains the read-only entity

When the one-to-many side uses an inverse collection:

< aread-only entity can only be added to the collection when it is created,;

« aread-only entity can only be removed from the collection by an orphan delete or by explicitly
deleting the entity.

12.2.3.3. Bidirectional many-to-many

Hibernate treats bidirectional many-to-many associations owned by a read-only entity the same
as when owned by an entity that is not read-only.

Hibernate dirty-checks bidirectional many-to-many associations.

The collection on either side of the association can contain entities that are read-only, as well as
entities that are not read-only.

Entities are added and removed from both sides of the collection; changes are flushed to the
database.

239

Chapter 12. Read-only entities

If automatic versioning is used, Hibernate will update the version due to changes in both sides of
the collection if they dirty the entity owning the respective collections.

240

Chapter 13.

Transactions and Concurrency

The most important point about Hibernate and concurrency control is that it is easy to understand.
Hibernate directly uses JDBC connections and JTA resources without adding any additional
locking behavior. It is recommended that you spend some time with the JDBC, ANSI, and
transaction isolation specification of your database management system.

Hibernate does not lock objects in memory. Your application can expect the behavior as defined
by the isolation level of your database transactions. Through Sessi on, which is also a transaction-
scoped cache, Hibernate provides repeatable reads for lookup by identifier and entity queries and
not reporting queries that return scalar values.

In addition to versioning for automatic optimistic concurrency control, Hibernate also offers,
using the SELECT FOR UPDATE syntax, a (minor) API for pessimistic locking of rows. Optimistic
concurrency control and this API are discussed later in this chapter.

The discussion of concurrency control in Hibernate begins with the granularity of Conf i gur at i on,
Sessi onFact or y, and Sessi on, as well as database transactions and long conversations.

13.1. Session and transaction scopes

A Sessi onFactory is an expensive-to-create, threadsafe object, intended to be shared by all
application threads. It is created once, usually on application startup, from a Confi gurati on
instance.

A Sessi on is an inexpensive, non-threadsafe object that should be used once and then discarded
for: a single request, a conversation or a single unit of work. A Sessi on will not obtain a JDBC
Connect i on, or a Dat asour ce, unless it is needed. It will not consume any resources until used.

In order to reduce lock contention in the database, a database transaction has to be as short
as possible. Long database transactions will prevent your application from scaling to a highly
concurrent load. It is not recommended that you hold a database transaction open during user
think time until the unit of work is complete.

What is the scope of a unit of work? Can a single Hibernate Sessi on span several database
transactions, or is this a one-to-one relationship of scopes? When should you open and close a
Sessi on and how do you demarcate the database transaction boundaries? These questions are
addressed in the following sections.

13.1.1. Unit of work

First, let's define a unit of work. A unit of work is a design pattern described by Martin Fowler as
“ [maintaining] a list of objects affected by a business transaction and coordinates the writing out
of changes and the resolution of concurrency problems. "[POEAA] In other words, its a series of
operations we wish to carry out against the database together. Basically, it is a transaction, though
fulfilling a unit of work will often span multiple physical database transactions (see Section 13.1.2,

241

Chapter 13. Transactions and ...

“Long conversations”). So really we are talking about a more abstract notion of a transaction. The
term "business transaction” is also sometimes used in lieu of unit of work.

Do not use the session-per-operation antipattern: do not open and close a Sessi on for every
simple database call in a single thread. The same is true for database transactions. Database calls
in an application are made using a planned sequence; they are grouped into atomic units of work.
This also means that auto-commit after every single SQL statement is useless in an application as
this mode is intended for ad-hoc SQL console work. Hibernate disables, or expects the application
server to disable, auto-commit mode immediately. Database transactions are never optional.
All communication with a database has to occur inside a transaction. Auto-commit behavior for
reading data should be avoided, as many small transactions are unlikely to perform better than
one clearly defined unit of work. The latter is also more maintainable and extensible.

The most common pattern in a multi-user client/server application is session-per-request. In this
model, a request from the client is sent to the server, where the Hibernate persistence layer runs.
A new Hibernate Sessi on is opened, and all database operations are executed in this unit of work.
On completion of the work, and once the response for the client has been prepared, the session
is flushed and closed. Use a single database transaction to serve the clients request, starting and
committing it when you open and close the Sessi on. The relationship between the two is one-to-
one and this model is a perfect fit for many applications.

The challenge lies in the implementation. Hibernate provides built-in management of the "current
session" to simplify this pattern. Start a transaction when a server request has to be processed,
and end the transaction before the response is sent to the client. Common solutions are
Servl et Fi | t er, AOP interceptor with a pointcut on the service methods, or a proxy/interception
container. An EJB container is a standardized way to implement cross-cutting aspects such as
transaction demarcation on EJB session beans, declaratively with CMT. If you use programmatic
transaction demarcation, for ease of use and code portability use the Hibernate Tr ansact i on API
shown later in this chapter.

Your application code can access a "current session” to process the request by calling
sessi onFact ory. get Current Sessi on() . You will always get a Sessi on scoped to the current
database transaction. This has to be configured for either resource-local or JTA environments,
see Section 2.3, “Contextual sessions”.

You can extend the scope of a Sessi on and database transaction until the "view has been
rendered". This is especially useful in servlet applications that utilize a separate rendering phase
after the request has been processed. Extending the database transaction until view rendering,
is achieved by implementing your own interceptor. However, this will be difficult if you rely on
EJBs with container-managed transactions. A transaction will be completed when an EJB method
returns, before rendering of any view can start. See the Hibernate website and forum for tips and
examples relating to this Open Session in View pattern.

13.1.2. Long conversations

The session-per-request pattern is not the only way of designing units of work. Many business
processes require a whole series of interactions with the user that are interleaved with database

242

Considering object identity

accesses. In web and enterprise applications, it is not acceptable for a database transaction to
span a user interaction. Consider the following example:

» The first screen of a dialog opens. The data seen by the user has been loaded in a particular
Sessi on and database transaction. The user is free to modify the objects.

« The user clicks "Save" after 5 minutes and expects their modifications to be made persistent.
The user also expects that they were the only person editing this information and that no
conflicting modification has occurred.

From the point of view of the user, we call this unit of work a long-running conversation or
application transaction. There are many ways to implement this in your application.

A first naive implementation might keep the Sessi on and database transaction open during user
think time, with locks held in the database to prevent concurrent modification and to guarantee
isolation and atomicity. This is an anti-pattern, since lock contention would not allow the application
to scale with the number of concurrent users.

You have to use several database transactions to implement the conversation. In this case,
maintaining isolation of business processes becomes the partial responsibility of the application
tier. A single conversation usually spans several database transactions. It will be atomic if only one
of these database transactions (the last one) stores the updated data. All others simply read data
(for example, in a wizard-style dialog spanning several request/response cycles). This is easier
to implement than it might sound, especially if you utilize some of Hibernate's features:

« Automatic Versioning: Hibernate can perform automatic optimistic concurrency control for you.
It can automatically detect if a concurrent modification occurred during user think time. Check
for this at the end of the conversation.

« Detached Objects: if you decide to use the session-per-request pattern, all loaded instances
will be in the detached state during user think time. Hibernate allows you to reattach the objects
and persist the modifications. The pattern is called session-per-request-with-detached-objects.
Automatic versioning is used to isolate concurrent modifications.

» Extended (or Long) Session: the Hibernate Sessi on can be disconnected from the underlying
JDBC connection after the database transaction has been committed and reconnected when a
new client request occurs. This pattern is known as session-per-conversation and makes even
reattachment unnecessary. Automatic versioning is used to isolate concurrent modifications
and the Sessi on will not be allowed to be flushed automatically, but explicitly.

Both session-per-request-with-detached-objects and session-per-conversation have advantages
and disadvantages. These disadvantages are discussed later in this chapter in the context of
optimistic concurrency control.

13.1.3. Considering object identity

An application can concurrently access the same persistent state in two different Sessi ons.
However, an instance of a persistent class is never shared between two Sessi on instances. It is
for this reason that there are two different notions of identity:

243

Chapter 13. Transactions and ...

Database Identity
foo.getld().equal s(bar.getld())

JVM Identity
f oo==bar

For objects attached to a particular Sessi on (i.e., in the scope of a Sessi on), the two notions
are equivalent and JVM identity for database identity is guaranteed by Hibernate. While the
application might concurrently access the "same" (persistent identity) business object in two
different sessions, the two instances will actually be "different" (JVM identity). Conflicts are
resolved using an optimistic approach and automatic versioning at flush/commit time.

This approach leaves Hibernate and the database to worry about concurrency. It also provides
the best scalability, since guaranteeing identity in single-threaded units of work means that it does
not need expensive locking or other means of synchronization. The application does not need to
synchronize on any business object, as long as it maintains a single thread per Sessi on. Within
a Sessi on the application can safely use == to compare objects.

However, an application that uses == outside of a Sessi on might produce unexpected results. This
might occur even in some unexpected places. For example, if you put two detached instances into
the same Set , both might have the same database identity (i.e., they represent the same row). JVM
identity, however, is by definition not guaranteed for instances in a detached state. The developer
has to override the equal s() and hashCode() methods in persistent classes and implement their
own notion of object equality. There is one caveat: never use the database identifier to implement
equality. Use a business key that is a combination of unique, usually immutable, attributes. The
database identifier will change if a transient object is made persistent. If the transient instance
(usually together with detached instances) is held in a Set, changing the hashcode breaks the
contract of the Set . Attributes for business keys do not have to be as stable as database primary
keys; you only have to guarantee stability as long as the objects are in the same Set . See the
Hibernate website for a more thorough discussion of this issue. Please note that this is not a
Hibernate issue, but simply how Java object identity and equality has to be implemented.

13.1.4. Common issues

Do not use the anti-patterns session-per-user-session or session-per-application (there are,
however, rare exceptions to this rule). Some of the following issues might also arise within the
recommended patterns, so ensure that you understand the implications before making a design
decision:

« ASessi onis not thread-safe. Things that work concurrently, like HTTP requests, session beans,
or Swing workers, will cause race conditions if a Sessi on instance is shared. If you keep your
Hibernate Sessi on in your H t pSessi on (this is discussed later in the chapter), you should
consider synchronizing access to your Hitp session. Otherwise, a user that clicks reload fast
enough can use the same Sessi on in two concurrently running threads.

« An exception thrown by Hibernate means you have to rollback your database transaction and
close the Sessi on immediately (this is discussed in more detail later in the chapter). If your

244

Database transaction demarcation

Sessi on is bound to the application, you have to stop the application. Rolling back the database
transaction does not put your business objects back into the state they were at the start of the
transaction. This means that the database state and the business objects will be out of sync.
Usually this is not a problem, because exceptions are not recoverable and you will have to start
over after rollback anyway.

» The Sessi on caches every object that is in a persistent state (watched and checked for dirty
state by Hibernate). If you keep it open for a long time or simply load too much data, it will
grow endlessly until you get an OutOfMemoryException. One solution is to call cl ear () and
evi ct () to manage the Sessi on cache, but you should consider a Stored Procedure if you need
mass data operations. Some solutions are shown in Chapter 15, Batch processing. Keeping a
Sessi on open for the duration of a user session also means a higher probability of stale data.

13.2. Database transaction demarcation

Database, or system, transaction boundaries are always necessary. No communication with the
database can occur outside of a database transaction (this seems to confuse many developers
who are used to the auto-commit mode). Always use clear transaction boundaries, even for read-
only operations. Depending on your isolation level and database capabilities this might not be
required, but there is no downside if you always demarcate transactions explicitly. Certainly, a
single database transaction is going to perform better than many small transactions, even for
reading data.

A Hibernate application can run in non-managed (i.e., standalone, simple Web- or Swing
applications) and managed J2EE environments. In a non-managed environment, Hibernate
is usually responsible for its own database connection pool. The application developer has
to manually set transaction boundaries (begin, commit, or rollback database transactions)
themselves. A managed environment usually provides container-managed transactions (CMT),
with the transaction assembly defined declaratively (in deployment descriptors of EJB session
beans, for example). Programmatic transaction demarcation is then no longer necessary.

However, it is often desirable to keep your persistence layer portable between non-managed
resource-local environments, and systems that can rely on JTA but use BMT instead of CMT.
In both cases use programmatic transaction demarcation. Hibernate offers a wrapper API called
Transact i on that translates into the native transaction system of your deployment environment.
This API is actually optional, but we strongly encourage its use unless you are in a CMT session
bean.

Ending a Sessi on usually involves four distinct phases:

flush the session
commit the transaction
 close the session

« handle exceptions

We discussed Flushing the session earlier, so we will now have a closer look at transaction
demarcation and exception handling in both managed and non-managed environments.

245

Chapter 13. Transactions and ...

13.2.1. Non-managed environment

If a Hibernate persistence layer runs in a non-managed environment, database connections are
usually handled by simple (i.e., non-DataSource) connection pools from which Hibernate obtains
connections as needed. The session/transaction handling idiom looks like this:

/' Non- managed environnment idiom
Sessi on sess = factory. openSession();
Transaction tx = null;

try {
tx = sess. begi nTransaction();

/1 do sone work

tx.commit();

}

catch (Runti meException e) {
if (tx !'=null) tx.rollback();
throw e; // or display error nessage

}
finally {

sess. cl ose();

}

You do not have to f | ush() the Sessi on explicitly: the call to conmi t () automatically triggers the
synchronization depending on the FlushMode for the session. A call to cl ose() marks the end of
a session. The main implication of cl ose() is that the JDBC connection will be relinquished by
the session. This Java code is portable and runs in both non-managed and JTA environments.

As outlined earlier, a much more flexible solution is Hibernate's built-in "current session" context
management:

/1 Non-managed environnment idiomwth getCurrentSession()

try {
factory. get Current Sessi on() . begi nTransaction();

/1 do sonme work

factory. get Current Session().getTransaction().comit();

}

catch (Runti meException e) {
factory. get Current Sessi on() . get Transaction().roll back();
throw e; // or display error nessage

You will not see these code snippets in a regular application; fatal (system) exceptions should
always be caught at the "top". In other words, the code that executes Hibernate calls in the
persistence layer, and the code that handles Runt i meExcept i on (and usually can only clean up

246

Using JTA

and exit), are in different layers. The current context management by Hibernate can significantly
simplify this design by accessing a Sessi onFact or y. Exception handling is discussed later in this
chapter.

You should select org. hibernate.transaction.JDBCTransactionFactory, which is
the default, and for the second example select "thread" as your
hi ber nat e. current _sessi on_cont ext _cl ass.

13.2.2. Using JTA

If your persistence layer runs in an application server (for example, behind EJB session beans),
every datasource connection obtained by Hibernate will automatically be part of the global JTA
transaction. You can also install a standalone JTA implementation and use it without EJB.
Hibernate offers two strategies for JTA integration.

If you use bean-managed transactions (BMT), Hibernate will tell the application server to start and
end a BMT transaction if you use the Transacti on API. The transaction management code is
identical to the non-managed environment.

/1 BMI idiom
Sessi on sess = factory. openSession();
Transaction tx = null;

try {
tx = sess. begi nTransaction();

/1 do sone work

tx.commt();

}

catch (Runti meException e) {
if (tx !'=null) tx.rollback();
throw e; // or display error nessage

}
finally {

sess. cl ose();

}

If you want to use a transaction-bound Sessi on, that is, the get Current Sessi on() functionality
for easy context propagation, use the JTA User Tr ansact i on API directly:

[/ BMI idiomwth getCurrentSession()
try {
User Transaction tx = (UserTransaction)new | nitial Context()
.l ookup("j ava: conp/ User Tr ansacti on");

t x. begin();
/1 Do sonme work on Session bound to transaction

factory. getCurrent Session().load(...);
factory. get Current Session().persist(...);

247

Chapter 13. Transactions and ...

tx.commt();

}
catch (Runti meException e) {
tx. rol | back();
throw e; // or display error nessage

With CMT, transaction demarcation is completed in session bean deployment descriptors, not
programmatically. The code is reduced to:

/] CM idiom
Session sess = factory. get Current Session();

/1 do sone work

In a CMT/EJB, even rollback happens automatically. An unhandled Runti meExcepti on thrown
by a session bean method tells the container to set the global transaction to rollback. You do
not need to use the Hibernate Transacti on API at all with BMT or CMT, and you get automatic
propagation of the "current” Session bound to the transaction.

When configuring Hibernate's transaction factory, choose
org. hi bernate. transacti on. JTATransacti onFactory if you use JTA directly (BMT),
and org. hi bernate.transaction. CMITransacti onFactory in a CMT session bean.
Remember to also set hi bernate. transacti on. manager _| ookup_cl ass. Ensure that your
hi ber nat e. current _sessi on_cont ext _cl ass is either unset (backwards compatibility), or is set
to"jta".

The get Current Sessi on() operation has one downside in a JTA environment. There is one
caveat to the use of af t er _st at enent connection release mode, which is then used by default.
Due to a limitation of the JTA spec, it is not possible for Hibernate to automatically clean up
any unclosed Scrol | abl eResul ts or | terat or instances returned by scrol | () oriterate().
You must release the underlying database cursor by calling Scrol | abl eResul ts. cl ose() or
Hi ber nat e. cl ose(|terator) explicitly fromafi nal | y block. Most applications can easily avoid
using scrol | () oriterate() fromthe JTA or CMT code.)

13.2.3. Exception handling

If the Session throws an exception, including any SQLExcepti on, immediately rollback the
database transaction, call Sessi on. cl ose() and discard the Sessi on instance. Certain methods
of Sessi on will not leave the session in a consistent state. No exception thrown by Hibernate
can be treated as recoverable. Ensure that the Sessi on will be closed by calling cl ose() in a
final |y block.

The Hi ber nat eExcepti on, which wraps most of the errors that can occur in a Hibernate
persistence layer, is an unchecked exception. It was not in older versions of Hibernate. In our

248

Transaction timeout

opinion, we should not force the application developer to catch an unrecoverable exception at a
low layer. In most systems, unchecked and fatal exceptions are handled in one of the first frames
of the method call stack (i.e., in higher layers) and either an error message is presented to the
application user or some other appropriate action is taken. Note that Hibernate might also throw
other unchecked exceptions that are not a Hi ber nat eExcept i on. These are not recoverable and
appropriate action should be taken.

Hibernate wraps SQ.Exceptions thrown while interacting with the database in a
JDBCException. In fact, Hibernate will attempt to convert the exception into a more
meaningful subclass of JDBCExcepti on. The underlying SQLExcepti on is always available
via JDBCExcepti on. get Cause(). Hibernate converts the SQLExcepti on into an appropriate
JDBCExcept i on subclass using the SQLExcept i onConverter attached to the Sessi onFact ory.
By default, the SQLExceptionConverter is defined by the configured dialect. However,
it is also possible to plug in a custom implementation. See the javadocs for the
SQLExcept i onConvert er Fact or y class for details. The standard JDBCExcept i on subtypes are:

» JDBCConnect i onExcept i on: indicates an error with the underlying JDBC communication.

e SQLG anmar Except i on: indicates a grammar or syntax problem with the issued SQL.

e ConstraintViol ati onExcepti on: indicates some form of integrity constraint violation.

* LockAcqui siti onExcepti on: indicates an error acquiring a lock level necessary to perform the
requested operation.

e Generi cJDBCExcepti on: a generic exception which did not fall into any of the other categories.

13.2.4. Transaction timeout

An important feature provided by a managed environment like EJB, that is never provided for
non-managed code, is transaction timeout. Transaction timeouts ensure that no misbehaving
transaction can indefinitely tie up resources while returning no response to the user. Outside a
managed (JTA) environment, Hibernate cannot fully provide this functionality. However, Hibernate
can at least control data access operations, ensuring that database level deadlocks and queries
with huge result sets are limited by a defined timeout. In a managed environment, Hibernate can
delegate transaction timeout to JTA. This functionality is abstracted by the Hibernate Tr ansact i on
object.

Sessi on sess = factory. openSession();

try {
//set transaction tineout to 3 seconds

sess. get Transaction(). set Ti neout (3);
sess. get Transacti on() . begin();

// do some work

sess. get Transaction().commit ()

249

Chapter 13. Transactions and ...

catch (RuntimeException e) {
sess. get Transaction().rol | back();
throw e; // or display error nessage

}
finally {
sess. cl ose();

}

set Ti meout () cannot be called in a CMT bean, where transaction timeouts must be defined
declaratively.

13.3. Optimistic concurrency control

The only approach that is consistent with high concurrency and high scalability, is optimistic
concurrency control with versioning. Version checking uses version numbers, or timestamps,
to detect conflicting updates and to prevent lost updates. Hibernate provides three possible
approaches to writing application code that uses optimistic concurrency. The use cases we
discuss are in the context of long conversations, but version checking also has the benefit of
preventing lost updates in single database transactions.

13.3.1. Application version checking

In an implementation without much help from Hibernate, each interaction with the database occurs
in a new Sessi on and the developer is responsible for reloading all persistent instances from
the database before manipulating them. The application is forced to carry out its own version
checking to ensure conversation transaction isolation. This approach is the least efficient in terms
of database access. It is the approach most similar to entity EJBs.

[/l foo is an instance | oaded by a previous Session
session = factory. openSession();
Transaction t = session. begi nTransaction();

int ol dVersion = foo.getVersion();

session.load(foo, foo.getKey()); // load the current state

if (oldVersion != foo.getVersion()) throw new Stal eCbj ect St at eException();
foo. set Property("bar");

t.commit();
session.close();

The ver si on property is mapped using <ver si on>, and Hibernate will automatically increment it
during flush if the entity is dirty.

If you are operating in a low-data-concurrency environment, and do not require version checking,
you can use this approach and skip the version check. In this case, last commit wins is the default
strategy for long conversations. Be aware that this might confuse the users of the application,
as they might experience lost updates without error messages or a chance to merge conflicting
changes.

250

Extended session and automatic versioning

Manual version checking is only feasible in trivial circumstances and not practical for most
applications. Often not only single instances, but complete graphs of modified objects, have to
be checked. Hibernate offers automatic version checking with either an extended Sessi on or
detached instances as the design paradigm.

13.3.2. Extended session and automatic versioning

A single Sessi on instance and its persistent instances that are used for the whole conversation are
known as session-per-conversation. Hibernate checks instance versions at flush time, throwing
an exception if concurrent modification is detected. It is up to the developer to catch and handle
this exception. Common options are the opportunity for the user to merge changes or to restart
the business conversation with non-stale data.

The Session is disconnected from any underlying JDBC connection when waiting for user
interaction. This approach is the most efficient in terms of database access. The application does
not version check or reattach detached instances, nor does it have to reload instances in every
database transaction.

/1 foo is an instance | oaded earlier by the old session
Transaction t = session. begi nTransaction(); // Cbtain a new JDBC connection, start transaction

foo. set Property("bar");

session. flush(); /1 Only for last transaction in conversation
t.commit(); /1 Also return JDBC connection
session. cl ose(); /Il Only for last transaction in conversation

The f oo object knows which Sessi on it was loaded in. Beginning a new database transaction
on an old session obtains a new connection and resumes the session. Committing a database
transaction disconnects a session from the JDBC connection and returns the connection to
the pool. After reconnection, to force a version check on data you are not updating, you can
call Session.lock() with LockMbde. READ on any objects that might have been updated by
another transaction. You do not need to lock any data that you are updating. Usually you would
set Fl ushMbde. MANUAL on an extended Sessi on, so that only the last database transaction
cycle is allowed to actually persist all modifications made in this conversation. Only this last
database transaction will include the f1 ush() operation, and then cl ose() the session to end
the conversation.

This pattern is problematic if the Sessi on is too big to be stored during user think time (for example,
an Ht t pSessi on should be kept as small as possible). As the Sessi on is also the first-level cache
and contains all loaded objects, we can probably use this strategy only for a few request/response
cycles. Use a Sessi on only for a single conversation as it will soon have stale data.

251

Chapter 13. Transactions and ...

@ Note

Earlier versions of Hibernate required explicit disconnection and reconnection of a
Sessi on. These methods are deprecated, as beginning and ending a transaction
has the same effect.

Keep the disconnected Sessi on close to the persistence layer. Use an EJB stateful session bean
to hold the Sessi on in a three-tier environment. Do not transfer it to the web layer, or even serialize
it to a separate tier, to store it in the Ht t pSessi on.

The extended session pattern, or session-per-conversation, is more difficult to implement with
automatic current session context management. You need to supply your own implementation of
the Curr ent Sessi onCont ext for this. See the Hibernate Wiki for examples.

13.3.3. Detached objects and automatic versioning

Each interaction with the persistent store occurs in a new Sessi on. However, the same persistent
instances are reused for each interaction with the database. The application manipulates the
state of detached instances originally loaded in another Sessi on and then reattaches them using
Sessi on. updat e(), Sessi on. saveOr Updat e(), or Sessi on. nerge() .

/] foo is an instance | oaded by a previous Session

foo. set Property("bar");

session = factory. openSession();

Transaction t = session. begi nTransaction();

sessi on. saveOr Update(foo); // Use nerge() if "foo" m ght have been | oaded already
t.commit();

session. cl ose();

Again, Hibernate will check instance versions during flush, throwing an exception if conflicting
updates occurred.

You can also call | ock() instead of updat e(), and use LockMode. READ (performing a version
check and bypassing all caches) if you are sure that the object has not been modified.

13.3.4. Customizing automatic versioning

You can disable Hibernate's automatic version increment for particular properties and collections
by setting the optimi stic-1ock mapping attribute to fal se. Hibernate will then no longer
increment versions if the property is dirty.

Legacy database schemas are often static and cannot be modified. Or, other applications might
access the same database and will not know how to handle version numbers or even timestamps.
In both cases, versioning cannot rely on a particular column in a table. To force a version check
with a comparison of the state of all fields in a row but without a version or timestamp property
mapping, turn on opt i m stic-1ock="al | " inthe <cl ass> mapping. This conceptually only works

252

Pessimistic locking

if Hibernate can compare the old and the new state (i.e., if you use a single long Sessi on and not
session-per-request-with-detached-objects).

Concurrent modification can be permitted in instances where the changes that have been made
do not overlap. If you set opt i mi sti c- 1 ock="di rty" when mapping the <cl ass>, Hibernate will
only compare dirty fields during flush.

In both cases, with dedicated version/timestamp columns or with a full/dirty field comparison,
Hibernate uses a single UPDATE statement, with an appropriate WHERE clause, per entity to execute
the version check and update the information. If you use transitive persistence to cascade
reattachment to associated entities, Hibernate may execute unnecessary updates. This is usually
not a problem, but on update triggers in the database might be executed even when no changes
have been made to detached instances. You can customize this behavior by setting sel ect -
bef ore-updat e="true" in the <cl ass> mapping, forcing Hibernate to SELECT the instance to
ensure that changes did occur before updating the row.

13.4. Pessimistic locking

Itis not intended that users spend much time worrying about locking strategies. Itis usually enough
to specify an isolation level for the JDBC connections and then simply let the database do all the
work. However, advanced users may wish to obtain exclusive pessimistic locks or re-obtain locks
at the start of a new transaction.

Hibernate will always use the locking mechanism of the database; it never lock objects in memory.

The LockMode class defines the different lock levels that can be acquired by Hibernate. A lock is
obtained by the following mechanisms:

* LockMode. WRI TE is acquired automatically when Hibernate updates or inserts a row.

* LockMode. UPGRADE can be acquired upon explicit user request using SELECT ... FOR UPDATE
on databases which support that syntax.

* LockMode. UPGRADE_NOWAI T can be acquired upon explicit user request using a SELECT ...
FOR UPDATE NOWAI T under Oracle.

* LockMode. READ is acquired automatically when Hibernate reads data under Repeatable Read
or Serializable isolation level. It can be re-acquired by explicit user request.

* LockMode. NONE represents the absence of a lock. All objects switch to this lock mode at
the end of a Transacti on. Objects associated with the session via a call to update() or
saveOr Updat e() also start out in this lock mode.

The "explicit user request" is expressed in one of the following ways:

» Acallto Sessi on. | oad(), specifying a LockMode.
» Acallto Session. | ock().
e Acallto Query. set LockMbde() .

If Sessi on. | oad() is called with UPGRADE or UPGRADE_NOWAI T, and the requested object was not
yet loaded by the session, the object is loaded using SELECT ... FOR UPDATE. If | oad() is called

253

Chapter 13. Transactions and ...

for an object that is already loaded with a less restrictive lock than the one requested, Hibernate
calls I ock() for that object.

Sessi on. | ock() performs a version number check if the specified lock mode is READ, UPGRADE or
UPGRADE_NOWAI T. In the case of UPGRADE or UPGRADE_NOWAI T, SELECT ... FOR UPDATE s used.

If the requested lock mode is not supported by the database, Hibernate uses an appropriate
alternate mode instead of throwing an exception. This ensures that applications are portable.

13.5. Connection release modes

One of the legacies of Hibernate 2.x JDBC connection management meant that a Sessi on would
obtain a connection when it was first required and then maintain that connection until the session
was closed. Hibernate 3.x introduced the notion of connection release modes that would instruct
a session how to handle its JDBC connections. The following discussion is pertinent only to
connections provided through a configured Connecti onProvi der. User-supplied connections
are outside the breadth of this discussion. The different release modes are identified by the
enumerated values of or g. hi ber nat e. Connect i onRel easeMode:

e ON_CLOsSE: is the legacy behavior described above. The Hibernate session obtains a connection
when it first needs to perform some JDBC access and maintains that connection until the session
is closed.

e AFTER TRANSACTI ON: releases connections after a or g. hi ber nat e. Transacti on has been
completed.

e AFTER STATEMENT (also referred to as aggressive release): releases connections after every
statement execution. This aggressive releasing is skipped if that statement leaves open
resources associated with the given session. Currently the only situation where this occurs is
through the use of or g. hi bernat e. Scrol | abl eResul ts.

The configuration parameter hi ber nat e. connecti on. rel ease_node is used to specify which
release mode to use. The possible values are as follows:

e auto (the default): this choice delegates to the release mode returned by the
org. hi bernate. transaction. Transacti onFact ory. get Def aul t Rel easeMbde() method.
For JTATransactionFactory, this returns ConnectionReleaseMode. AFTER_STATEMENT,; for
JDBCTransactionFactory, this returns ConnectionReleaseMode.AFTER_TRANSACTION. Do
not change this default behavior as failures due to the value of this setting tend to indicate bugs
and/or invalid assumptions in user code.

e on_cl ose: uses ConnectionReleaseMode.ON_CLOSE. This setting is left for backwards
compatibility, but its use is discouraged.

e after_transaction: uses ConnectionReleaseMode.AFTER_TRANSACTION. This setting
should not be used in JTA environments. Also note that with
ConnectionReleaseMode. AFTER_TRANSACTION, if a session is considered to be in auto-
commit mode, connections will be released as if the release mode were AFTER_STATEMENT.

e after_statenent: uses ConnectionReleaseMode. AFTER_STATEMENT. Additionally,
the configured ConnectionProvider is consulted to see if it supports this

254

Connection release modes

setting (supportsAggressi veRel ease()). If not, the release mode is reset to
ConnectionReleaseMode. AFTER_TRANSACTION. This setting is only safe in environments
where we can either re-acquire the same underlying JDBC connection each time you make
a call into Connect i onProvi der . get Connect i on() or in auto-commit environments where it
does not matter if we re-establish the same connection.

255

256

Chapter 14.

Interceptors and events

It is useful for the application to react to certain events that occur inside Hibernate. This allows for
the implementation of generic functionality and the extension of Hibernate functionality.

14.1. Interceptors

The I nt er cept or interface provides callbacks from the session to the application, allowing the
application to inspect and/or manipulate properties of a persistent object before it is saved,
updated, deleted or loaded. One possible use for this is to track auditing information. For example,
the following | nt ercept or automatically sets the creat eTi nest anp when an Auditabl e is
created and updates the | ast Updat eTi mest anp property when an Audi t abl e is updated.

You can either implement I nt er cept or directly or extend Enpt yI nt er cept or .

package org. hi bernate.test;

inport java.io.Serializable;
inport java.util.Date;
inmport java.util.lterator;

inport org.hi bernate. Enptyl nterceptor;
import org. hi bernate. Transacti on;
inport org.hibernate.type. Type;

public class Auditlnterceptor extends Enmptylnterceptor {

private int updates;
private int creates;
private int |oads;

public void onDel ete(bject entity,
Serializable id,
oj ect[] state,
String[] propertyNanes,
Type[] types) {
/1 do not hi ng

publ i c bool ean onFl ushDirty(Object entity,
Serializable id,
Obj ect[] current State,
Obj ect[] previousState,
String[] propertyNanes,
Type[] types) {

if (entity instanceof Auditable) {
updat es++;
for (int i=0; i < propertyNanes.length; i++) {
if ("lastUpdateTi nestanp". equal s(propertyNanes[i])) {
currentState[i] = new Date();
return true;

257

Chapter 14. Interceptors and ...

}

return false;

publ i c bool ean onLoad(Object entity,
Serializable id,
oj ect[] state,
String[] propertyNanes,
Type[] types) {
if (entity instanceof Auditable) {
| oads++;

}

return false;

publ i c bool ean onSave(hject entity,
Serializable id,
oj ect[] state,
String[] propertyNanes,
Type[] types) {

if (entity instanceof Auditable) {
creates++;
for (int i=0; i<propertyNames.length; i++) {
if ("createTi nestanp".equal s(propertyNanes[i])) {
state[i] = new Date();
return true;

}

return fal se;

public void afterTransacti onConpl eti on(Transaction tx) {
if (tx.wasCommitted()) {
System out. println("Creations:
}
updat es=0;
cr eat es=0;
| oads=0;

+ creates + ", Updates: " + updates, "Loads: + | oads) ;

There are two kinds of inteceptors: Sessi on-scoped and Sessi onFact or y-scoped.

A Sessi on-scoped interceptor is specified when a session is opened using one of the overloaded
SessionFactory.openSession() methods accepting an | nt er cept or.

Sessi on session = sf.openSession(new Auditlnterceptor());

A Sessi onFact or y-scoped interceptor is registered with the Confi gurati on object prior to
building the Sessi onFact ory. Unless a session is opened explicitly specifying the interceptor to

258

Event system

use, the supplied interceptor will be applied to all sessions opened from that Sessi onFact ory.
Sessi onFact or y-scoped interceptors must be thread safe. Ensure that you do not store session-
specific states, since multiple sessions will use this interceptor potentially concurrently.

new Configuration().setlnterceptor(new Auditlnterceptor());

14.2. Event system

If you have to react to particular events in your persistence layer, you can also use the Hibernate3
event architecture. The event system can be used in addition, or as a replacement, for interceptors.

All the methods of the Session interface correlate to an event. You have a LoadEvent, a
Fl ushEvent , etc. Consult the XML configuration-file DTD or the or g. hi ber nat e. event package
for the full list of defined event types. When a request is made of one of these methods, the
Hibernate Sessi on generates an appropriate event and passes it to the configured event listeners
for that type. Out-of-the-box, these listeners implement the same processing in which those
methods always resulted. However, you are free to implement a customization of one of the
listener interfaces (i.e., the LoadEvent is processed by the registered implementation of the
LoadEvent Li st ener interface), in which case their implementation would be responsible for
processing any | oad() requests made of the Sessi on.

The listeners should be considered singletons. This means they are shared between requests,
and should not save any state as instance variables.

A custom listener implements the appropriate interface for the event it wants to process and/or
extend one of the convenience base classes (or even the default event listeners used by Hibernate
out-of-the-box as these are declared non-final for this purpose). Custom listeners can either be
registered programmatically through the Confi gurati on object, or specified in the Hibernate
configuration XML. Declarative configuration through the properties file is not supported. Here is
an example of a custom load event listener:

public class MyLoadLi stener inplenents LoadEventListener {
/1 this is the single nethod defined by the LoadEventListener interface
public void onLoad(LoadEvent event, LoadEventListener.LoadType | oadType)
throws Hi bernateException {
if ('MySecurity.isAuthorized(event.getEntityC assNane(), event.getEntityld())) {
throw MySecurityExcepti on("Unaut hori zed access");
}

You also need a configuration entry telling Hibernate to use the listener in addition to the default
listener:

<hi ber nat e- confi gurati on>

259

Chapter 14. Interceptors and ...

<session-factory>

<event type="Ioad">
<listener class="com eg. MyLoadLi stener"/>
<listener class="org. hibernate.event. def. Defaul t LoadEventLi stener"/>
</ event >
</ sessi on-factory>
</ hi ber nat e- confi gurati on>

Instead, you can register it programmatically:

Configuration cfg = new Configuration();
LoadEvent Li stener[] stack = { new MyLoadLi stener(), new Defaul t LoadEventLi stener() };
cfg. Event Li steners().setLoadEvent Li st ener s(st ack);

Listeners registered declaratively cannot share instances. If the same class name is used in
multiple <l i st ener/ > elements, each reference will result in a separate instance of that class.
If you need to share listener instances between listener types you must use the programmatic
registration approach.

Why implement an interface and define the specific type during configuration? A listener
implementation could implement multiple event listener interfaces. Having the type additionally
defined during registration makes it easier to turn custom listeners on or off during configuration.

14.3. Hibernate declarative security

Usually, declarative security in Hibernate applications is managed in a session facade layer.
Hibernate3 allows certain actions to be permissioned via JACC, and authorized via JAAS. This is
an optional functionality that is built on top of the event architecture.

First, you must configure the appropriate event listeners, to enable the use of JAAS authorization.

<listener type="pre-del ete" class="org. hi bernate.secure. JACCPreDel et eEvent Li stener"/>
<l istener type="pre-update" class="org.hibernate.secure. JACCPreUpdat eEventLi stener"/>
<listener type="pre-insert" class="org.hibernate.secure.JACCPrel nsert EventListener"/>
<listener type="pre-load" class="org.hibernate.secure.JACCPreLoadEventLi stener"/>

Note that <listener type="..." class="..."/> is shorthand for <event
type="..."><listener class="..."/></event> when there is exactly one listener for a
particular event type.

Next, while still in hi ber nat e. cf g. xm , bind the permissions to roles:

<grant role="adm n" entity-nane="User" actions="insert,update,read"/>
<grant role="su" entity-nanme="User" actions="*"/>

260

Hibernate declarative security

The role names are the roles understood by your JACC provider.

261

262

Chapter 15.

Batch processing

A naive approach to inserting 100,000 rows in the database using Hibernate might look like this:

Sessi on session = sessi onFactory. openSessi on()
Transaction tx = session. begi nTransaction();
for (int i=0; i<100000; i++) {
Cust oner custonmer = new Custoner(.....);
sessi on. save(cust oner)

}
tx.commt();
sessi on. cl ose();

This would fall over with an Qut Of Menor yExcept i on somewhere around the 50,000th row. That is
because Hibernate caches all the newly inserted Cust onmer instances in the session-level cache.
In this chapter we will show you how to avoid this problem.

If you are undertaking batch processing you will need to enable the use of JDBC batching. This
is absolutely essential if you want to achieve optimal performance. Set the JDBC batch size to a
reasonable number (10-50, for example):

hi bernat e. j dbc. batch_si ze 20
Hibernate disables insert batching at the JDBC level transparently if you use ani dent i t y identifier
generator.

You can also do this kind of work in a process where interaction with the second-level cache is
completely disabled:

hi ber nat e. cache. use_second_| evel _cache fal se

However, this is not absolutely necessary, since we can explicitly set the CacheMde to disable
interaction with the second-level cache.

15.1. Batch inserts

When making new objects persistent f | ush() and then cl ear () the session regularly in order to
control the size of the first-level cache.

Sessi on sessi on = sessi onFactory. openSessi on()
Transaction tx = session. begi nTransaction();

for (int i=0; i<100000; i++) {

263

Chapter 15. Batch processing

Custoner custoner = new Custoner(.....)

sessi on. save(custoner);

if (i %20 ==0) { //20, sane as the JDBC batch size
//flush a batch of inserts and rel ease nenory:
session. flush();
session.clear();

}

tx.commt();
session. cl ose();

15.2. Batch updates

For retrieving and updating data, the same ideas apply. In addition, you need to use scrol | () to
take advantage of server-side cursors for queries that return many rows of data.

Sessi on session = sessionFactory. openSessi on();
Transaction tx = session. begi nTransaction();

Scrol | abl eResul ts customers = sessi on. get NanedQuer y(" Get Cust oners")
. set CacheMbde(CacheMode. | GNORE)
.scroll (Scrol | Mode. FORWARD_ONLY) ;
int count=0;
while (customers.next()) {
Cust oner custonmer = (Custoner) custoners.get(0);
cust oner. updateStuff(...);
if (++count %20 == 0) {
//flush a batch of updates and rel ease nmenory:
session. flush();
session.clear();

}

tx.commit();
session. cl ose();

15.3. The StatelessSession interface

Alternatively, Hibernate provides a command-oriented API that can be used for streaming data to
and from the database in the form of detached objects. A St at el essSessi on has no persistence
context associated with it and does not provide many of the higher-level life cycle semantics.
In particular, a stateless session does not implement a first-level cache nor interact with any
second-level or query cache. It does not implement transactional write-behind or automatic dirty
checking. Operations performed using a stateless session never cascade to associated instances.
Collections are ignored by a stateless session. Operations performed via a stateless session
bypass Hibernate's event model and interceptors. Due to the lack of a first-level cache, Stateless
sessions are vulnerable to data aliasing effects. A stateless session is a lower-level abstraction
that is much closer to the underlying JDBC.

264

DML-style operations

St at el essSessi on session = sessi onFactory. openSt at el essSessi on();
Transaction tx = session. begi nTransaction();

Scrol | abl eResul ts customers = session. get NanedQuer y(" Get Cust oners")
.scroll (Scroll Mode. FORWARD_ONLY) ;
while (custonmers.next()) {
Cust oner custonmer = (Custoner) custoners.get(0);
cust oner. updateStuff(...);
sessi on. updat e(cust oner) ;

}

tx.commt();
session. cl ose();

In this code example, the Cust onmer instances returned by the query are immediately detached.
They are never associated with any persistence context.

Theinsert(), update() anddel et e() operations defined by the St at el essSessi on interface
are considered to be direct database row-level operations. They result in the immediate execution
of a SQL | NSERT, UPDATE or DELETE respectively. They have different semantics to the save(),
saveOr Updat e() and del et e() operations defined by the Sessi on interface.

15.4. DML-style operations

As already discussed, automatic and transparent object/relational mapping is concerned with
the management of the object state. The object state is available in memory. This means that
manipulating data directly in the database (using the SQL Dat a Mani pul ati on Language (DML)
the statements: | NSERT, UPDATE, DELETE) will not affect in-memory state. However, Hibernate
provides methods for bulk SQL-style DML statement execution that is performed through the
Hibernate Query Language (HQL).

The pseudo-syntax for UPDATE and DELETE statements is: (UPDATE | DELETE) FROW?
EntityName (WHERE where_conditions)?.

Some points to note:

* In the from-clause, the FROM keyword is optional

« There can only be a single entity named in the from-clause. It can, however, be aliased. If the
entity name is aliased, then any property references must be qualified using that alias. If the
entity name is not aliased, then it is illegal for any property references to be qualified.

* No joins, either implicit or explicit, can be specified in a bulk HQL query. Sub-queries can be
used in the where-clause, where the subqueries themselves may contain joins.

» The where-clause is also optional.

As an example, to execute an HQL UPDATE, use the Query. execut eUpdat e() method. The
method is named for those familiar with JDBC's Pr epar edSt at enent . execut eUpdat e() :

265

Chapter 15. Batch processing

Sessi on sessi on = sessionFactory. openSessi on();
Transaction tx = session. begi nTransaction();

String hqgl Update = "update Custonmer c set c.name = :newName where c.name = :ol dNane";

/1 or String hgl Update = "update Custoner set nane = :newNarme where nanme = :ol dNane";
int updatedEntities = s.createQuery(hqgl Update)
.setString("newNane", newNane)
.setString("ol dName", ol dNane)
. execut eUpdat e() ;
tx.commt();
session. cl ose();

In keeping with the EJB3 specification, HQL UPDATE statements, by default, do not effect the
version or the timestamp property values for the affected entities. However, you can force
Hibernate to reset the versi on or ti mest anp property values through the use of a ver si oned
updat e. This is achieved by adding the VERSI ONED keyword after the UPDATE keyword.

Sessi on session = sessi onFactory. openSessi on();
Transaction tx = session. begi nTransaction();
String hgl Versi onedUpdat e = "updat e versi oned Custoner set nane = :newNane where nane = : ol dNane";
int updatedEntities = s.createQuery(hgl Update)
.setString("newNane", newNane)
.setString("ol dNanme", ol dNane)
. execut eUpdat e() ;
tx.commt();
session. cl ose();

Custom version types, org. hi bernate. usertype. User Versi onType, are not allowed in
conjunction with a updat e ver si oned statement.

To execute an HQL DELETE, use the same Query. execut eUpdat e() method:

Sessi on session = sessionFactory. openSessi on();
Transaction tx = session. begi nTransaction();

String hqgl Delete = "del ete Custoner ¢ where c.nane = :ol dNane";
/1 or String hqglDelete = "del ete Custoner where nane = :ol dNanme";
int deletedEntities = s.createQuery(hqgl Delete)

.setString("ol dName", ol dNane)

. execut eUpdat e() ;
tx.commit();
session. cl ose();

The i nt value returned by the Query. execut eUpdat e() method indicates the number of entities
effected by the operation. This may or may not correlate to the number of rows effected in the
database. An HQL bulk operation might result in multiple actual SQL statements being executed
(for joined-subclass, for example). The returned number indicates the number of actual entities
affected by the statement. Going back to the example of joined-subclass, a delete against one

266

DML-style operations

of the subclasses may actually result in deletes against not just the table to which that subclass
is mapped, but also the "root" table and potentially joined-subclass tables further down the
inheritance hierarchy.

The pseudo-syntax for | NSERT statements is: | NSERT | NTO EntityName properties_|ist
sel ect _st at enent . Some points to note:

e Only the INSERT INTO ... SELECT ... form is supported; not the INSERT INTO ... VALUES ...
form.

The properties_list is analogous to the col um speci fi cati on in the SQL | NSERT statement.
For entities involved in mapped inheritance, only properties directly defined on that given
class-level can be used in the properties_list. Superclass properties are not allowed and
subclass properties do not make sense. In other words, | NSERT statements are inherently non-
polymorphic.

» select_statement can be any valid HQL select query, with the caveat that the return types must
match the types expected by the insert. Currently, this is checked during query compilation
rather than allowing the check to relegate to the database. This might, however, cause problems
between Hibernate Types which are equivalent as opposed to equal. This might cause issues
with mismatches between a property defined as a org. hi bernate. type. Dat eType and a
property defined as a or g. hi ber nat e. t ype. Ti mest anpType, even though the database might
not make a distinction or might be able to handle the conversion.

« For the id property, the insert statement gives you two options. You can either explicitly specify
the id property in the properties_list, in which case its value is taken from the corresponding
select expression, or omit it from the properties_list, in which case a generated value is used.
This latter option is only available when using id generators that operate in the database;
attempting to use this option with any "in memory" type generators will cause an exception
during parsing. For the purposes of this discussion, in-database generators are considered
to be org. hi bernate. i d. SequenceGener at or (and its subclasses) and any implementers of
org. hibernate.id. PostlnsertldentifierGenerator. The most notable exception here is
org. hi bernate.id. Tabl eH LoGener at or , which cannot be used because it does not expose
a selectable way to get its values.

» For properties mapped as either ver si on or ti nest anp, the insert statement gives you two
options. You can either specify the property in the properties_list, in which case its value is
taken from the corresponding select expressions, or omit it from the properties_list, in which
case the seed val ue defined by the or g. hi ber nat e. t ype. Ver si onType is used.

The following is an example of an HQL | NSERT statement execution:

Sessi on session = sessionFactory. openSessi on();
Transaction tx = session. begi nTransaction();

String hgllnsert = "insert into DelinquentAccount (id, name) select c.id, c.name from Custoner
c where ...";
int createdEntities = s.createQuery(hgllnsert)
. execut eUpdat e() ;
tx.commt();

267

Chapter 15. Batch processing

session.close();

268

Chapter 16.

HOL: The Hibernate Query Language

Hibernate uses a powerful query language (HQL) that is similar in appearance to SQL. Compared
with SQL, however, HQL is fully object-oriented and understands notions like inheritance,
polymorphism and association.

16.1. Case Sensitivity

With the exception of names of Java classes and properties, queries are case-insensitive. So
SeLeCT is the same as sELEct is the same as SELECT, but org. hi ber nat e. eg. FOO is not
or g. hi ber nat e. eg. Foo, and f 0o. bar Set is not f oo. BARSET.

This manual uses lowercase HQL keywords. Some users find queries with uppercase keywords
more readable, but this convention is unsuitable for queries embedded in Java code.

16.2. The from clause

The simplest possible Hibernate query is of the form:
from eg. Cat

This returns all instances of the class eg. Cat . You do not usually need to qualify the class name,
since aut o- i nport is the default. For example:

from Cat
In order to refer to the Cat in other parts of the query, you will need to assign an alias. For example:
from Cat as cat

This query assigns the alias cat to Cat instances, so you can use that alias later in the query.
The as keyword is optional. You could also write:

from Cat cat

Multiple classes can appear, resulting in a cartesian product or "cross" join.

from Fornul a, Paraneter

269

Chapter 16. HQL: The Hibernat...

fromFormula as form Paraneter as param

It is good practice to name query aliases using an initial lowercase as this is consistent with Java
naming standards for local variables (e.g. donest i cCat).

16.3. Associations and joins

You can also assign aliases to associated entities or to elements of a collection of values using
aj oi n. For example:

from Cat as cat
inner join cat.nmate as mate
left outer join cat.kittens as kitten

fromCat as cat left join cat. mate.kittens as kittens

fromFormula formfull join form paraneter param
The supported join types are borrowed from ANSI SQL.:

* inner join

e |eft outer join

e right outer join

e full join (notusually useful)

Theinner join,left outer joinandright outer join constructs may be abbreviated.

from Cat as cat
join cat.mte as mate
left join cat.kittens as kitten

You may supply extra join conditions using the HQL wi t h keyword.

from Cat as cat
left join cat.kittens as kitten
with kitten.bodyWight > 10.0

A "fetch" join allows associations or collections of values to be initialized along with their parent
objects using a single select. This is particularly useful in the case of a collection. It effectively

270

Forms of join syntax

overrides the outer join and lazy declarations of the mapping file for associations and collections.
See Section 21.1, “Fetching strategies” for more information.

from Cat as cat
inner join fetch cat.nmate
left join fetch cat.kittens

A fetch join does not usually need to assign an alias, because the associated objects should not
be used in the wher e clause (or any other clause). The associated objects are also not returned
directly in the query results. Instead, they may be accessed via the parent object. The only reason
you might need an alias is if you are recursively join fetching a further collection:

from Cat as cat
inner join fetch cat.mte
left join fetch cat.kittens child
left join fetch child.kittens

The f et ch construct cannot be used in queries called using i terat e() (though scroll () can
be used). Fet ch should be used together with set MaxResul t s() or set Fi rst Resul t (), as these
operations are based on the result rows which usually contain duplicates for eager collection
fetching, hence, the number of rows is not what you would expect. Fet ch should also not be
used together with impromptu wi t h condition. It is possible to create a cartesian product by join
fetching more than one collection in a query, so take care in this case. Join fetching multiple
collection roles can produce unexpected results for bag mappings, so user discretion is advised
when formulating queries in this case. Finally, note thatful | join fetchandright join fetch
are not meaningful.

If you are using property-level lazy fetching (with bytecode instrumentation), it is possible to force
Hibernate to fetch the lazy properties in the first query immediately using f et ch al | properti es.

from Docunent fetch all properties order by name

from Docunent doc fetch all properties where | ower(doc.nane) |ike '9%ats%

16.4. Forms of join syntax

HQL supports two forms of association joining: i nplicit and explicit.

The queries shown in the previous section all use the explicit form, that is, where the join
keyword is explicitly used in the from clause. This is the recommended form.

271

Chapter 16. HQL: The Hibernat...

The i nplicit form does not use the join keyword. Instead, the associations are "dereferenced"
using dot-notation. i npl i ci t joins can appear in any of the HQL clauses. i npl i ci t join result in
inner joins in the resulting SQL statement.

fromCat as cat where cat.nmate.nane |ike ' %%

16.5. Referring to identifier property

There are 2 ways to refer to an entity's identifier property:

» The special property (lowercase) i d may be used to reference the identifier property of an entity
provided that the entity does not define a non-identifier property named id.
« If the entity defines a named identifier property, you can use that property hame.

References to composite identifier properties follow the same naming rules. If the entity has a non-
identifier property named id, the composite identifier property can only be referenced by its defined
named. Otherwise, the special i d property can be used to reference the identifier property.

Important

Please note that, starting in version 3.2.2, this has changed significantly. In
previous versions, i d always referred to the identifier property regardless of its
actual name. A ramification of that decision was that non-identifier properties
named i d could never be referenced in Hibernate queries.

16.6. The select clause

The sel ect clause picks which objects and properties to return in the query result set. Consider
the following:

sel ect mate
from Cat as cat
inner join cat.nmate as mate

The query will select mat es of other Cat s. You can express this query more compactly as:

select cat.mate from Cat cat

Queries can return properties of any value type including properties of component type:

sel ect cat.nane from DonesticCat cat

272

The select clause

where cat.nane like 'fri%

sel ect cust.nane.firstName from Custoner as cust

Queries can return multiple objects and/or properties as an array of type Coj ect[]:

sel ect nmother, offspr, mate.nanme
from Donmesti cCat as not her
inner join nother.nmate as mate
left outer join mother.kittens as offspr

Orasalist:

sel ect new list(nother, offspr, mate.nane)
from DonesticCat as not her

inner join nother.mate as mate

left outer join nother.kittens as of fspr

Or - assuming that the class Fani | y has an appropriate constructor - as an actual typesafe Java
object:

sel ect new Fanily(nother, mate, offspr)
from Donesti cCat as not her

join nother. mate as mate

left join nmother.kittens as of fspr

You can assign aliases to selected expressions using as:

sel ect max(bodyWei ght) as max, m n(bodyWight) as min, count(*) as n
from Cat cat

This is most useful when used together with sel ect new nmap:

sel ect new map(nmax(bodyWei ght) as max, m n(bodyWight) as mn, count(*) as n)
from Cat cat

This query returns a Map from aliases to selected values.

273

Chapter 16. HQL: The Hibernat...

16.7. Aggregate functions

HQL queries can even return the results of aggregate functions on properties:

sel ect avg(cat.weight), sun{cat.weight), nmax(cat.weight), count(cat)
from Cat cat

The supported aggregate functions are:

e avg(...), sum...), mn(...), max(...)
e count(*)

e count(...), count(distinct ...), count(all...)

You can use arithmetic operators, concatenation, and recognized SQL functions in the select
clause:

sel ect cat.wei ght + sun(kitten.weight)
from Cat cat

join cat.kittens kitten
group by cat.id, cat.weight

select firstName||' '||initial]|]" '||upper(lastNane) from Person

The di stinct and al | keywords can be used and have the same semantics as in SQL.

sel ect distinct cat.name from Cat cat

sel ect count(distinct cat.nanme), count(cat) from Cat cat

16.8. Polymorphic queries

A query like:
from Cat as cat

returns instances not only of Cat, but also of subclasses like Donesti cCat . Hibernate queries
can name any Java class or interface in the f r omclause. The query will return instances of all
persistent classes that extend that class or implement the interface. The following query would
return all persistent objects:

274

The where clause

fromjava.l ang. Object o

The interface Named might be implemented by various persistent classes:

from Naned n, Naned m where n.nanme = m nane

These last two queries will require more than one SQL SELECT. This means that the order by
clause does not correctly order the whole result set. It also means you cannot call these queries
using Query. scrol |l ().

16.9. The where clause

The wher e clause allows you to refine the list of instances returned. If no alias exists, you can
refer to properties by name:

from Cat where nanme='Fritz'

If there is an alias, use a qualified property name:

from Cat as cat where cat.nanme='Fritz'

This returns instances of Cat named 'Fritz'.

The following query:

sel ect foo
from Foo foo, Bar bar
where foo.startDate = bar.date

returns all instances of Foo with an instance of bar with a dat e property equal to the st art Dat e
property of the Foo. Compound path expressions make the wher e clause extremely powerful.
Consider the following:

from Cat cat where cat.mate.nanme is not null

This query translates to an SQL query with a table (inner) join. For example:

from Foo foo

275

Chapter 16. HQL: The Hibernat...

where foo. bar. baz. custoner. address.city is not null

would result in a query that would require four table joins in SQL.

The = operator can be used to compare not only properties, but also instances:

fromCat cat, Cat rival where cat.mate = rival.mte

sel ect cat, mate
fromCat cat, Cat mate
where cat.nmate = mate

The special property (lowercase) i d can be used to reference the unique identifier of an object.
See Section 16.5, “Referring to identifier property” for more information.

fromCat as cat where cat.id = 123

fromCat as cat where cat.nate.id = 69

The second query is efficient and does not require a table join.

Properties of composite identifiers can also be used. Consider the following example where
Per son has composite identifiers consisting of count ry and nedi car eNunber :

from bank. Person person
where person.id.country = 'AU
and person.id. medi careNunber = 123456

from bank. Account account
where account.owner.id.country = 'AU
and account. owner.id. nedi careNunber = 123456

Once again, the second query does not require a table join.

See Section 16.5, “Referring to identifier property” for more information regarding referencing
identifier properties)

The special property cl ass accesses the discriminator value of an instance in the case of
polymorphic persistence. A Java class name embedded in the where clause will be translated to
its discriminator value.

276

Expressions

from Cat cat where cat.class = DonesticCat

You can also use components or composite user types, or properties of said component types.
See Section 16.17, “Components” for more information.

An "any" type has the special properties i d and cl ass that allows you to express a join in the
following way (where Audi t Log. i t emis a property mapped with <any>):

from Audi tLog | og, Paynment paynent
where log.itemclass = 'Paynment' and log.itemid = paynent.id

The 1 og.itemclass and paynent.cl ass would refer to the values of completely different
database columns in the above query.

16.10. Expressions

Expressions used in the wher e clause include the following:

« mathematical operators: +, -, *, /

e binary comparison operators: =, >=, <=, <>, =, |ike

* logical operations and, or, not

« Parentheses () that indicates grouping

e in,not in, between,is null,is not null,is enpty,is not enpty, menber of and
not nenber of

e "Simple" case, case ... when ... then ... else ... end, and "searched" case, case
when ... then ... else ... end
* string concatenation ... ||... orconcat(...,...)

e current_date(),current_tine(),andcurrent _timestanp()

e second(...),minute(...),hour(...),day(...),nonth(...),andyear(...)

« Any function or operator defined by EJB-QL 3.0: substring(), trim), lower(), upper(),
length(), locate(), abs(), sqrt(), bit_length(), nod()

» coal esce() and nul lif ()

» str () for converting numeric or temporal values to a readable string

e cast(... as ...), where the second argument is the name of a Hibernate type, and
extract(... from ...) if ANSI cast() and extract() is supported by the underlying
database

» the HQL i ndex() function, that applies to aliases of a joined indexed collection

« HQL functions that take collection-valued path expressions: size(), minelenent(),
maxel enent (), mini ndex(), naxindex(), along with the special el enent s() and i ndi ces
functions that can be quantified using sone, all, exists, any, in.

» Any database-supported SQL scalar function like si gn(), trunc(),rtrin(), and si n()

« JDBC-style positional parameters ?

e named parameters : nane, : start_date, and : x1

277

Chapter 16. HQL: The Hibernat...

* SQL literals ' f 00", 69, 6. 66E+2, ' 1970-01-01 10: 00: 01. 0'
e« Javapublic static final constants eg. Col or. TABBY

i n and bet ween can be used as follows:

from Donmesti cCat cat where cat.nanme between 'A" and 'B

from DonmesticCat cat where cat.nanme in ('Foo', 'Bar', 'Baz')

The negated forms can be written as follows:

from Donmesti cCat cat where cat.nanme not between 'A" and 'B'

from DonmesticCat cat where cat.nanme not in ('Foo', 'Bar', 'Baz')

Similarly,is null andis not null can be used to test for null values.

Booleans can be easily used in expressions by declaring HQL query substitutions in Hibernate
configuration:

<property nanme="hi bernate. query. substitutions">true 1, false 0</property>

This will replace the keywords true and f al se with the literals 1 and 0 in the translated SQL
from this HQL:

fromCat cat where cat.alive = true

You can test the size of a collection with the special property si ze or the special si ze() function.

fromCat cat where cat.kittens.size > 0

from Cat cat where size(cat.kittens) >0

For indexed collections, you can refer to the minimum and maximum indices using ni ni ndex
and naxi ndex functions. Similarly, you can refer to the minimum and maximum elements of a
collection of basic type using the ni nel ement and maxel ement functions. For example:

278

Expressions

from Cal endar cal where nmaxel enent (cal . hol i days) > current_date

from Order order where maxindex(order.itens) > 100

from Order order where mnel enent(order.itens) > 10000

The SQL functions any, sone, all, exists, in aresupported when passed the element or
index set of a collection (el ement s and i ndi ces functions) or the result of a subquery (see below):

sel ect nother from Cat as nother, Cat as kit
where kit in el enments(foo.kittens)

sel ect p from NaneList list, Person p
where p.nane = sonme el enents(list.nanes)

from Cat cat where exists elenents(cat.kittens)

fromPlayer p where 3 > all el ements(p.scores)

from Show show where 'fizard in indices(show acts)
Note that these constructs - si ze, el ements, indices, m ni ndex, maxi ndex, ni nel ement,
maxel enment - can only be used in the where clause in Hibernate3.

Elements of indexed collections (arrays, lists, and maps) can be referred to by index in a where
clause only:

from Order order where order.itens[0].id = 1234

sel ect person from Person person, Cal endar cal endar
wher e cal endar. hol i days[' national day'] = person. birthDay
and person.nationality.cal endar = cal endar

279

Chapter 16. HQL: The Hibernat...

select itemfromltemitem O der order
where order.itens[order.deliveredlitem ndices[0]] = itemand order.id = 11

select itemfromltemitem O der order
where order.itens[maxindex(order.itens)] = itemand order.id = 11

The expression inside [] can even be an arithmetic expression:

select itemfromltemitem O der order
where order.itens[size(order.itens) - 1] =item

HQL also provides the built-in i ndex() function for elements of a one-to-many association or
collection of values.

select item index(item) from Order order
join order.itenms item
where index(item) <5

Scalar SQL functions supported by the underlying database can be used:

from Donmesti cCat cat where upper(cat.nane) |like 'FR %

Consider how much longer and less readable the following query would be in SQL:

sel ect cust
from Product prod,
Store store
inner join store.customers cust
where prod. nane = 'w dget'
and store.location.nane in (' Melbourne', 'Sydney')
and prod = all elenents(cust.currentOder.lineltens)

Hint: something like

SELECT cust.nane, cust.address, cust.phone, cust.id, cust.current_order
FROM cust oners cust,

stores store,

| ocations |oc,

store_custoners sc,

product prod
WHERE prod. name = 'wi dget'

AND store.loc_id = loc.id

280

The order by clause

AND | oc. name IN (' Mel bourne', 'Sydney')

AND sc.store_id = store.id

AND sc.cust_id = cust.id

AND prod.id = ALL(
SELECT item prod_id
FROM line_itens item orders o
VWHERE itemorder_id = o.id

AND cust.current _order = o.id

16.11. The order by clause

The list returned by a query can be ordered by any property of a returned class or components:

from Domesti cCat cat
order by cat.nanme asc, cat.weight desc,

cat. birthdate

The optional asc or desc indicate ascending or descending order respectively.

16.12. The group by clause

A query that returns aggregate values can be grouped by any property of a returned class or

components:

sel ect cat.color, sun{cat.weight), count(cat)

from Cat cat
group by cat.col or

select foo.id, avg(nane), max(nane)
from Foo foo join foo.nanes nane
group by foo.id

A havi ng clause is also allowed.

sel ect cat.color, sun(cat.weight), count(cat)

from Cat cat
group by cat.col or

havi ng cat.color in (eg.Col or. TABBY, eg. Col or.BLACK)

SQL functions and aggregate functions are allowed in the havi ng and or der by clauses if they

are supported by the underlying database (i.e., not in MySQL).

sel ect cat

281

Chapter 16. HQL: The Hibernat...

from Cat cat
join cat.kittens kitten
group by cat.id, cat.name, cat.other, cat.properties
havi ng avg(kitten.weight) > 100
order by count(kitten) asc, sun(kitten.weight) desc

Neither the group by clause nor the order by clause can contain arithmetic expressions.
Hibernate also does not currently expand a grouped entity, so you cannot write group by cat if
all properties of cat are non-aggregated. You have to list all non-aggregated properties explicitly.

16.13. Subqueries

For databases that support subselects, Hibernate supports subqueries within queries. A subquery
must be surrounded by parentheses (often by an SQL aggregate function call). Even correlated
subqueries (subqueries that refer to an alias in the outer query) are allowed.

from Cat as fatcat
where fatcat.weight > (
sel ect avg(cat.weight) from DonmesticCat cat

from Domesti cCat as cat
where cat.nane = sone (
sel ect nane. ni ckNane from Nane as nane

fromCat as cat
where not exists (
fromCat as nate where mate. mate = cat

from Domesti cCat as cat
where cat.nane not in (
sel ect nane. ni ckNane from Nane as nane

select cat.id, (select max(kit.weight) fromcat.kitten kit)
from Cat as cat
Note that HQL subqueries can occur only in the select or where clauses.

Note that subqueries can also utilize r ow val ue constructor syntax. See Section 16.18, “Row
value constructor syntax” for more information.

282

HQL examples

16.14. HQL examples

Hibernate queries can be quite powerful and complex. In fact, the power of the query language is
one of Hibernate's main strengths. The following example queries are similar to queries that have
been used on recent projects. Please note that most queries you will write will be much simpler
than the following examples.

The following query returns the order id, number of items, the given minimum total value and the
total value of the order for all unpaid orders for a particular customer. The results are ordered
by total value. In determining the prices, it uses the current catalog. The resulting SQL query,
against the ORDER, ORDER_LI NE, PRODUCT, CATALOG and PRI CE tables has four inner joins and an
(uncorrelated) subselect.

sel ect order.id, sun{price.anount), count(item
from Order as order
join order.lineltems as item
join itemproduct as product,
Cat al og as catal og
join catal og.prices as price
where order.paid = fal se
and order.custonmer = :customner
and price. product = product
and catal og. effectiveDate < sysdate
and catal og. effectiveDate >= all (
sel ect cat.effectiveDate
from Catal og as cat
where cat.effectiveDate < sysdate
)
group by order
havi ng sum(price. anount) > :m nAnount
order by sum(price.anmount) desc

What a monster! Actually, in real life, I'm not very keen on subqueries, so my query was really
more like this:

sel ect order.id, sun(price.anount), count(item
from Order as order

join order.lineltenms as item

join itemproduct as product,

Cat al og as catal og

join catal og.prices as price
where order.paid = fal se

and order.custoner = :custoner
and price. product = product
and catal og = :currentCatal og

group by order
havi ng sun{price.anount) > :m nAnount
order by sun(price.anpunt) desc

283

Chapter 16. HQL: The Hibernat...

The next query counts the number of payments in each status, excluding all payments in the
AWAI TI NG_APPROVAL status where the most recent status change was made by the current user.
It translates to an SQL query with two inner joins and a correlated subselect against the PAYMENT,
PAYMENT _STATUS and PAYMENT STATUS CHANGE tables.

sel ect count(paynent), status.nane
from Paynent as paynent
join paynent.currentStatus as status
join paynent.statusChanges as statusChange
where paynent. status. nane <> Paynent St at us. AWAI TI NG_APPROVAL
or (
st at usChange. ti meStanp = (
sel ect max(change. ti neSt anp)
from Paynent St at usChange change
wher e change. paynent = paynent
)
and st atusChange. user <> :currentUser
)
group by status.nane, status.sortOrder
order by status.sortOrder

If the st at usChanges collection was mapped as a list, instead of a set, the query would have
been much simpler to write.

sel ect count (paynent), status.nane
from Paynent as paynent
join paynent.currentStatus as status
wher e paynent. status. nane <> Paynent St at us. AWAI TI NG_APPROVAL
or paynent. st atusChanges[max| ndex(payment. statusChanges)].user <> :currentUser
group by status.nane, status.sortOrder
order by status.sortOr der

The next query uses the MS SQL Serveri sNul | () function to return all the accounts and unpaid
payments for the organization to which the current user belongs. It translates to an SQL query with
three inner joins, an outer join and a subselect against the ACCOUNT, PAYNMENT, PAYMENT _STATUS,
ACCOUNT_TYPE, ORGANI ZATI ON and ORG_USER tables.

sel ect account, paynent
from Account as account
left outer join account.paynents as paynent
where :currentUser in el enents(account. hol der. users)
and Paynent St at us. UNPAI D = i sNul | (paynent. current St atus. nane, Paynent St at us. UNPAI D)
order by account.type.sortO der, account.accountNunber, paynent.dueDate

For some databases, we would need to do away with the (correlated) subselect.

sel ect account, paynment

284

Bulk update and delete

from Account as account

join account. hol der. users as user

left outer join account.paynments as paynent
where :currentUser = user

and Paynent St at us. UNPAI D = i sNul | (paynent. current St at us. nane, Paynent St at us. UNPAI D)
order by account.type.sort O der, account.accountNunber, paynent.dueDate

16.15. Bulk update and delete

HQL now supports updat e, del ete andi nsert ... select ... statements. See Section 15.4,
“DML-style operations” for more information.

16.16. Tips & Tricks

You can count the number of query results without returning them:

((I'nteger) session.createQuery("select count(*) from....").iterate().next()).intValue()

To order a result by the size of a collection, use the following query:

sel ect usr.id, usr.nane
from User as usr
left join usr.nmessages as nsg
group by usr.id, usr.nanme
order by count (nsg)

If your database supports subselects, you can place a condition upon selection size in the where
clause of your query:

from User usr where size(usr.nessages) >= 1
If your database does not support subselects, use the following query:

sel ect usr.id, usr.nane
from User usr

join usr.nessages nsg
group by usr.id, usr.nanme
havi ng count(nsg) >= 1

As this solution cannot return a User with zero messages because of the inner join, the following
form is also useful:

sel ect usr.id, usr.nane

285

Chapter 16. HQL: The Hibernat...

from User as usr

left join usr.nessages as nsg
group by usr.id, usr.nanme
havi ng count(nmsg) = 0

Properties of a JavaBean can be bound to named query parameters:

Query q = s.createQuery("fromfoo Foo as foo where foo.nanme=:nane and foo.size=:size");
g.set Properties(fooBean); // fooBean has get Name() and getSize()
List foos = qg.list();

Collections are pageable by using the Query interface with a filter:

Query q = s.createFilter(collection, ""); // the trivial filter
g. set MaxResul t s(PAGE_SI ZE) ;

g. set Fi rst Resul t (PAGE_SI ZE * pageNunber) ;

Li st page = g.list();

Collection elements can be ordered or grouped using a query filter:

Col | ection orderedCollection = s.filter(collection, "order by this.anmunt");
Col | ection counts = s.filter(collection, "select this.type, count(this) group by this.type");

You can find the size of a collection without initializing it:
((I'nteger) session.createQuery("select count(*) from....").iterate().next()).intValue();

16.17. Components

Components can be used similarly to the simple value types that are used in HQL queries. They
can appear in the sel ect clause as follows:

sel ect p.nanme from Person p

select p.nane.first from Person p

where the Person's name property is a component. Components can also be used in the wher e
clause:

286

Row value constructor syntax

from Person p where p.nane = :nane

from Person p where p.nane.first = :firstName

Components can also be used in the or der by clause:

from Person p order by p.nane

from Person p order by p.nane.first

Another common use of components is in row value constructors.

16.18. Row value constructor syntax

HQL supports the use of ANSI SQL row val ue constructor syntax, sometimes referred to AS
t upl e syntax, even though the underlying database may not support that notion. Here, we are
generally referring to multi-valued comparisons, typically associated with components. Consider
an entity Person which defines a name component:

from Person p where p.nane.first="John'" and p.nane. | ast="Ji ngl ehei ner-Schmi dt"'

That is valid syntax although it is a little verbose. You can make this more concise by using r ow
val ue constructor syntax:

from Person p where p.name=('John', 'Jingleheiner-Schnmdt")
It can also be useful to specify this in the sel ect clause:
sel ect p.name from Person p

Using row val ue constructor syntax can also be beneficial when using subqueries that need
to compare against multiple values:

fromCat as cat
where not (cat.name, cat.color) in (
sel ect cat.nane, cat.color from DonesticCat cat

287

Chapter 16. HQL: The Hibernat...

One thing to consider when deciding if you want to use this syntax, is that the query will be
dependent upon the ordering of the component sub-properties in the metadata.

288

Chapter 17.

Criteria Queries

Hibernate features an intuitive, extensible criteria query API.

17.1. Creating a citeria INStance

The interface or g. hi bernate. Cri t eri a represents a query against a particular persistent class.
The Sessi on is a factory for Cri t eri a instances.

Criteria crit = sess.createCriteria(Cat.class);
crit.set MaxResul ts(50);
List cats = crit.list();

17.2. Narrowing the result set

An individual query criterion is an instance of the interface
org. hibernate.criterion.Criterion. The class org. hi bernate.criterion. Restrictions
defines factory methods for obtaining certain built-in Cri t eri on types.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("nane", "Fritz%))
.add(Restrictions. between("weight", mnWight, nmaxWeight))
ist();

Restrictions can be grouped logically.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "Fritz®))
.add(Restrictions.or(
Restrictions.eq("age", new Integer(0)),
Restrictions.isNull("age")

))
dist();

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.in("nane", new String[] { "Fritz", "lzi", "Pk" }))
.add(Restrictions.disjunction()
.add(Restrictions.isNull("age"))
.add(Restrictions.eq("age", new Integer(0)))
.add(Restrictions.eq("age", new Integer(1l)))
.add(Restrictions.eq("age", new Integer(2)))

))
dist();

289

Chapter 17. Criteria Queries

There are a range of built-in criterion types (Rest ri cti ons subclasses). One of the most useful
allows you to specify SQL directly.

List cats = sess.createCriteria(Cat.class)
. add(Restrictions. sgl Restriction("lower({alias}.nane) like lower(?)", "Fritz
% , Hi bernate. STRING)
list();

The {al i as} placeholder with be replaced by the row alias of the queried entity.

You can also obtain a criterion from a Proper t y instance. You can create a Property by calling
Property. for Nanme():

Property age = Property. forNanme("age");
List cats = sess.createCriteria(Cat.class)
.add(Restrictions.disjunction()
.add(age.isNull())
.add(age.eq(new Integer(0)))
.add(age.eq(new Integer(1)))
.add(age.eq(new Integer(2)))
))
.add(Property.forName("nane").in(new String[] { "Fritz", "lzi", "Pk" }))
ist();

17.3. Ordering the results

You can order the results using or g. hi bernate. criterion. Order.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("nane", "F%)
.addOrder(Order.asc("nane"))
.addOrder(Order.desc("age"))

. set MaxResul t s(50)
list();

List cats = sess.createCriteria(Cat.class)
.add(Property.forNane("nanme").like("F%))
.addOrder (Property. forNane("nanme").asc())
.addOrder (Property.forNane("age").desc())
. set MaxResul t s(50)
dist();

290

Associations

17.4. Associations

By navigating associations using createCriteria() you can specify constraints upon related
entities:

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("nane", "F®%))
.createCriteria("kittens")

.add(Restrictions.like("nane", "F%))
dist();

The second createCriteria() returns a new instance of Cri t eri a that refers to the elements
of the ki tt ens collection.

There is also an alternate form that is useful in certain circumstances:

Li st cats = sess.createCriteria(Cat.class)
.createAlias("kittens", "kt")
.createAlias("mate", "nt")
.add(Restrictions.eqProperty("kt.nane", "nt.nane"))
ist();

(creat eAl i as() does not create a new instance of Criteri a.)

The kittens collections held by the Cat instances returned by the previous two queries are not
pre-filtered by the criteria. If you want to retrieve just the kittens that match the criteria, you must
use a Resul t Tr ansf or ner .

Li st cats = sess.createCriteria(Cat.class)
.createCriteria("kittens", "kt")
.add(Restrictions.eq("nane", "F%))
.setResul t Transformer(Criteria. ALI AS_TO ENTI TY_NAP)
list();
Iterator iter = cats.iterator();
while (iter.hasNext()) {
Map map = (Map) iter.next();
Cat cat = (Cat) map.get(Criteria. ROOT_ALI AS);
Cat kitten = (Cat) nap.get("kt");

Additionally you may manipulate the result set using a left outer join:

List cats = session.createCriteria(Cat.class)
.createAlias("mate", "nt", Criteria.LEFT_JON, Restrictions.!like("nt.nanme",
"good%))
.addOr der (Order. asc("nt.age"))

201

Chapter 17. Criteria Queries

dist();

This will return all of the Cat s with a mate whose name starts with "good" ordered by their mate's
age, and all cats who do not have a mate. This is useful when there is a need to order or limit
in the database prior to returning complex/large result sets, and removes many instances where
multiple queries would have to be performed and the results unioned by java in memory.

Without this feature, first all of the cats without a mate would need to be loaded in one query.

A second query would need to retreive the cats with mates who's name started with "good" sorted
by the mates age.

Thirdly, in memory; the lists would need to be joined manually.

17.5. Dynamic association fetching

You can specify association fetching semantics at runtime using set Fet chibde() .

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("nane", "Fritz%))
. set Fet chMbde(" mat e", Fet chMbde. EAGER)
. set Fet chMbde("ki ttens", FetchMde. EAGER)
dist();

This query will fetch both mat e and ki t t ens by outer join. See Section 21.1, “Fetching strategies”
for more information.

17.6. Example queries

The class or g. hi bernate. criterion. Exanpl e allows you to construct a query criterion from a
given instance.

Cat cat = new Cat();

cat.setSex('F');

cat . set Col or (Col or . BLACK) ;

List results = session.createCriteria(Cat.class)
.add(Exanple.create(cat))
dist();

Version properties, identifiers and associations are ignored. By default, null valued properties are
excluded.

You can adjust how the Exanpl e is applied.

Exanpl e exanpl e = Exanpl e. create(cat)

292

Projections, aggregation and grouping

. excl udeZer oes() // excl ude zero val ued properties

.excl udeProperty("color") //exclude the property naned "col or"
.ignoreCase() / /I perform case insensitive string conparisons
.enabl eLi ke(); /luse like for string conparisons

List results = session.createCriteria(Cat.class)
. add(exanpl e)
list();

You can even use examples to place criteria upon associated objects.

List results = session.createCriteria(Cat.class)
.add(Exanple.create(cat))
.createCriteria("mte")

.add(Exanple.create(cat.getMate()))
list();

17.7. Projections, aggregation and grouping

The class or g. hi bernate. criterion. Projections is a factory for Pr oj ect i on instances. You
can apply a projection to a query by calling set Pr oj ecti on().

List results = session.createCriteria(Cat.class)
.setProjection(Projections.rowCount())
.add(Restrictions.eq("color", Color.BLACK))
dist();

List results = session.createCriteria(Cat.class)
.setProjection(Projections.projectionList()
.add(Projections.rowCount ())
.add(Projections.avg("weight"))
.add(Projections. max("weight"))
.add(Projections.groupProperty("color"))

)
List();

There is no explicit "group by" necessary in a criteria query. Certain projection types are defined
to be grouping projections, which also appear in the SQL gr oup by clause.

An alias can be assigned to a projection so that the projected value can be referred to in restrictions
or orderings. Here are two different ways to do this:

List results = session.createCriteria(Cat.class)
.setProjection(Projections.alias(Projections.groupProperty(“color"), "colr"))
.addOrder(Order.asc("colr"))
dist();

293

Chapter 17. Criteria Queries

List results = session.createCriteria(Cat.class)
.setProjection(Projections.groupProperty("color").as("colr"))
.addOrder(Order.asc("colr"))
list();

The al i as() and as() methods simply wrap a projection instance in another, aliased, instance of
Proj ecti on. As a shortcut, you can assign an alias when you add the projection to a projection list:

List results = session.createCriteria(Cat.class)

.setProjection(Projections.projectionList()
.add(Projections.rowCount (), "catCountByColor")
.add(Projections.avg("weight"), "avgWeight")
.add(Projections. max("weight"), "nmaxWeight")
.add(Projections. groupProperty("color"), "color")

)

.addOrder (Order. desc("cat Count ByCol or"))

.addOrder (Order. desc("avgWight"))

list();

List results = session.createCriteria(Donestic.class, "cat")

.createAlias("kittens", "kit")

.setProjection(Projections.projectionList()
.add(Projections.property("cat.nane"), "catNanme")
.add(Projections.property("kit.nane"), "kitNanme")

)

.addOrder (Order.asc("cat Nane"))

.addOrder (Order.asc("kitNane"))

list();

You can also use Property. for Nane() to express projections:

List results = session.createCriteria(Cat.class)
.setProjection(Property.forName("nane"))
.add(Property.forName("color").eq(Col or. BLACK))
ist();

List results = session.createCriteria(Cat.class)

.setProjection(Projections.projectionList()
.add(Projections.rowCount().as("catCountByColor"))
.add(Property.forNanme("weight").avg().as("avgWight"))
.add(Property.forNanme("weight").nmax().as("maxWight"))
.add(Property.forNanme("color").group().as("color")

)

.addOrder (Order. desc("cat Count ByCol or"))

.addOrder (Order. desc("avgWeight"))

List();

294

Detached queries and subqueries

17.8. Detached queries and subqueries

The Det achedCri teri a class allows you to create a query outside the scope of a session and
then execute it using an arbitrary Sessi on.

Det achedCriteria query = DetachedCriteria.ford ass(Cat. cl ass)
.add(Property.forNanme("sex").eq('F));

Session session =;

Transaction txn = session. begi nTransaction();

List results = query.get Executabl eCriteria(session).set MaxResul ts(100).1ist();
txn.commt();

session. cl ose();

A DetachedCriteria can also be used to express a subquery. Criterion instances involving
subqueries can be obtained via Subqueri es or Property.

Det achedCriteria avgWight = DetachedCriteria.ford ass(Cat.cl ass)
.setProjection(Property.forNanme("weight").avg());
session.createCriteria(Cat.cl ass)
.add(Property.forName("weight").gt(avgWight))
ist();

Det achedCriteria weights = DetachedCriteria.forC ass(Cat.class)
.setProjection(Property.forName("weight"));
session.createCriteria(Cat.class)
.add(Subqueries.geA |l ("weight", weights))
dist();

Correlated subqueries are also possible:

Det achedCriteria avgWei ght For Sex = DetachedCriteria.ford ass(Cat.class, "cat2")
.setProjection(Property.forName("weight").avg())
.add(Property.forName("cat2.sex").eqProperty("cat.sex"));
session.createCriteria(Cat.class, "cat")
.add(Property.forNanme("wei ght"). gt (avgWei ght For Sex))
dist();

17.9. Queries by natural identifier

For most queries, including criteria queries, the query cache is not efficient because query cache
invalidation occurs too frequently. However, there is a special kind of query where you can optimize
the cache invalidation algorithm: lookups by a constant natural key. In some applications, this kind
of query occurs frequently. The criteria API provides special provision for this use case.

295

Chapter 17. Criteria Queries

First, map the natural key of your entity using <nat ur al - i d> and enable use of the second-level
cache.

<cl ass name="User">
<cache usage="read-wite"/>
<id nane="id">
<generator class="increment"/>
</id>
<natural -id>
<property nanme="nanme"/>
<property name="org"/>
</ natural -id>
<property name="password"/>
</ cl ass>

This functionality is not intended for use with entities with mutable natural keys.

Once you have enabled the Hibernate query cache, the Restri cti ons. natural 1 d() allows you
to make use of the more efficient cache algorithm.

session.createCriteria(User.cl ass)
.add(Restrictions.naturalld()
.set("name", "gavin")
.set("org", "hb")
) . set Cacheabl e(true)
.uni queResul t () ;

296

Chapter 18.

Native SQL

You can also express queries in the native SQL dialect of your database. This is useful if you want
to utilize database-specific features such as query hints or the CONNECT keyword in Oracle. It also
provides a clean migration path from a direct SQL/JDBC based application to Hibernate.

Hibernate3 allows you to specify handwritten SQL, including stored procedures, for all create,
update, delete, and load operations.

18.1. Using a sq query

Execution of native SQL queries is controlled via the SQLQuery interface, which is obtained by
calling Sessi on. creat eSQLQuery(). The following sections describe how to use this API for

querying.
18.1.1. Scalar queries

The most basic SQL query is to get a list of scalars (values).

sess. creat eSQLQuery(" SELECT * FROM CATS").list();
sess. creat eSQLQuery(" SELECT | D, NAME, BI RTHDATE FROM CATS").list();

These will return a List of Object arrays (Object[]) with scalar values for each column in the CATS
table. Hibernate will use ResultSetMetadata to deduce the actual order and types of the returned
scalar values.

To avoid the overhead of using Resul t Set Met adat a, or simply to be more explicit in what is
returned, one can use addScal ar () :

sess. creat eSQLQuery (" SELECT * FROM CATS")
.addScal ar ("1 D', Hi bernate. LONG
.addScal ar ("NAVE", Hi bernate. STRI NG
.addScal ar (" Bl RTHDATE", Hi ber nat e. DATE)

This query specified:

« the SQL query string
« the columns and types to return

This will return Object arrays, but now it will not use Resul t Set Met adat a but will instead explicitly
get the ID, NAME and BIRTHDATE column as respectively a Long, String and a Short from the
underlying resultset. This also means that only these three columns will be returned, even though
the query is using * and could return more than the three listed columns.

297

Chapter 18. Native SQL

It is possible to leave out the type information for all or some of the scalars.

sess. creat eSQLQuery(" SELECT * FROM CATS")
.addScal ar ("1 D', Hi bernate. LONG
. addScal ar (" NAVE")
. addScal ar (" Bl RTHDATE")

This is essentially the same query as before, but now Resul t Set Met aDat a is used to determine
the type of NAME and BIRTHDATE, where as the type of ID is explicitly specified.

How the java.sql.Types returned from ResultSetMetaData is mapped to Hibernate types is
controlled by the Dialect. If a specific type is not mapped, or does not result in the expected type,
it is possible to customize it via calls to r egi st er H ber nat eType in the Dialect.

18.1.2. Entity queries

The above queries were all about returning scalar values, basically returning the "raw" values
from the resultset. The following shows how to get entity objects from a native sqgl query via
addEntity().

sess. creat eSQLQuer y(" SELECT * FROM CATS") . addEntity(Cat.cl ass);
sess. creat eSQLQuery(" SELECT | D, NAME, BI RTHDATE FROM CATS").addEntity(Cat.cl ass);

This query specified:

» the SQL query string
* the entity returned by the query

Assuming that Cat is mapped as a class with the columns ID, NAME and BIRTHDATE the above
queries will both return a List where each element is a Cat entity.

If the entity is mapped with a many- t o- one to another entity it is required to also return this when
performing the native query, otherwise a database specific "column not found" error will occur.
The additional columns will automatically be returned when using the * notation, but we prefer to
be explicit as in the following example for a many-t o- one to a Dog:

sess. creat eSQLQuery(" SELECT | D, NAME, BI RTHDATE, DOG | D FROM CATS"). addEntity(Cat.cl ass);

This will allow cat.getDog() to function properly.

18.1.3. Handling associations and collections

Itis possible to eagerly join in the Dog to avoid the possible extra roundtrip for initializing the proxy.
This is done via the addJoi n() method, which allows you to join in an association or collection.

298

Returning multiple entities

sess. creat eSQLQuery("SELECT c.|D, NAME, BIRTHDATE, DOG ID, D ID, D NAME FROM CATS c, DOGS d
WHERE ¢.DOG ID = d. D I D)
.addEntity("cat", Cat.class)
.addJoi n("cat . dog");

In this example, the returned Cat 's will have their dog property fully initialized without any extra
roundtrip to the database. Notice that you added an alias name ("cat") to be able to specify the
target property path of the join. It is possible to do the same eager joining for collections, e.qg. if
the Cat had a one-to-many to Dog instead.

sess. creat eSQLQuery(" SELECT | D, NAME, BI RTHDATE, D_ID, D NAME, CAT_ID FROM CATS c, DOGS d WHERE
c.1D = d.CAT_I D)
.addEntity("cat", Cat.class)
.addJoi n("cat . dogs");

At this stage you are reaching the limits of what is possible with native queries, without starting to
enhance the sgl queries to make them usable in Hibernate. Problems can arise when returning
multiple entities of the same type or when the default alias/column names are not enough.

18.1.4. Returning multiple entities

Until now, the result set column names are assumed to be the same as the column names
specified in the mapping document. This can be problematic for SQL queries that join multiple
tables, since the same column names can appear in more than one table.

Column alias injection is needed in the following query (which most likely will fail):

sess. creat eSQLQuery("SELECT c.*, m* FROM CATS ¢, CATS m WHERE c. MOTHER ID = m | D")
.addEntity("cat", Cat.class)
.addEntity("nother", Cat.class)

The query was intended to return two Cat instances per row: a cat and its mother. The query will,
however, fail because there is a conflict of names; the instances are mapped to the same column
names. Also, on some databases the returned column aliases will most likely be on the form "c.ID",
"c.NAME", etc. which are not equal to the columns specified in the mappings ("ID" and "NAME").

The following form is not vulnerable to column name duplication:

sess. creat eSQLQuery (" SELECT {cat.*}, {m*} FROM CATS ¢, CATS m WHERE c. MOTHER ID = m I D")
.addEntity("cat", Cat.class)
.addEntity("nother", Cat.class)

This query specified:

299

Chapter 18. Native SQL

» the SQL query string, with placeholders for Hibernate to inject column aliases
« the entities returned by the query

The {cat.*} and {mother.*} notation used above is a shorthand for "all properties”. Alternatively,
you can list the columns explicitly, but even in this case Hibernate injects the SQL column aliases
for each property. The placeholder for a column alias is just the property name qualified by the
table alias. In the following example, you retrieve Cats and their mothers from a different table
(cat_log) to the one declared in the mapping metadata. You can even use the property aliases
in the where clause.

String sql = "SELECT ID as {c.id}, NAME as {c.nane}, " +
"Bl RTHDATE as {c.birthDate}, MOTHER ID as {c.nother}, {nother.*} " +
"FROM CAT_LOG ¢, CAT_LOG m WHERE {c.nmother} = c.ID";

Li st |1 oggedCats = sess.createSQ.Query(sql)
.addEntity("cat", Cat.class)
.addEntity("nother", Cat.class).list()

18.1.4.1. Alias and property references

In most cases the above alias injection is needed. For queries relating to more complex mappings,
like composite properties, inheritance discriminators, collections etc., you can use specific aliases
that allow Hibernate to inject the proper aliases.

The following table shows the different ways you can use the alias injection. Please note that the
alias names in the result are simply examples; each alias will have a unique and probably different
name when used.

Table 18.1. Alias injection names

Description Syntax Example

A simple property {[al i asnane]. A_NAME as {item nane}
[propertynane]

A composite {[al i asnane] . CURRENCY as {item anount.currency}, VALUE
property [conponent nane] . as {item anount. val ue}
[propertynane] }

Discriminator of an {[al i asnane].cl asd)l SC as {item cl ass}

entity

All properties of an {[aliasname].*} |{item *}

entity

A collection key {[al i asnane]. key} ORA D as {coll.key}

The id of an {[aliasnane].id} | EMPID as {coll.id}
collection

300

Returning non-managed entities

Description Syntax Example

The element of an {[aliasnane].el enefitD as {coll.el enent}
collection

property of the {[aliasnane].el emdMAME as {col | . el enent. nanme}
element in the [propertynane]}
collection

All properties of {[aliasnane]. el endraal4}. el enent. *}
the element in the
collection

All properties of the {[aliasname].*} |{coll.*}
collection

18.1.5. Returning non-managed entities

It is possible to apply a ResultTransformer to native SQL queries, allowing it to return non-
managed entities.

sess. creat eSQLQuer y(" SELECT NAME, BI RTHDATE FROM CATS")
. set Resul t Transf or mer (Tr ansf or mer s. al i asToBean(Cat DTO. cl ass))

This query specified:

« the SQL query string
* a result transformer

The above query will return a list of Cat DTOwhich has been instantiated and injected the values
of NAME and BIRTHNAME into its corresponding properties or fields.

18.1.6. Handling inheritance

Native SQL queries which query for entities that are mapped as part of an inheritance must include
all properties for the baseclass and all its subclasses.

18.1.7. Parameters

Native SQL queries support positional as well as named parameters:

Query query = sess.createSQ.Query("SELECT * FROM CATS WHERE NAME |i ke ?").addEntity(Cat.class);
Li st pusList = query.setString(0, "Pus®%).list();

query = sess. createSQLQuery("SELECT * FROM CATS WHERE NAME | i ke :nane").addEntity(Cat.class);
Li st pusList = query.setString("nane", "Pus%).list();

301

Chapter 18. Native SQL

18.2. Named SQL queries

Named SQL queries can also be defined in the mapping document and called in exactly the same
way as a named HQL query (see Section 11.4.1.7, “Externalizing named queries”). In this case,
you do not need to call addEnti ty().

Example 18.1. Named sql query using the <sql-query> maping element

<sql - query name="persons">
<return alias="person" class="eg.Person"/>
SELECT per son. NAME AS {person. nane},
person. AGE AS {person. age},
person. SEX AS {person. sex}
FROM PERSON per son
VWHERE per son. NAME LI KE : nanePattern
</ sql - query>

Example 18.2. Execution of a named query

Li st people = sess. get NanedQuery("persons")
.setString("nanePattern", nanePattern)
. set MaxResul t s(50)
dist();

The <r et ur n-j oi n> element is use to join associations and the <| oad- col | ecti on> element is
used to define queries which initialize collections,

Example 18.3. Named sql query with association

<sql - query nane="personsWth">
<return alias="person" class="eg.Person"/>
<return-join alias="address" property="person. nailingAddress"/>
SELECT person. NAME AS {person. nane},
per son. AGE AS {person. age},
per son. SEX AS {person. sex},
address. STREET AS {address. street},
address. CI TY AS {address. city},
addr ess. STATE AS {address. st ate},
address. ZI P AS {address. zi p}
FROM PERSON per son
JO N ADDRESS addr ess
ON person. | D = address. PERSON_| D AND addr ess. TYPE=" MAI LI NG
VWHERE per son. NAME LI KE : nanePattern
</ sql - query>

A named SQL query may return a scalar value. You must declare the column alias and Hibernate
type using the <r et ur n- scal ar > element:

302

Named SQL queries

Example 18.4. Named query returning a scalar

<sql - query nanme="nySql Query">
<return-scal ar col um="nanme" type="string"/>
<return-scal ar col um="age" type="long"/>
SELECT p. NAME AS nane,
p. AGE AS age,
FROM PERSON p WHERE p. NAME LI KE ' Hi ber %
</ sql - query>

You can externalize the resultset mapping information in a <r esul t set > element which will allow
you to either reuse them across several named queries or through the set Resul t Set Mappi ng()
API.

Example 18.5. <resultset> mapping used to externalize mapping
information

<resul t set nanme="per sonAddress" >

<return alias="person" class="eg.Person"/>

<return-join alias="address" property="person. nailingAddress"/>
</resul tset>

<sgl - query nane="personsWth" resultset-ref="personAddress">
SELECT person. NAME AS {person. nane},
person. AGE AS {person. age},
person. SEX AS {person. sex},
address. STREET AS {address. street},
address. CI TY AS {address. city},
addr ess. STATE AS {address. state},
address. ZI P AS {address. zi p}
FROM PERSON per son
JO N ADDRESS addr ess
ON person. | D = address. PERSON_| D AND addr ess. TYPE=" MAI LI NG
WHERE person. NAME LI KE : nanmePattern
</ sql - query>

You can, alternatively, use the resultset mapping information in your hbm files directly in java code.

Example 18.6. Programmatically specifying the result mapping information

Li st cats = sess. createSQQuery(
"select {cat.*}, {kitten.*} fromcats cat, cats kitten where kitten.nother = cat.id"

)
. set Resul t Set Mappi ng("cat AndKi tten")

dist();

So far we have only looked at externalizing SQL queries using Hibernate mapping
files. The same concept is also available with anntations and is called named native

303

Chapter 18. Native SQL

qgueries. You can use @anedNativeQuery (@NamedNativeQueries) in conjunction with
@ql Resul t Set Mappi ng (@ql Resul t Set Mappi ngs). Like @amedQuery, @amedNativeQuery
and @sql Resul t Set Mappi ng can be defined at class level, but their scope is global to the
application. Lets look at a view examples.

Example 18.7, “Named SQL query using @NamedNativeQuery together with
@SqlResultSetMapping” shows how a resultSetMappi ng parameter is defined in
@lanedNat i veQuery. It represents the name of a defined @ql Resul t Set Mappi ng. The resultset
mapping declares the entities retrieved by this native query. Each field of the entity is bound to an
SQL alias (or column name). All fields of the entity including the ones of subclasses and the foreign
key columns of related entities have to be present in the SQL query. Field definitions are optional
provided that they map to the same column name as the one declared on the class property. In the
example 2 entities, Ni ght and Ar ea, are returned and each property is declared and associated
to a column name, actually the column name retrieved by the query.

In Example 18.8, “Implicit result set mapping” the result set mapping is implicit. We only describe
the entity class of the result set mapping. The property / column mappings is done using the entity
mapping values. In this case the model property is bound to the model_txt column.

Finally, if the association to a related entity involve a composite primary key, a @i el dResul t
element should be used for each foreign key column. The @i el dResul t name is composed of
the property name for the relationship, followed by a dot ("."), followed by the name or the field or
property of the primary key. This can be seenin Example 18.9, “Using dot notation in @FieldResult
for specifying associations ".

Example 18.7. Named SQL query using @anmedNativeQuery together with
@5ql Resul t Set Mappi ng

@lanedNat i veQuer y(nanme="ni ght &area", query="select night.id nid, night.night_duration, "
+ " night.night_date, area.id aid, night.area_id, area.nane "
+ "from Ni ght night, Area area where night.area_id = area.id",
resul t Set Mappi ng="j oi nMappi ng")
@59l Resul t Set Mappi ng(nane="j oi nMappi ng", entities={
@ntityResult(entityd ass=Night.class, fields = {
@i el dResul t (name="id", colum="nid"),
@i el dResul t (name="duration", colum="night_duration"),
@i el dResul t (nanme="date", col utm="ni ght _date"),
@i el dResul t (nane="area", colum="area_id"),
di scri m nat or Col um="di sc"
b,
@ntityResult(entityC ass=org. hi bernate.test.annotations.query.Area.class, fields = {
@i el dResul t (name="id", colum="aid"),
@i el dResul t (name="nane", col um="nane")

})
}

304

Named SQL queries

Example 18.8. Implicit result set mapping

@ntity
@ql Resul t Set Mappi ng(nane="inplicit",
entities=@ntityResult(entityd ass=SpaceShi p.cl ass))
@amedNat i veQuer y(nanme="i npl i ci t Sanpl e",
query="sel ect * from SpaceShi p",
resul t Set Mappi ng="inplicit")
public class SpaceShip {
private String nang;
private String nodel;
private doubl e speed;

@d
public String getName() {
return nane;

public void setNane(String nane) {
t hi s. nane = nane;

@col utm(name="nodel _txt")
public String getMdel () {
return nodel ;

public void setMdel (String nodel) {
t hi s. nodel = nodel ;

public doubl e get Speed() {
return speed;

public void set Speed(doubl e speed) {
this.speed = speed;

Example 18.9. Using dot notation in @FieldResult for specifying
associations

@Entity
@ql Resul t Set Mappi ng(nane="conposi t ekey",
entities=@ntityResult(entityd ass=Spaceshi p.cl ass,

fields = {
@i el dResul t (name="nane", colum = "nane"),
@i el dResul t (name="nodel ", colum = "nodel "),
@i el dResul t (name="speed", colum = "speed"),
@i el dResul t (name="captain.firstnane", colum = "firstn"),
@i el dResul t (name="capt ai n. | ast nane", colum = "lastn"),
@i el dResul t (name="di nensi ons. | ength", colum = "length"),
@i el dResul t (name="di nensi ons. wi dt h", colum = "wi dth")

305

Chapter 18. Native SQL

1.
colums = { @ol umResul t (nane = "surface"),
@Col umResul t (name = "vol une") })

@NamedNat i veQuer y(nanme="conposi t ekey",
query="sel ect nane, nodel, speed, Inane as lastn, fnane as firstn, length, width, length
* width as surface from SpaceShi p",
resul t Set Mappi ng="conposi t ekey")
1)
public class SpaceShip {
private String nang;
private String nodel;
private doubl e speed;
private Captain captain;
private Di mensions di mensions;

@d
public String getName() {
return name;

public void setNane(String nane) {
thi s. name = nane;

@manyToOne(fetch= FetchType. LAZY)
@oi nCol ums({

@oi nCol um(nane="f nane", referencedCol umNane = "firstnane"),
@oi nCol um(nanme="1 nane", referencedCol umNane = "I ast nane")
})

public Captain getCaptain() {
return captain;

public void setCaptain(Captain captain) {
this.captain = captain;

public String getMdel () {
return nodel;

public void setMdel (String nodel) {
t hi s. nodel = nodel ;

publ i c doubl e get Speed() {
return speed;

public void set Speed(doubl e speed) {
this.speed = speed;

publ i c Di nensi ons get Di mensions() {
return di nensions;

public void setDi nensi ons(Di nmensi ons di mensi ons) {

306

Named SQL queries

t hi s. di mensi ons = di nensi ons;

@ntity

@dd ass(ldentity.class)

public class Captain inplenents Serializable {
private String firstnane;
private String |astnane;

@d
public String getFirstname() {
return firstnane;

public void setFirstname(String firstname) {
this.firstname = firstnang;

@d
public String getLastnane() {
return | astname;

public void setlLastname(String |astnanme) {
this.lastname = | ast nang;

Tip

If you retrieve a single entity using the default mapping, you can specify the
resul t d ass attribute instead of r esul t Set Mappi ng:

@lanmedNat i veQuer y(nanme="i npl i ci t Sanpl e", query="sel ect
SpaceShi p", resultd ass=SpaceShi p. cl ass)
public class SpaceShip {

In some of your native queries, you'll have to return scalar values, for example when building
report queries. You can map them in the @qgl Resul t set Mappi ng through @ol umResul t. You
actually can even mix, entities and scalar returns in the same native query (this is probably not
that common though).

Example 18.10. Scalar values via @ol umResul t

@5ql Resul t Set Mappi ng(nane="scal ar", col ums=@Col umResul t (nane="di mensi on"))
@anmedNat i veQuer y(name="scal ar", query="sel ect I engt h*wi dt h as di mensi on from
SpaceShi p", result Set Mappi ng="scal ar")

307

Chapter 18. Native SQL

An other query hint specific to native queries has been introduced: or g. hi ber nat e. cal | abl e
which can be true or false depending on whether the query is a stored procedure or not.

18.2.1. Using return-property to explicitly specify column/alias
names

You can explicitly tell Hibernate what column aliases to use with <r et ur n- pr oper t y>, instead of
using the {} -syntax to let Hibernate inject its own aliases.For example:

<sql - query nanme="nySql Query">
<return alias="person" class="eg. Person">
<return-property name="nanme" col utm="nyNane"/>
<return-property name="age" col um="nyAge"/>
<return-property name="sex" colum="nySex"/>
</return>
SELECT person. NAME AS nyNane,
per son. AGE AS nyAge,
per son. SEX AS nySex,
FROM PERSON per son WHERE person. NAME LI KE : nane
</ sql - query>

<r et ur n- pr oper t y> also works with multiple columns. This solves a limitation with the {} -syntax
which cannot allow fine grained control of multi-column properties.

<sql - query nane="organi zati onCurr ent Enpl oynent s" >
<return alias="enp" class="Enpl oynent">
<return-property name="sal ary">
<r et ur n-col utm nane="VALUE"/ >
<return-col um nane="CURRENCY"/ >
</return-property>
<return-property nanme="endDate" col um="nyEndDate"/>
</return>
SELECT EMPLOYEE AS {enp. enpl oyee}, EMPLOYER AS {enp. enpl oyer},
STARTDATE AS {enp.startDate}, ENDDATE AS {enp.endDate},
REG ONCODE as {enp.regionCode}, EID AS {enp.id}, VALUE, CURRENCY
FROM EMPLOYMENT
WHERE EMPLOYER = :id AND ENDDATE | S NULL
ORDER BY STARTDATE ASC
</ sql - query>

In this example <r et ur n- property> was used in combination with the {}-syntax for injection.
This allows users to choose how they want to refer column and properties.

If your mapping has a discriminator you must use <ret urn-di scri mi nat or > to specify the
discriminator column.

308

Using stored procedures for querying

18.2.2. Using stored procedures for querying

Hibernate3 provides support for queries via stored procedures and functions. Most of the following
documentation is equivalent for both. The stored procedure/function must return a resultset as
the first out-parameter to be able to work with Hibernate. An example of such a stored function
in Oracle 9 and higher is as follows:

CREATE OR REPLACE FUNCTI ON sel ect Al | Enpl oynent s
RETURN SYS_REFCURSOR
AS
st _cursor SYS_REFCURSOR;
BEG N
OPEN st _cursor FOR
SELECT EMPLOYEE, EMPLOYER,
STARTDATE, ENDDATE,
REG ONCCDE, EI D, VALUE, CURRENCY
FROM EMPLOYMENT;
RETURN st _cursor;
END;

To use this query in Hibernate you need to map it via a hamed query.

<sql - query nanme="sel ect Al | Enpl oyees_SP" cal | abl e="true">
<return alias="enp" class="Enpl oyment">
<return-property name="enpl oyee" col um="EMPLOYEE"/ >
<return-property name="enpl oyer" col uim="EMPLOYER'/ >
<return-property nane="startDate" col um="STARTDATE"/ >
<return-property name="endDate" col urm="ENDDATE"/ >
<return-property name="regi onCode" col utm="REG ONCCDE"/ >
<return-property name="id" colum="ElD'/>
<return-property name="sal ary">
<r et urn-col um nanme="VALUE"/ >
<r et urn-col um nane="CURRENCY"/ >
</return-property>
</return>
{ ? = call selectAllEnploynments() }
</ sql - query>

Stored procedures currently only return scalars and entities. <return-joi n> and <l oad-
col | ecti on> are not supported.

18.2.2.1. Rules/limitations for using stored procedures

You cannot use stored procedures with Hibernate unless you follow some procedure/function
rules. If they do not follow those rules they are not usable with Hibernate. If you still want to use
these procedures you have to execute them via sessi on. connect i on() . The rules are different
for each database, since database vendors have different stored procedure semantics/syntax.

Stored procedure queries cannot be paged with set Fi r st Resul t () / set MaxResul ts() .

309

Chapter 18. Native SQL

The recommended call form is standard SQL92:{ ? = call functionNane(<paraneters>) }
or{ ? = call procedureNanme(<par anet er s>}. Native call syntax is not supported.

For Oracle the following rules apply:

« A function must return a result set. The first parameter of a procedure must be an QUT that
returns a result set. This is done by using a SYS_REFCURSCOR type in Oracle 9 or 10. In Oracle
you need to define a REF CURSOR type. See Oracle literature for further information.

For Sybase or MS SQL server the following rules apply:

» The procedure must return a result set. Note that since these servers can return multiple result
sets and update counts, Hibernate will iterate the results and take the first result that is a result
set as its return value. Everything else will be discarded.

 If you can enable SET NOCOUNT ONin your procedure it will probably be more efficient, but this
is not a requirement.

18.3. Custom SQL for create, update and delete

Hibernate3 can use custom SQL for create, update, and delete operations. The SQL can be
overridden at the statement level or inidividual column level. This section describes statement
overrides. For columns, see Section 5.6, “Column transformers: read and write expressions”.
Example 18.11, “Custom CRUD via annotations” shows how to define custom SQL operatons
using annotations.

Example 18.11. Custom CRUD via annotations

@ntity
@rabl e(nane="CHACS")
@QLI nsert(sql ="I NSERT | NTO CHACS(si ze, name, nickname, id) VALUES(?, upper(?),?,?2)")
@QLUpdat e(sql =" UPDATE CHACS SET size = ?, nanme = upper(?), nickname = ? WHERE id = ?")
@Q.Del et e(sql ="DELETE CHAOS WHERE id = ?")
@QLDel eteAl | (sql ="DELETE CHACS")
@.oader (nanedQuery = "chaos")
@NamedNat i veQuer y(name="chaos", query="sel ect id, size, nane, |ower(nicknanme) as ni cknane from
CHACS where id= ?", resultd ass = Chaos. cl ass)
public class Chaos {
@d
private Long id;
private Long size;
private String nane;
private String nicknane;

@Q I nsert, @Q.Update, @Q.Del ete, @QDel et eAl | respectively override the INSERT,
UPDATE, DELETE, and DELETE all statement. The same can be achieved using Hibernate
mapping files and the <sql - i nsert >, <sql - updat e> and <sq|! - del et e> nodes. This can be seen
in Example 18.12, “Custom CRUD XML".

310

Custom SQL for create, update and delete

Example 18.12. Custom CRUD XML

<cl ass name="Person">
<id name="id">
<generator class="increment"/>
</id>
<property name="nane" not-null="true"/>
<sql -insert>I NSERT | NTO PERSON (NAME, |D) VALUES (UPPER(?), ?)</sqgl-insert>
<sql - updat e>UPDATE PERSON SET NAME=UPPER(?) WHERE | D=?</sql - updat e>
<sql - del et e>DELETE FROM PERSON WHERE | D=?</ sql - del et e>
</ cl ass>

If you expect to call a store procedure, be sure to setthe cal | abl e attribute to t r ue. In annotations
as well as in xml.

To check that the execution happens correctly, Hibernate allows you to define one of those three
strategies:

« none: no check is performed: the store procedure is expected to fail upon issues
 count: use of rowcount to check that the update is successful
» param: like COUNT but using an output parameter rather that the standard mechanism

To define the result check style, use the check parameter which is again available in annoations
as well as in xml.

You can use the exact same set of annotations respectively xml nodes to override the collection
related statements -see Example 18.13, “Overriding SQL statements for collections using
annotations”.

Example 18.13. Overriding SQL statements for collections using
annotations

@neToMany

@oi nCol uim(nanme="chaos_fk")

@QLI nsert (sql ="UPDATE CASI M R_PARTI CULE SET chaos_fk = ? where id = ?")
@QLDel et e(sql ="UPDATE CASI M R_PARTI CULE SET chaos_fk = null where id = ?")
private Set<CasimirParticle> particles = new HashSet<CasinmirParticle>();

Tip

The parameter order is important and is defined by the order Hibernate handles
properties. You can see the expected order by enabling debug logging for the
org. hi bernate. persister.entity level. With this level enabled Hibernate will
print out the static SQL that is used to create, update, delete etc. entities. (To

311

Chapter 18. Native SQL

see the expected sequence, remember to not include your custom SQL through

annotations or mapping files as that will override the Hibernate generated static sql)

Overriding SQL statements for secondary tables is also possible using
@r g. hi ber nat e. annot ati ons. Tabl e and either (or all) attributes sql I nsert, sqgl Update,
sql Del ete:

Example 18.14. Overriding SQL statements for secondary tables

@ntity
@econdar yTabl es({
@secondaryTabl e(name = ""Cat nbr1' "),
@secondar yTabl e(name = "Cat 2"})
@r g. hi bernat e. annot ati ons. Tabl es({
@abl e(appliesTo = "Cat", comment = "M/ cat table"),
@abl e(appliesTo = "Cat2", foreignKey = @oreignKey(name="FK CAT2_CAT"), fetch = FetchMde. SELECT,
sqgl I nsert=@QLI nsert(sql ="insert into Cat2(storyPart2, id) values(upper(?), ?2)"))
)
public class Cat inplements Serializable {

The previous example also shows that you can give a comment to a given table (primary or
secondary): This comment will be used for DDL generation.

Tip

The SQL is directly executed in your database, so you can use any dialect you
like. This will, however, reduce the portability of your mapping if you use database
specific SQL.

Last but not least, stored procedures are in most cases required to return the number of rows
inserted, updated and deleted. Hibernate always registers the first statement parameter as a
numeric output parameter for the CUD operations:

Example 18.15. Stored procedures and their return value

CREATE OR REPLACE FUNCTI ON updat ePerson (uid I N NUMBER, uname | N VARCHAR2)
RETURN NUMBER | S
BEG N

updat e PERSON
set

NAME = unane,
wher e

ID = uid;

return SQLYRONCOUNT;

312

Custom SQL for loading

END updat ePer son

18.4. Custom SQL for loading

You can also declare your own SQL (or HQL) queries for entity loading. As with inserts, updates,
and deletes, this can be done at the individual column level as described in Section 5.6, “Column
transformers: read and write expressions” or at the statement level. Here is an example of a
statement level override:

<sql - query nane="person">
<return alias="pers" class="Person" |ock-npde="upgrade"/>
SELECT NAME AS {pers.nane}, |ID AS {pers.id}
FROM PERSON
WHERE | D=2
FOR UPDATE
</ sql - query>

This is just a named query declaration, as discussed earlier. You can reference this named query
in a class mapping:

<cl ass nane="Person">
<id name="id">
<generator class="increment"/>
</id>
<property name="nane" not-null="true"/>
<l oader query-ref="person"/>
</ cl ass>

This even works with stored procedures.

You can even define a query for collection loading:

<set nanme="enpl oynents" inverse="true">
<key/>
<one-to-nmany cl ass="Enpl oynment"/>
<| oader query-ref="enpl oynents"/>
</set>

<sql - query nane="enpl oynment s" >
<l oad-col | ection alias="enp" rol e="Person. enpl oynents"/>
SELECT {enp.*}
FROM EMPLOYMENT enp
WHERE EMPLOYER = :id
ORDER BY STARTDATE ASC, EMPLOYEE ASC
</ sql - query>

313

Chapter 18. Native SQL

You can also define an entity loader that loads a collection by join fetching:

<sql - query nane="person">
<return alias="pers" class="Person"/>
<return-join alias="enp" property="pers.enploynents"/>
SELECT NAME AS {pers.*}, {enp.*}
FROM PERSON pers
LEFT QUTER JO N EMPLOYMENT enp
ON pers. | D = enp. PERSON_| D
VWHERE | D=7
</ sql - query>

The annotation equivalent <l| oader > is the @Loader annotation as seen in Example 18.11,
“Custom CRUD via annotations”.

314

Chapter 19.

Filtering data

Hibernate3 provides an innovative new approach to handling data with "visibility" rules. A
Hibernate filter is a global, named, parameterized filter that can be enabled or disabled for a
particular Hibernate session.

19.1. Hibernate filters

Hibernate3 has the ability to pre-define filter criteria and attach those filters at both a class level
and a collection level. A filter criteria allows you to define a restriction clause similar to the existing
"where" attribute available on the class and various collection elements. These filter conditions,
however, can be parameterized. The application can then decide at runtime whether certain filters
should be enabled and what their parameter values should be. Filters can be used like database
views, but they are parameterized inside the application.

Using annotatons filters are defined via @rg. hibernate.annotations.FilterDef or
@r g. hi bernate. annot ati ons. Fil terDefs. A filter definition has a name() and an array of
parameters(). A parameter will allow you to adjust the behavior of the filter at runtime. Each
parameter is defined by a @aranDef which has a hame and a type. You can also define a
def aul t Condi ti on() parameter for a given @i | t er Def to set the default condition to use when
none are defined in each individual @ilter. @il terDef(s) can be defined at the class or
package level.

We now need to define the SQL filter clause applied to either the entity load or the collection load.
@i | ter is used and placed either on the entity or the collection element. The connection between
@il terName and @i | t er is a matching name.

Example 19.1. @FilterDef and @Filter annotations

@ntity
@i | t er Def (name="m nLengt h", paraneters=@var anDef (nanme="m nLength", type="integer"))
@ilters({
@i | ter(nanme="bet weenLengt h", condition=":m nLength <= | ength and : nmaxLength >= | ength"),
@il ter(nanme="m nLength", condition=":m nLength <= | ength")

1)

public class Forest { ... }

When the collection use an association table as a relational representation, you might want to
apply the filter condition to the association table itself or to the target entity table. To apply the
constraint on the target entity, use the regular @i | t er annotation. However, if you want to target
the association table, use the @i | t er Joi nTabl e annotation.

Example 19.2. Using @il ter Joi nTabl e for filterting on the association table

@neToMany

315

Chapter 19. Filtering data

@oi nTabl e

/I1filter on the target entity table

@i | ter (nane="bet weenLengt h", condition=":m nLength <= |l ength and : maxLength >= | ength")
//filter on the association table

@il terJoi nTabl e(name="security", condition=":userlevel >= requredLevel")

public Set<Forest> getForests() { ... }

Using Hibernate mapping files for defining filters the situtation is very similar. The filters must first
be defined and then attached to the appropriate mapping elements. To define a filter, use the
<filter-def/>element within a <hi ber nat e- mappi ng/ > element:

Example 19.3. Defining a filter definition via <filter-def >

<filter-def name="nyFilter">
<filter-param nane="nyFilterParan type="string"/>
</filter-def>

This filter can then be attached to a class or collection (or, to both or multiples of each at the
same time):

Example 19.4. Attaching a filter to a class or collection using <filter>

<cl ass nane="nyd ass" ...>

<filter name="nyFilter" condition=":nyFilterParam = MyY_FI LTERED COLUWN'/ >

<set ...>
<filter name="nyFilter" condition=":nyFilterParam = MY_FI LTERED COLUWN'/ >
</ set>
</ cl ass>
The methods on Sessi on are: enabl eFilter(String filterNane),

get Enabl edFilter(String filterNane), and disableFilter(String filterName). By
default, filters are not enabled for a given session. Filters must be enabled through use of the
Sessi on. enabl eFi | t er () method, which returns an instance of the Fi | t er interface. If you used
the simple filter defined above, it would look like this:

session.enabl eFilter("nmyFilter").setParaneter("nyFilterParant, "sone-value");
Methods on the org.hibernate.Filter interface do allow the method-chaining common to much of
Hibernate.

The following is a full example, using temporal data with an effective record date pattern:

<filter-def nane="effectiveDate">

316

Hibernate filters

<filter-param nane="asOf Date" type="date"/>
</filter-def>

<cl ass nane="Enpl oyee" ...>

<many-to-one nanme="departnent” colum="dept_id" class="Departnent"/>
<property name="effectiveStartDate" type="date" colum="eff_start_dt"/>
<property name="effectiveEndDate" type="date" colum="eff_end_dt"/>

==
Note that this assumes non-term nal records have an eff_end_dt set to
a max db date for sinplicity-sake
-->
<filter name="effectiveDate"
condi tion=":asOf Date BETWEEN eff_start_dt and eff_end_dt"/>
</cl ass>

<cl ass nane="Departnent" ...>

<set nane="enpl oyees" |azy="true">
<key col um="dept _id"/>
<one-to-nmany cl ass="Enpl oyee"/>
<filter name="effectiveDate"
condi tion=":asCOf Date BETWEEN eff_start_dt and eff_end_dt"/>
</set>
</ cl ass>

In order to ensure that you are provided with currently effective records, enable the filter on the
session prior to retrieving employee data:

Sessi on session = ...;

session. enabl eFilter("effectiveDate").setParaneter("asOf Date", new Date());

List results = session.createQuery("from Enpl oyee as e where e.salary > :targetSal ary")
.setlLong("target Sal ary", new Long(1000000))
dist();

Even though a salary constraint was mentioned explicitly on the results in the above HQL, because
of the enabled filter, the query will return only currently active employees who have a salary greater
than one million dollars.

If you want to use filters with outer joining, either through HQL or load fetching, be careful of
the direction of the condition expression. It is safest to set this up for left outer joining. Place the
parameter first followed by the column name(s) after the operator.

After being defined, a filter might be attached to multiple entities and/or collections each with
its own condition. This can be problematic when the conditions are the same each time. Using
<filter-def/> allows you to definine a default condition, either as an attribute or CDATA:

<filter-def name="nyFilter" condition="abc > xyz">...</filter-def>
<filter-def name="nyQ herFilter">abc=xyz</filter-def>

317

Chapter 19. Filtering data

This default condition will be used whenever the filter is attached to something without specifying
a condition. This means you can give a specific condition as part of the attachment of the filter
that overrides the default condition in that particular case.

318

Chapter 20.

XML Mapping

XML Mapping is an experimental feature in Hibernate 3.0 and is currently under active
development.

20.1. Working with XML data

Hibernate allows you to work with persistent XML data in much the same way you work with
persistent POJOs. A parsed XML tree can be thought of as another way of representing the
relational data at the object level, instead of POJOs.

Hibernate supports dom4j as API for manipulating XML trees. You can write queries that retrieve
dom4j trees from the database and have any modification you make to the tree automatically
synchronized to the database. You can even take an XML document, parse it using dom4j, and
write it to the database with any of Hibernate's basic operations: persi st (), saveO Update(),
merge(), delete(), replicate() (merging is not yet supported).

This feature has many applications including data import/export, externalization of entity data via
JMS or SOAP and XSLT-based reporting.

A single mapping can be used to simultaneously map properties of a class and nodes of an XML
document to the database, or, if there is no class to map, it can be used to map just the XML.

20.1.1. Specifying XML and class mapping together

Here is an example of mapping a POJO and XML simultaneously:

<cl ass nane="Account"
t abl e=" ACCOUNTS"
node="account" >

<i d nane="account|d"
col utm="ACCOUNT _I| D"
node="@d"/ >

<many-to- one name="custoner"
col um="CUSTOVER_| D"
node="cust onmer/ @d"
enbed- xm ="f al se"/>

<property nanme="bal ance"

col utm=" BALANCE"
node="bal ance"/ >

</cl ass>

319

Chapter 20. XML Mapping

20.1.2. Specifying only an XML mapping

Here is an example where there is no POJO class:

<cl ass entity-nane="Account"
t abl e=" ACCOUNTS"
node="account" >

<id name="id"
col utm="ACCOUNT_I| D"
node="@d"
type="string"/>

<many-t o-one name="custonerld"
col um="CUSTOVER_| D"
node="cust oner/ @d"
enbed- xnl ="f al se"
entity-nanme="Custoner"/>

<property nanme="bal ance"
col unmm=" BALANCE"
node="bal ance"
type="bi g_deci nal "/ >

</cl ass>

This mapping allows you to access the data as a dom4j tree, or as a graph of property name/
value pairs or java Maps. The property names are purely logical constructs that can be referred
to in HQL queries.

20.2. XML mapping metadata

A range of Hibernate mapping elements accept the node attribute. This lets you specify the name
of an XML attribute or element that holds the property or entity data. The format of the node
attribute must be one of the following:

e "el ement - name" : map to the named XML element

e "@ttribute-nane": map to the named XML attribute

e ".":map to the parent element

e "el ement - nane/ @t tri but e- nanme": map to the named attribute of the named element

For collections and single valued associations, there is an additional embed- xn1 attribute. If
enbed- xm ="t rue", the default, the XML tree for the associated entity (or collection of value type)
will be embedded directly in the XML tree for the entity that owns the association. Otherwise, if
enmbed- xm ="f al se", then only the referenced identifier value will appear in the XML for single
point associations and collections will not appear at all.

320

XML mapping metadata

Do not leave enbed- xm ="true" for too many associations, since XML does not deal well with

circularity.

<cl ass nane="Custoner"
t abl e=" CUSTOVER'
node="cust oner " >

<id name="id"
col um="CUST_| D'
node="@d"/ >

<map name="accounts"
node="."
enbed- xm ="t rue" >
<key col um="CUSTOMVER_| D"
not-nul I ="true"/>
<map- key col unm="SHORT_DESC"
node=" @hort-desc"
type="string"/>
<one-to-nany entity-name="Account"”
enbed- xnl ="f al se"
node="account"/ >
</ map>

<component nane="name"
node="nane" >
<property nanme="firstName"
node="first-nane"/>
<property nanme="initial"
node="initial"/>
<property nanme="| ast Name"
node="I ast - nane"/ >
</ conponent >

</ cl ass>

In this case, the collection of account ids is embedded, but not the actual account data. The

following HQL query:

fromCustonmer c left join fetch c.accounts where c.lastNane |ike :I|astNanme

would return datasets such as this:

<custoner id="123456789" >
<account short-desc="Savi ngs">987632567</ account >
<account short-desc="Credit Card">985612323</account >
<nane>
<first-name>Gavi n</first-nanme>
<initial >A</initial>
<| ast - name>Ki ng</ | ast - nane>

321

Chapter 20. XML Mapping

</ nanme>

</ cust oner >
If you set enbed- xml ="t rue" on the <one- t o- many> mapping, the data might look more like this:

<custoner id="123456789" >

<account id="987632567" short-desc="Savi ngs">
<custonmer id="123456789"/>
<bal ance>100. 29</ bal ance>

</ account >

<account id="985612323" short-desc="Credit Card">
<custoner id="123456789"/>
<bal ance>- 2370. 34</ bal ance>

</ account >

<nane>
<first-nane>Gavi n</first-name>
<initial >A</initial>
<l ast - nane>Ki ng</ | ast - nane>

</ nanme>

</ cust oner >

20.3. Manipulating XML data

You can also re-read and update XML documents in the application. You can do this by obtaining
a dom4j session:

Docunent doc =;

Session session = factory. openSession();
Sessi on domdj Sessi on = sessi on. get Sessi on(Entit yMode. DOVAJ) ;
Transaction tx = session. begi nTransaction();

Li st results = dondj Session
.createQuery("from Custoner c left join fetch c.accounts where c.lastNane |ike :|astNane")
list();
for (int i=0; i<results.size(); i++) {
//add the custoner data to the XM. docunent
El ement custoner = (Elenent) results.get(i);
doc. add(cust oner) ;

tx.commt();
session. cl ose();

Session session = factory. openSession();
Sessi on donm¥j Sessi on = sessi on. get Sessi on(EntityMyde. DOVAJ) ;
Transaction tx = session. begi nTransaction();

322

Manipulating XML data

El ement cust = (El ement) domdj Session. get("Custoner”, custonerld)
for (int i=0; i<results.size(); i++) {

El ement custoner = (Elenment) results.get(i);

/I change the custoner nane in the XML and dat abase

El ement nane = custoner. el ement ("nane");

nare. el enent ("first-nane").set Text (firstNanme)

nane. el ement ("initial").setText(initial)

nane. el enent ("1 ast - nane") . set Text (| ast Nane) ;

tx.commit();
session. cl ose();

When implementing XML-based data import/export, it is useful to combine this feature with

Hibernate's r epl i cat e() operation.

323

324

Chapter 21.

Improving performance

21.1. Fetching strategies

Hibernate uses a fetching strategy to retrieve associated objects if the application needs to
navigate the association. Fetch strategies can be declared in the O/R mapping metadata, or over-
ridden by a particular HQL or Cri t eri a query.

Hibernate3 defines the following fetching strategies:

Join fetching: Hibernate retrieves the associated instance or collection in the same SELECT,
using an OQUTER JO N.

Select fetching: a second SELECT is used to retrieve the associated entity or collection. Unless
you explicitly disable lazy fetching by specifying | azy="f al se", this second select will only be
executed when you access the association.

Subselect fetching: a second SELECT is used to retrieve the associated collections for all entities
retrieved in a previous query or fetch. Unless you explicitly disable lazy fetching by specifying
I azy="f al se", this second select will only be executed when you access the association.

Batch fetching: an optimization strategy for select fetching. Hibernate retrieves a batch of entity
instances or collections in a single SELECT by specifying a list of primary or foreign keys.

Hibernate also distinguishes between:

Immediate fetching: an association, collection or attribute is fetched immediately when the
owner is loaded.

Lazy collection fetching: a collection is fetched when the application invokes an operation upon
that collection. This is the default for collections.

"Extra-lazy" collection fetching: individual elements of the collection are accessed from the
database as needed. Hibernate tries not to fetch the whole collection into memory unless
absolutely needed. It is suitable for large collections.

Proxy fetching: a single-valued association is fetched when a method other than the identifier
getter is invoked upon the associated object.

"No-proxy" fetching: a single-valued association is fetched when the instance variable is
accessed. Compared to proxy fetching, this approach is less lazy; the association is fetched
even when only the identifier is accessed. It is also more transparent, since no proxy is visible
to the application. This approach requires buildtime bytecode instrumentation and is rarely
necessary.

Lazy attribute fetching: an attribute or single valued association is fetched when the instance
variable is accessed. This approach requires buildtime bytecode instrumentation and is rarely
necessary.

325

Chapter 21. Improving performance

We have two orthogonal notions here: when is the association fetched and how is it fetched. It is
important that you do not confuse them. We use f et ch to tune performance. We can use | azy to
define a contract for what data is always available in any detached instance of a particular class.

21.1.1. Working with lazy associations

By default, Hibernate3 uses lazy select fetching for collections and lazy proxy fetching for
single-valued associations. These defaults make sense for most associations in the majority of
applications.

If you set hibernate.default_batch fetch_size, Hibernate will use the batch fetch
optimization for lazy fetching. This optimization can also be enabled at a more granular level.

Please be aware that access to a lazy association outside of the context of an open Hibernate
session will result in an exception. For example:

s = sessions. openSession();
Transaction tx = s.beginTransaction();

User u = (User) s.createQuery("from User u where u.nane=:user Nane")
.setString("userNanme", userNane).uni queResul t();
Map perm ssions = u.getPerm ssions();

tx.commt();
s.close();

I nteger accesslLevel = (Integer) perm ssions.get("accounts"); [// Error!

Since the permissions collection was not initialized when the Sessi on was closed, the collection
will not be able to load its state. Hibernate does not support lazy initialization for detached objects.
This can be fixed by moving the code that reads from the collection to just before the transaction
is committed.

Alternatively, you can use a non-lazy collection or association, by specifying | azy="f al se" for
the association mapping. However, it is intended that lazy initialization be used for almost all
collections and associations. If you define too many non-lazy associations in your object model,
Hibernate will fetch the entire database into memory in every transaction.

On the other hand, you can use join fetching, which is non-lazy by nature, instead of select
fetching in a particular transaction. We will now explain how to customize the fetching strategy.
In Hibernate3, the mechanisms for choosing a fetch strategy are identical for single-valued
associations and collections.

21.1.2. Tuning fetch strategies

Select fetching (the default) is extremely vulnerable to N+1 selects problems, so we might want
to enable join fetching in the mapping document:

326

Single-ended association proxies

<set nane="perm ssi ons"
fetch="join">
<key col um="user|d"/>
<one-to-nmany cl ass="Perm ssion"/>
</ set

<many-to-one name="nother" class="Cat" fetch="join"/>

The f et ch strategy defined in the mapping document affects:

* retrieval viaget () or | oad()

retrieval that happens implicitly when an association is navigated

e Criteriaqueries

HQL queries if subsel ect fetching is used

Irrespective of the fetching strategy you use, the defined non-lazy graph is guaranteed to be loaded
into memory. This might, however, result in several immediate selects being used to execute a
particular HQL query.

Usually, the mapping document is not used to customize fetching. Instead, we keep the default
behavior, and override it for a particular transaction, using | eft join fetch in HQL. This tells
Hibernate to fetch the association eagerly in the first select, using an outer join. Inthe Criteri a
query API, you would use set Fet chMode(Fet chMbde. JON) .

If you want to change the fetching strategy used by get () orl oad(), you can use a Criteria
query. For example:

User user = (User) session.createCriteria(User.class)
. set Fet chMbde(" perm ssions", FetchMbde.JO N)
.add(Restrictions.idEq(userld))
.uni queResul t ();

This is Hibernate's equivalent of what some ORM solutions call a "fetch plan”.

A completely different approach to problems with N+1 selects is to use the second-level cache.

21.1.3. Single-ended association proxies

Lazy fetching for collections is implemented using Hibernate's own implementation of persistent
collections. However, a different mechanism is needed for lazy behavior in single-ended
associations. The target entity of the association must be proxied. Hibernate implements lazy
initializing proxies for persistent objects using runtime bytecode enhancement which is accessed
via the CGLIB library.

327

Chapter 21. Improving performance

At startup, Hibernate3 generates proxies by default for all persistent classes and uses them to
enable lazy fetching of many-t o- one and one-t o- one associations.

The mapping file may declare an interface to use as the proxy interface for that class, with
the proxy attribute. By default, Hibernate uses a subclass of the class. The proxied class must
implement a default constructor with at least package visibility. This constructor is recommended
for all persistent classes.

There are potential problems to note when extending this approach to polymorphic classes.For
example:

<cl ass nane="Cat" proxy="Cat">

</ subcl ass>
</cl ass>

Firstly, instances of Cat will never be castable to Donesti cCat, even if the underlying instance
is an instance of Donesti cCat :

Cat cat = (Cat) session.load(Cat.class, id); // instantiate a proxy (does not hit the db)
if (cat.isDonesticCat()) { /1 hit the db to initialize the proxy
Donesti cCat dc = (DonesticCat) cat; /'l Error!

Secondly, it is possible to break proxy ==:

Cat cat = (Cat) session.load(Cat.class, id); /] instantiate a Cat proxy
DonesticCat dc =

(DonesticCat) session.|oad(DonesticCat.class, id); // acquire new DonmesticCat proxy!
System out . printl n(cat==dc); /Il false

However, the situation is not quite as bad as it looks. Even though we now have two references
to different proxy objects, the underlying instance will still be the same object:

cat.setWight(11.0); // hit the db to initialize the proxy
Systemout. println(dc.getWight()); // 11.0

Third, you cannot use a CGLIB proxy for a fi nal class or a class with any fi nal methods.

Finally, if your persistent object acquires any resources upon instantiation (e.g. in initializers or
default constructor), then those resources will also be acquired by the proxy. The proxy class is
an actual subclass of the persistent class.

328

Initializing collections and proxies

These problems are all due to fundamental limitations in Java's single inheritance model. To
avoid these problems your persistent classes must each implement an interface that declares
its business methods. You should specify these interfaces in the mapping file where Cat | npl
implements the interface Cat and Donest i cCat | npl implements the interface Donest i cCat . For
example:

<cl ass name="Cat|npl" proxy="Cat">
<subcl ass nanme="DonesticCat | npl" proxy="DonesticCat">

</ subcl ass>
</ cl ass>

Then proxies for instances of Cat and Donest i cCat can be returned by | oad() oriterate().

Cat cat = (Cat) session.load(Catlnpl.class, catid);
Iterator iter = session.createQuery("from Catlnpl as cat where cat.nane="fritz'").iterate();
Cat fritz = (Cat) iter.next();

@ Note

l'i st () does not usually return proxies.
Relationships are also lazily initialized. This means you must declare any properties to be of type
Cat, not Cat | npl .

Certain operations do not require proxy initialization:

« equal s() : if the persistent class does not override equal s()
» hashCode() : if the persistent class does not override hashCode()
» The identifier getter method

Hibernate will detect persistent classes that override equal s() or hashCode() .

By choosing | azy="no- proxy" instead of the default | azy="proxy", you can avoid problems
associated with typecasting. However, buildtime bytecode instrumentation is required, and all
operations will result in immediate proxy initialization.

21.1.4. Initializing collections and proxies

A LazylnitializationException will be thrown by Hibernate if an uninitialized collection or
proxy is accessed outside of the scope of the Sessi on, i.e., when the entity owning the collection
or having the reference to the proxy is in the detached state.

329

Chapter 21. Improving performance

Sometimes a proxy or collection needs to be initialized before closing the Sessi on. You can force
initialization by calling cat . get Sex() orcat. getKittens(). si ze(), for example. However, this
can be confusing to readers of the code and it is not convenient for generic code.

The static methods Hi bernate.initialize() and Hi bernate.islnitialized(), provide the
application with a convenient way of working with lazily initialized collections or proxies.
Hi bernate.initialize(cat) will force the initialization of a proxy, cat, as long as its Sessi on is
still open. Hi bernate.initialize(cat.getKittens()) has a similar effect for the collection
of kittens.

Another option is to keep the Sessi on open until all required collections and proxies have
been loaded. In some application architectures, particularly where the code that accesses data
using Hibernate, and the code that uses it are in different application layers or different physical
processes, it can be a problem to ensure that the Sessi on is open when a collection is initialized.
There are two basic ways to deal with this issue:

« In a web-based application, a servlet filter can be used to close the Sessi on only at the end of
a user request, once the rendering of the view is complete (the Open Session in View pattern).
Of course, this places heavy demands on the correctness of the exception handling of your
application infrastructure. It is vitally important that the Sessi on is closed and the transaction
ended before returning to the user, even when an exception occurs during rendering of the view.
See the Hibernate Wiki for examples of this "Open Session in View" pattern.

* In an application with a separate business tier, the business logic must "prepare" all collections
that the web tier needs before returning. This means that the business tier should load all the
data and return all the data already initialized to the presentation/web tier that is required for a
particular use case. Usually, the application calls Hi bernat e. i ni ti al i ze() for each collection
that will be needed in the web tier (this call must occur before the session is closed) or retrieves
the collection eagerly using a Hibernate query with a FETCH clause or a Fet chMbde. JO N in
Cri teri a. Thisis usually easier if you adopt the Command pattern instead of a Session Facade.

« You can also attach a previously loaded object to a new Sessi on with mer ge() orl ock() before
accessing uninitialized collections or other proxies. Hibernate does not, and certainly should
not, do this automatically since it would introduce impromptu transaction semantics.

Sometimes you do not want to initialize a large collection, but still need some information about
it, like its size, for example, or a subset of the data.

You can use a collection filter to get the size of a collection without initializing it:

((Integer) s.createFilter(collection, "select count(*)").list().get(0)).intValue()

The createFil ter() method is also used to efficiently retrieve subsets of a collection without
needing to initialize the whole collection:

330

Using batch fetching

s.createFilter(lazyCollection, "").setFirstResult(0).setMaxResults(10).list()

21.1.5. Using batch fetching

Using batch fetching, Hibernate can load several uninitialized proxies if one proxy is accessed.
Batch fetching is an optimization of the lazy select fetching strategy. There are two ways you can
configure batch fetching: on the class level and the collection level.

Batch fetching for classes/entities is easier to understand. Consider the following example: at
runtime you have 25 Cat instances loaded in a Sessi on, and each Cat has a reference to its owner
a Per son. The Person class is mapped with a proxy, | azy="true". If you now iterate through
all cats and call get Omner () on each, Hibernate will, by default, execute 25 SELECT statements
to retrieve the proxied owners. You can tune this behavior by specifying a bat ch-si ze in the
mapping of Per son:

<cl ass nanme="Person" batch-size="10">...</cl ass>

Hibernate will now execute only three queries: the pattern is 10, 10, 5.

You can also enable batch fetching of collections. For example, if each Per son has alazy collection
of Cat's, and 10 persons are currently loaded in the Sessi on, iterating through all persons will
generate 10 SELECTS, one for every call to get Cat s() . If you enable batch fetching for the cat s
collection in the mapping of Per son, Hibernate can pre-fetch collections:

<cl ass nane="Person">
<set nanme="cats" batch-size="3">

</ set>
</ cl ass>

With a bat ch- si ze of 3, Hibernate will load 3, 3, 3, 1 collections in four SELECTs. Again, the value
of the attribute depends on the expected number of uninitialized collections in a particular Sessi on.

Batch fetching of collections is particularly useful if you have a nested tree of items, i.e. the typical
bill-of-materials pattern. However, a nested set or a materialized path might be a better option
for read-mostly trees.

21.1.6. Using subselect fetching

If one lazy collection or single-valued proxy has to be fetched, Hibernate will load all of them,
re-running the original query in a subselect. This works in the same way as batch-fetching but
without the piecemeal loading.

331

Chapter 21. Improving performance

21.1.7. Fetch profiles

Another way to affect the fetching strategy for loading associated objects is through
something called a fetch profile, which is a named configuration associated with the
or g. hi ber nat e. Sessi onFactory but enabled, by name, on the org. hi bernat e. Sessi on.
Once enabled on a org. hi bernate. Sessi on, the fetch profile will be in affect for that
or g. hi ber nat e. Sessi on until it is explicitly disabled.

So what does that mean? Well lets explain that by way of an example which show the different
available approaches to configure a fetch profile:

Example 21.1. Specifying a fetch profile using @etchprofile

@ntity
@etchProfile(name = "customer-w th-orders", fetchOverrides = {

@etchProfile. FetchOverride(entity = Customner.class, association = "orders", npbde = FetchMdde. JO N)

9]

public class Custoner {
@d
@:ener at edVal ue
private long id;

private String nane;
private | ong custoner Nunber;

@neToMany
private Set<Order> orders;

/1 standard getter/setter

Example 21.2. Specifying afetch profile using <fet ch-profil e>outside <cl ass>
node

<hi ber nat e- mappi ng>
<cl ass nane="Cust oner">

<set nanme="orders" inverse="true">
<key col um="cust _id"/>
<one-to-nmany cl ass="Order"/>
</ set>
</cl ass>
<cl ass nane="Order">
</cl ass>
<fetch-profile nanme="custoner-with-orders">

<fetch entity="Custoner" association="orders" style="join"/>
</fetch-profile>

332

Fetch profiles

</ hi ber nat e- mappi ng>

Example 21.3. Specifying a fetch profile using <fetch-profile> inside <cl ass>
node

<hi ber nat e- mappi ng>
<cl ass nane="Cust oner">

<set name="orders" inverse="true">
<key col um="cust _id"/>
<one-to-nmany cl ass="Order"/>
</ set>
<fetch-profile nanme="custoner-wth-orders">
<fetch association="orders" style="join"/>
</fetch-profile>
</cl ass>
<cl ass name="Order">

</ cl ass>
</ hi ber nat e- mappi ng>

Now normally when you get a reference to a particular customer, that customer's set of orders
will be lazy meaning we will not yet have loaded those orders from the database. Normally this
is a good thing. Now lets say that you have a certain use case where it is more efficient to load
the customer and their orders together. One way certainly is to use "dynamic fetching" strategies
via an HQL or criteria queries. But another option is to use a fetch profile to achieve that. The
following code will load both the customer andtheir orders:

Example 21.4. Activating a fetch profile for a given session

Session session = ...;
sessi on. enabl eFet chProfile("custoner-w th-orders"); // nane matches from mapping
Custoner custoner = (Custoner) session.get(Custoner.class, custonerld);

@ Note

@-etchProfile definitions are global and it does not matter on which class you
place them. You can place the @et chProfi | e annotation either onto a class or
package (package-info.java). In order to define multiple fetch profiles for the same
class or package @et chProfil es can be used.

Currently only join style fetch profiles are supported, but they plan is to support additional
styles. See HHH-3414 [http://opensource.atlassian.com/projects/hibernate/browse/HHH-3414]
for details.

333

http://opensource.atlassian.com/projects/hibernate/browse/HHH-3414
http://opensource.atlassian.com/projects/hibernate/browse/HHH-3414

Chapter 21. Improving performance

21.1.8. Using lazy property fetching

Hibernate3 supports the lazy fetching of individual properties. This optimization technique is also
known as fetch groups. Please note that this is mostly a marketing feature; optimizing row reads is
much more important than optimization of column reads. However, only loading some properties
of a class could be useful in extreme cases. For example, when legacy tables have hundreds of
columns and the data model cannot be improved.

To enable lazy property loading, set the | azy attribute on your particular property mappings:

<cl ass nane="Docunent ">
<id nane="id">
<generator class="native"/>

</id>

<property nanme="nane" not-null="true" |ength="50"/>

<property nanme="summary" not-null="true" |ength="200" |azy="true"/>

<property name="text" not-null="true" |ength="2000" |azy="true"/>
</ cl ass>

Lazy property loading requires buildtime bytecode instrumentation. If your persistent classes are
not enhanced, Hibernate will ignore lazy property settings and return to immediate fetching.

For bytecode instrumentation, use the following Ant task:

<target nanme="instrunent" depends="conpile">
<t askdef name="instrunent" cl assnane="org. hi bernate.tool.instrunment.|nstrunmentTask">
<cl asspath path="${j ar.path}"/>
<cl asspath path="${cl asses.dir}"/>
<cl asspath refid="lib.class.path"/>
</t askdef >

<instrunent verbose="true">
<fileset dir="${testclasses.dir}/org/hibernate/auction/nodel ">
<i nclude name="*.cl ass"/>
</[fileset>
</instrunent >
</target>

A different way of avoiding unnecessary column reads, at least for read-only transactions, is to
use the projection features of HQL or Criteria queries. This avoids the need for buildtime bytecode
processing and is certainly a preferred solution.

You can force the usual eager fetching of properties using fetch al | properties in HQL.

21.2. The Second Level Cache

A Hibernate Sessi on is a transaction-level cache of persistent data. It is possible to configure
a cluster or JVM-level (Sessi onFact ory-level) cache on a class-by-class and collection-by-

334

Cache mappings

collection basis. You can even plug in a clustered cache. Be aware that caches are not aware of
changes made to the persistent store by another application. They can, however, be configured

to regularly expire cached data.

You have the option to tell Hibernate which caching implementation to use by specifying the
name of a class that implements or g. hi ber nat e. cache. CachePr ovi der using the property
hi ber nat e. cache. provi der _cl ass. Hibernate is bundled with a number of built-in integrations
with the open-source cache providers that are listed in Table 21.1, “Cache Providers”. You can
also implement your own and plug it in as outlined above. Note that versions prior to Hibernate
3.2 use EhCache as the default cache provider.

Table 21.1. Cache Providers

Cache Provider class Type Cluster Query
Safe Cache
Supported
Hashtable org. hi ber nat e. cache. Hasht abl eCachePermmoder yes
(not
intended
for
production
use)
EHCache or g. hi ber nat e. cache. EhCachePr ovi dememory, yes yes
disk,
transactional,
clustered
OSCache org. hi bernat e. cache. GSCachePr ovi dememory, yes
disk
SwarmCacheor g. hi ber nat e. cache. Swar nCachePr ovcldstered yes
(ip (clustered
multicast) invalidation)
JBoss or g. hi ber nat e. cache. Tr eeCachePr ovj destered yes yes (clock
Cache 1.x (ip (replication) | sync req.)
multicast),
transactional
JBoss or g. hi ber nat e. cache. j bc. JBossCacheflegteneact oygs yes (clock
Cache 2 (ip (replication | sync req.)
multicast), | or
transactional invalidation)

21.2.1. Cache mappings

As we have done in previous chapters we are looking at the two different possibiltites to configure
caching. First configuration via annotations and then via Hibernate mapping files.

335

Chapter 21. Improving performance

By default, entities are not part of the second level cache and we recommend you to stick to
this setting. However, you can override this by setting the shar ed- cache- node element in your
persi stence. xnl file or by using the j avax. per si st ence. shar edCache. node property in your
configuration. The following values are possible:

e ENABLE_SELECTI VE (Default and recommended value): entities are not cached unless explicitly
marked as cacheable.

« DI SABLE_SELECTI VE: entities are cached unless explicitly marked as not cacheable.
* ALL: all entities are always cached even if marked as non cacheable.

* NONE: no entity are cached even if marked as cacheable. This option can make sense to disable
second-level cache altogether.

The cache concurrency strategy used by default can be set globaly via the
hi ber nat e. cache. def aul t _cache_concurrency_strat egy configuration property. The values
for this property are:

* read-only
e read-wite
e nonstrict-read-wite

e transactional

@ Note

It is recommended to define the cache concurrency strategy per entity rather than
using a global one. Use the @r g. hi ber nat e. annot at i ons. Cache annotation for
that.

Example 21.5. Definition of cache concurrency strategy via @ache

@ntity

@acheabl e

@ache(usage = CacheConcurrencyStrat egy. NONSTRI CT_READ WRI TE)
public class Forest { ... }

Hibernate also let's you cache the content of a collection or the identifiers if the collection contains
other entities. Use the @ache annotation on the collection property.

Example 21.6. Caching collections using annotations

@neToMany(cascade=CascadeType. ALL, fetch=FetchType. EAGER)

336

Cache mappings

@oi nCol um(nane="CUST_I| D")
@ache(usage = CacheConcurrencyStrat egy. NONSTRI CT_READ_WRI TE)
public SortedSet <Ti cket> getTickets() {

return tickets;

}

Example 21.7, “@Cache annotation with attributes”shows the
@r g. hi ber nat e. annot at i ons. Cache annotations with its attributes. It allows you to define the
caching strategy and region of a given second level cache.

Example 21.7. @ache annotation with attributes

@rache(
CacheConcurrencyStrategy usage();

String region() default ""

00

String include() default "all"

€ usage: the given cache concurrency strategy (NONE, READ_ONLY,
NONSTRICT_READ_WRITE, READ_WRITE, TRANSACTIONAL)

€ region (optional): the cache region (default to the fqcn of the class or the fq role name of
the collection)

© incl ude (optional): all to include all properties, non-lazy to only include non lazy properties
(default all).

Let's now take a look at Hibernate mapping files. There the <cache> element of a class or collection
mapping is used to configure the second level cache. Looking at Example 21.8, “The Hibernate
<cache> mapping element” the parallels to anotations is obvious.

Example 21.8. The Hibernate <cache> mapping element

<cache
usage="transacti onal |read-wite|nonstrict-read-wite|read-only"

regi on="Regi onNange"

®0 e

i nclude="al | | non-I| azy"

€ usage (required) specifies the caching strategy: t r ansacti onal , read-wite, nonstrict-
read-witeorread-only

€ region (optional: defaults to the class or collection role name): specifies the name of the
second level cache region

€ incl ude (optional: defaults to al |) non- | azy: specifies that properties of the entity mapped
with | azy="true" cannot be cached when attribute-level lazy fetching is enabled

337

Chapter 21. Improving performance

Alternatively to <cache>, you can use <cl ass- cache> and <col | ecti on- cache> elements in
hi bernate. cfg. xm .

Let's now have a closer look at the different usage strategies

21.2.2. Strategy: read only

If your application needs to read, but not modify, instances of a persistent class, a read-only
cache can be used. This is the simplest and optimal performing strategy. It is even safe for use
in a cluster.

21.2.3. Strategy: read/write

If the application needs to update data, a read-wite cache might be appropriate.
This cache strategy should never be used if serializable transaction isolation level is
required. If the cache is used in a JTA environment, you must specify the property
hi ber nate. transacti on. manager _| ookup_cl ass and naming a strategy for obtaining the JTA
Transact i onManager . In other environments, you should ensure that the transaction is completed
when Sessi on. cl ose() or Sessi on. di sconnect () is called. If you want to use this strategy in a
cluster, you should ensure that the underlying cache implementation supports locking. The built-
in cache providers do not support locking.

21.2.4. Strategy: nonstrict read/write

If the application only occasionally needs to update data (i.e. if it is extremely unlikely that two
transactions would try to update the same item simultaneously), and strict transaction isolation
is not required, a nonstrict-read-wite cache might be appropriate. If the cache is used in a
JTA environment, you must specify hi ber nat e. t r ansact i on. manager _| ookup_cl ass. In other
environments, you should ensure that the transaction is completed when Sessi on. cl ose() or
Sessi on. di sconnect () is called.

21.2.5. Strategy: transactional

The transacti onal cache strategy provides support for fully transactional cache providers such
as JBoss TreeCache. Such a cache can only be used in a JTA environment and you must specify
hi ber nat e. t ransacti on. manager _| ookup_cl ass.

21.2.6. Cache-provider/concurrency-strategy compatibility

e | Important

None of the cache providers support all of the cache concurrency strategies.

The following table shows which providers are compatible with which concurrency strategies.

338

Managing the caches

Table 21.2. Cache Concurrency Strategy Support

Cache read-only nonstrict-read- read-write transactional
write
Hashtable (not yes yes yes

intended for
production use)

EHCache yes yes yes yes
OSCache yes yes yes

SwarmCache yes yes

JBoss Cache 1.x | yes yes
JBoss Cache 2 | yes yes

21.3. Managing the caches

Whenever you pass an object to save(), update() or saveO Updat e(), and whenever you
retrieve an object using | oad(), get(),list(),iterate() orscroll (), that object is added to
the internal cache of the Sessi on.

When flush() is subsequently called, the state of that object will be synchronized with the
database. If you do not want this synchronization to occur, or if you are processing a huge number
of objects and need to manage memory efficiently, the evi ct () method can be used to remove
the object and its collections from the first-level cache.

Example 21.9. Explcitly evicting a cached instance from the first level cache
using Sessi on. evi ct ()

Scrol | abl eResult cats = sess.createQuery("from Cat as cat").scroll(); //a huge result set
while (cats.next()) {

Cat cat = (Cat) cats.get(0);

doSonet hi ngW t hACat (cat) ;

sess. evict(cat);

The Sessi on also provides a cont ai ns() method to determine if an instance belongs to the
session cache.

To evict all objects from the session cache, call Sessi on. cl ear ()

For the second-level cache, there are methods defined on Sessi onFactory for evicting the
cached state of an instance, entire class, collection instance or entire collection role.

339

Chapter 21. Improving performance

Example 21.10. Second-level cache eviction via SessionFactoty.evict() and

Sessi onFacyory. evi ct Col | ection()

sessionFactory.evict(Cat.class, catld); //evict a particular Cat
sessionFactory.evict(Cat.class); //evict all Cats

sessi onFactory. evictCol | ection("Cat.kittens", catld); //evict a particular collection of kittens
sessionFactory.evictColl ection("Cat.kittens"); //evict all kitten collections

The CacheMde controls how a particular session interacts with the second-level cache:

e CacheMode. NORMAL: will read items from and write items to the second-level cache

e CacheMode. GET: will read items from the second-level cache. Do not write to the second-level
cache except when updating data

* CacheMode. PUT: will write items to the second-level cache. Do not read from the second-level
cache

¢ CacheMdde. REFRESH: will write items to the second-level cache. Do not read from the second-
level cache. Bypass the effect of hi ber nat e. cache. use_ni ni mal _put s forcing a refresh of the
second-level cache for all items read from the database

To browse the contents of a second-level or query cache region, use the St ati sti cs API:
Example 21.11. Browsing the second-level cache entries via the statistics

API

Map cacheEntries = sessionFactory.getStatistics()
. get SecondLevel CacheSt ati sti cs(regi onNane)
.getEntries();

You will need to enable statistics and, optionally, force Hibernate to keep the cache entries in a
more readable format:

Example 21.12. Enabling Hibernate statistics

hi bernat e. generate_statistics true
hi ber nat e. cache. use_structured_entries true

21.4. The Query Cache

Query result sets can also be cached. This is only useful for queries that are run frequently with
the same parameters.

340

Enabling query caching

21.4.1. Enabling query caching

Caching of query results introduces some overhead in terms of your applications normal
transactional processing. For example, if you cache results of a query against Person Hibernate
will need to keep track of when those results should be invalidated because changes have been
committed against Person. That, coupled with the fact that most applications simply gain no benefit
from caching query results, leads Hibernate to disable caching of query results by default. To use
query caching, you will first need to enable the query cache:

hi ber nat e. cache. use_query_cache true

This setting creates two new cache regions:

e org. hi bernat e. cache. St andar dQuer yCache, holding the cached query results

* org. hi bernat e. cache. Updat eTi nest anpsCache, holding timestamps of the most recent
updates to queryable tables. These are used to validate the results as they are served from
the query cache.

o | Important

If you configure your underlying cache implementation to use expiry or timeouts
is very important that the cache timeout of the underlying cache region for the
UpdateTimestampsCache be set to a higher value than the timeouts of any of the
query caches. In fact, we recommend that the the Update TimestampsCache region
not be configured for expiry at all. Note, in particular, that an LRU cache expiry
policy is never appropriate.

As mentioned above, most queries do not benefit from caching or their results. So by default,
individual queries are not cached even after enabling query caching. To enable results caching for
a particular query, call or g. hi ber nat e. Query. set Cacheabl e(true). This call allows the query
to look for existing cache results or add its results to the cache when it is executed.

@ Note

The query cache does not cache the state of the actual entities in the cache; it
caches only identifier values and results of value type. For this reaso, the query
cache should always be used in conjunction with the second-level cache for those
entities expected to be cached as part of a query result cache (just as with collection
caching).

341

Chapter 21. Improving performance

21.4.2. Query cache regions

If you require fine-grained control over query cache expiration policies, you can specify a named
cache region for a particular query by calling Query. set CacheRegi on() .

Li st bl ogs = sess.createQery("from Bl og bl og where bl og. bl ogger = :bl ogger")
.setEntity("bl ogger", blogger)
. set MaxResul t s(15)
. set Cacheabl e(true)
. set CacheRegi on("front pages")
ist();

If you want to force the query cache to refresh one of its regions (disregard any cached
results it finds there) you can use or g. hi ber nat e. Query. set CacheMbde(CacheMde. REFRESH) .
In conjunction with the region you have defined for the given query, Hibernate will selectively force
the results cached in that particular region to be refreshed. This is particularly useful in cases
where underlying data may have been updated via a separate process and is a far more efficient
alternative to bulk eviction of the region via or g. hi ber nat e. Sessi onFact ory. evi ct Queri es().

21.5. Understanding Collection performance

In the previous sections we have covered collections and their applications. In this section we
explore some more issues in relation to collections at runtime.

21.5.1. Taxonomy

Hibernate defines three basic kinds of collections:

* collections of values
* one-to-many associations
* many-to-many associations

This classification distinguishes the various table and foreign key relationships but does not tell
us quite everything we need to know about the relational model. To fully understand the relational
structure and performance characteristics, we must also consider the structure of the primary
key that is used by Hibernate to update or delete collection rows. This suggests the following
classification:

» indexed collections
» sets
* bags

All indexed collections (maps, lists, and arrays) have a primary key consisting of the <key> and
<i ndex> columns. In this case, collection updates are extremely efficient. The primary key can be

342

Lists, maps, idbags and sets are the most efficient collections to update

efficiently indexed and a particular row can be efficiently located when Hibernate tries to update
or delete it.

Sets have a primary key consisting of <key> and element columns. This can be less efficient for
some types of collection element, particularly composite elements or large text or binary fields, as
the database may not be able to index a complex primary key as efficiently. However, for one-to-
many or many-to-many associations, particularly in the case of synthetic identifiers, it is likely to
be just as efficient. If you want SchemaExport to actually create the primary key of a <set >, you
must declare all columns as not - nul | ="t rue".

<i dbag> mappings define a surrogate key, so they are efficient to update. In fact, they are the
best case.

Bags are the worst case since they permit duplicate element values and, as they have no index
column, no primary key can be defined. Hibernate has no way of distinguishing between duplicate
rows. Hibernate resolves this problem by completely removing in a single DELETE and recreating
the collection whenever it changes. This can be inefficient.

For a one-to-many association, the "primary key" may not be the physical primary key of the
database table. Even in this case, the above classification is still useful. It reflects how Hibernate
"locates" individual rows of the collection.

21.5.2. Lists, maps, idbags and sets are the most efficient
collections to update

From the discussion above, it should be clear that indexed collections and sets allow the most
efficient operation in terms of adding, removing and updating elements.

There is, arguably, one more advantage that indexed collections have over sets for many-to-many
associations or collections of values. Because of the structure of a Set , Hibernate does not UPDATE
a row when an element is "changed". Changes to a Set always work via | NSERT and DELETE of
individual rows. Once again, this consideration does not apply to one-to-many associations.

After observing that arrays cannot be lazy, you can conclude that lists, maps and idbags are the
most performant (non-inverse) collection types, with sets not far behind. You can expect sets to be
the most common kind of collection in Hibernate applications. This is because the "set" semantics
are most natural in the relational model.

However, in well-designed Hibernate domain models, most collections are in fact one-to-many
associations with i nver se="t r ue". For these associations, the update is handled by the many-
to-one end of the association, and so considerations of collection update performance simply do
not apply.

21.5.3. Bags and lists are the most efficient inverse collections

There is a particular case, however, in which bags, and also lists, are much more performant than
sets. For a collection with i nver se="t rue", the standard bidirectional one-to-many relationship

343

Chapter 21. Improving performance

idiom, for example, we can add elements to a bag or list without needing to initialize (fetch) the
bag elements. This is because, unlike a set, Col | ecti on. add() or Col | ecti on. addAl | () must
always return true for a bag or Li st . This can make the following common code much faster:

Parent p = (Parent) sess.load(Parent.class, id);

Child ¢ = new Child();

c.setParent(p);

p. get Children().add(c); //no need to fetch the collection!
sess. flush();

21.5.4. One shot delete

Deleting collection elements one by one can sometimes be extremely inefficient. Hibernate knows
not to do that in the case of an newly-empty collection (if you called | i st . cl ear (), for example).
In this case, Hibernate will issue a single DELETE.

Suppose you added a single element to a collection of size twenty and then remove two elements.
Hibernate will issue one | NSERT statement and two DELETE statements, unless the collection is
a bag. This is certainly desirable.

However, suppose that we remove eighteen elements, leaving two and then add thee new
elements. There are two possible ways to proceed

« delete eighteen rows one by one and then insert three rows

« remove the whole collection in one SQL DELETE and insert all five current elements one by one

Hibernate cannot know that the second option is probably quicker. It would probably be
undesirable for Hibernate to be that intuitive as such behavior might confuse database triggers,
etc.

Fortunately, you can force this behavior (i.e. the second strategy) at any time by discarding (i.e.
dereferencing) the original collection and returning a newly instantiated collection with all the
current elements.

One-shot-delete does not apply to collections mapped i nver se="true".

21.6. Monitoring performance

Optimization is not much use without monitoring and access to performance numbers. Hibernate
provides a full range of figures about its internal operations. Statistics in Hibernate are available
per Sessi onFact ory.

21.6.1. Monitoring a SessionFactory

You can access SessionFactory metrics in two ways. Your first option is to call
sessi onFactory. get Stati stics() and read or display the St ati sti cs yourself.

344

Metrics

Hibernate can also use JMX to publish metrics if you enable the St ati sti csServi ce MBean.
You can enable a single MBean for all your Sessi onFact or y or one per factory. See the following
code for minimalistic configuration examples:

/1 MBean service registration for a specific SessionFactory

Hashtabl e tb = new Hashtabl e();

tb. put ("type", "statistics");

tb. put ("sessi onFactory", "nyFinanci al App");

Obj ect Nane on = new Obj ect Nane(" hi bernate", tb); // MBean object nane

StatisticsService stats = new StatisticsService(); // Mean inplenentation

stats. set Sessi onFact ory(sessionFactory); // Bind the stats to a SessionFactory
server.registerMBean(stats, on); // Register the Mean on the server

/1 MBean service registration for all SessionFactory's

Hashtabl e tb = new Hashtabl e();

tb. put ("type", "statistics");

tb. put ("sessi onFactory", "all");

Obj ect Nane on = new Obj ect Name(" hi bernate", tb); // MBean object nane

StatisticsService stats = new StatisticsService(); // Mean inplenentation
server.regi sterMBean(stats, on); // Register the MBean on the server

You can activate and deactivate the monitoring for a Sessi onFact ory:

« at configuration time, set hi ber nat e. generate_stati stics tofal se

e at runtime: sf.getStatistics().setStatisticsEnabl ed(true) or
hi ber nat eSt at sBean. set St ati sti csEnabl ed(true)

Statistics can be reset programmatically using the cl ear () method. A summary can be sent to
a logger (info level) using the | ogSummar y() method.

21.6.2. Metrics

Hibernate provides a number of metrics, from basic information to more specialized information
that is only relevant in certain scenarios. All available counters are described in the St ati sti cs
interface API, in three categories:

» Metrics related to the general Sessi on usage, such as number of open sessions, retrieved
JDBC connections, etc.

» Metrics related to the entities, collections, queries, and caches as a whole (aka global metrics).
» Detailed metrics related to a particular entity, collection, query or cache region.

For example, you can check the cache hit, miss, and put ratio of entities, collections and queries,
and the average time a query needs. Be aware that the number of milliseconds is subject to

345

Chapter 21. Improving performance

approximation in Java. Hibernate is tied to the JVM precision and on some platforms this might
only be accurate to 10 seconds.

Simple getters are used to access the global metrics (i.e. not tied to a particular entity, collection,
cache region, etc.). You can access the metrics of a particular entity, collection or cache region
through its name, and through its HQL or SQL representation for queries. Please refer to the
Statistics,EntityStatistics,CollectionStatistics,SecondLevel CacheStatistics,and
QueryStati stics API Javadoc for more information. The following code is a simple example:

Statistics stats = Hibernateltil.sessionFactory.getStatistics();

doubl e queryCacheHit Count = stats.getQueryCacheHitCount();
doubl e queryCacheM ssCount = stats.get QueryCacheM ssCount () ;
doubl e queryCacheHitRatio =
quer yCacheHi t Count / (queryCacheHi t Count + queryCacheM ssCount);

log.info("Query Hit ratio:" + queryCacheHitRatio);

EntityStatistics entityStats =
stats.getEntityStatistics(Cat.class.getNane());
| ong changes =
entityStats. getlnsertCount()
+ entityStats. get Updat eCount ()
+ entityStats. getDel et eCount ();
log.info(Cat.class.getName() + " changed " + changes + "tinmes");

You can work on all entities, collections, queries and region caches, by retrieving the list of names
of entities, collections, queries and region caches using the following methods: get Queri es(),
get EntityNames(), get Col | ecti onRol eNames(), and get SecondLevel CacheRegi onNames() .

346

Chapter 22.

Toolset Guide

Roundtrip engineering with Hibernate is possible using a set of Eclipse plugins, commandline
tools, and Ant tasks.

Hibernate Tools currently include plugins for the Eclipse IDE as well as Ant tasks for reverse
engineering of existing databases:

« Mapping Editor: an editor for Hibernate XML mapping files that supports auto-completion and
syntax highlighting. It also supports semantic auto-completion for class names and property/
field names, making it more versatile than a normal XML editor.

» Console: the console is a new view in Eclipse. In addition to a tree overview of your console
configurations, you are also provided with an interactive view of your persistent classes and
their relationships. The console allows you to execute HQL queries against your database and
browse the result directly in Eclipse.

» Development Wizards: several wizards are provided with the Hibernate Eclipse tools. You can
use a wizard to quickly generate Hibernate configuration (cfg.xml) files, or to reverse engineer
an existing database schema into POJO source files and Hibernate mapping files. The reverse
engineering wizard supports customizable templates.

Please refer to the Hibernate Tools package documentation for more information.

However, the Hibernate main package comes bundled with an integrated tool : SchemaExport
aka hbnddl .It can even be used from "inside" Hibernate.

22.1. Automatic schema generation

DDL can be generated from your mapping files by a Hibernate utility. The generated schema
includes referential integrity constraints, primary and foreign keys, for entity and collection tables.
Tables and sequences are also created for mapped identifier generators.

You must specify a SQL Di al ect via the hi ber nat e. di al ect property when using this tool, as
DDL is highly vendor-specific.

First, you must customize your mapping files to improve the generated schema. The next section
covers schema customization.

22.1.1. Customizing the schema

Many Hibernate mapping elements define optional attributes named | engt h, preci si on and
scal e. You can set the length, precision and scale of a column with this attribute.

<property name="zip" |ength="5"/>

347

Chapter 22. Toolset Guide

<property nanme="bal ance" precision="12" scal e="2"/>

Some tags also accept a not-nul | attribute for generating a NOT NULL constraint on table
columns, and a uni que attribute for generating UNI QUE constraint on table columns.

<many-to-one name="bar" col um="barld" not-null="true"/>

<el enent col um="seri al Nunber" type="long" not-null="true" uni que="true"/>

A uni que- key attribute can be used to group columns in a single, unique key constraint. Currently,
the specified value of the uni que- key attribute is not used to name the constraint in the generated
DDL. It is only used to group the columns in the mapping file.

<many-to-one nane="org" colum="orgld" uni que-key="0O gEnpl oyeel d"/ >
<property nanme="enpl oyeel d" uni que- key="0Or gEnpl oyee"/ >

An i ndex attribute specifies the name of an index that will be created using the mapped column
or columns. Multiple columns can be grouped into the same index by simply specifying the same
index name.

<property nanme="| ast Name" i ndex="Cust Nane"/>
<property name="firstName" index="Cust Nane"/>

Af or ei gn- key attribute can be used to override the name of any generated foreign key constraint.

<many-to-one name="bar" col um="barld" foreign-key="FKFooBar"/>

Many mapping elements also accept a child <col um> element. This is particularly useful for
mapping multi-column types:

<property nanme="nane" type="ny.custontypes. Nane"/>
<col umm nane="last" not-null="true" index="bar_idx" |ength="30"/>
<col um nanme="first" not-null="true" index="bar_idx" |ength="20"/>
<col um name="initial"/>

</ property>

The def aul t attribute allows you to specify a default value for a column.You should assign the
same value to the mapped property before saving a new instance of the mapped class.

348

Customizing the schema

<property nanme="credits" type="integer" insert="false">
<col um name="credits" default="10"/>
</ property>

<versi on nanme="version" type="integer" insert="fal se">
<col um nane="version" defaul t="0"/>
</ property>

The sql -t ype attribute allows the user to override the default mapping of a Hibernate type to
SQL datatype.

<property nanme="bal ance" type="float">
<col um nane="bal ance" sql -type="deci mal (13,3)"/>
</ property>

The check attribute allows you to specify a check constraint.

<property name="foo" type="integer">
<col um nane="foo" check="foo > 10"/>
</ property>

<cl ass nane="Foo" table="foos" check="bar < 100.0">

<property nane="bar" type="float"/>
</ cl ass>

The following table summarizes these optional attributes.

Table 22.1. Summary

Attribute Values Interpretation

| engt h number column length

preci si on number column decimal precision

scal e number column decimal scale

not - nul | true|fal se specifies that the column should be non-nullable

uni que true|fal se specifies that the column should have a unique
constraint

i ndex i ndex_nane specifies the name of a (multi-column) index

uni que- key

uni que_key_nane

specifies the name of a multi-column unique
constraint

349

Chapter 22. Toolset Guide

Attribute Values Interpretation

f or ei gn- key f orei gn_key_nane | specifies the name of the foreign key constraint
generated for an association, for a <one-to-
one>, <mmny-t o- one>, <key>, Or <many-t o- many>
mapping element. Note that i nver se="true" sides
will not be considered by SchemaExport .

sql -type SQL columm type |overrides the default column type (attribute of
<col um> element only)

def aul t SQL expression specify a default value for the column
check SQL expression create an SQL check constraint on either column or
table

The <conment > element allows you to specify comments for the generated schema.

<cl ass nane="Custoner" tabl e="CurCust">
<comment >Current custoners onl y</comment >

</cl ass>

<property nanme="bal ance" >
<col um nane="bal ">
<coment >Bal ance i n USD</ conment >
</ col um>
</ property>

This results in a conment on tabl e or conment on col um statement in the generated DDL
where supported.

22.1.2. Running the tool
The SchemaExport tool writes a DDL script to standard out and/or executes the DDL statements.
The following table displays the SchenaExport command line options

java -cp hibernate_classpaths org. hi bernate. t ool . hbn2ddl . SchemaExport options
mapping_files

Table 22.2. schemaexport Command Line Options

Option Description

--qui et do not output the script to stdout
--drop only drop the tables

--create only create the tables

350

Properties

Option Description

--text do not export to the database

- - out put =ny_schena. ddl output the ddl script to a file

- - nam ng=eg. MyNam ngSt r at egy select a Nani ngSt r at egy

--confi g=hi bernate. cfg. xm read Hibernate configuration from an XML file

-- read database properties from a file
properti es=hi bernate. properties

--for mat format the generated SQL nicely in the script

--delimter=; set an end of line delimiter for the script

You can even embed SchemaExport in your application:

Configuration cfg =;
new SchemaExport (cfg).create(fal se, true)

22.1.3. Properties

Database properties can be specified:
 as system properties with - D<property>

e inhi bernate. properties
 in a named properties file with - - properti es

The needed properties are:

Table 22.3. SchemaExport Connection Properties

Property Name Description

hi ber nat e. connecti on. dri ver _cl ass| jdbc driver class

hi ber nat e. connecti on. ur| jdbc url
hi ber nat e. connecti on. user nane database user
hi ber nat e. connect i on. passwor d user password
hi ber nat e. di al ect dialect

22.1.4. Using Ant

You can call SchemaExport from your Ant build script:

<target nanme="schenmexport">
<t askdef name="schenmaexport"
cl assnane="or g. hi ber nat e. t ool . hbn2ddl . SchemaExport Task"

351

Chapter 22. Toolset Guide

cl asspat href ="cl ass. path"/ >

<schenmaexport
properties="hi bernate. properties”
qui et ="no"
text="no"
dr op="no"
delimter=";"
out put =" schema- export.sql ">
<fileset dir="src">

<i ncl ude name="**/*_hbm xm "/>

</fileset>

</ schenmaexport >

</target>

22.1.5. Incremental schema updates

The SchenaUpdat e tool will update an existing schema with "incremental" changes. The
SchemaUpdat e depends upon the JDBC metadata APl and, as such, will not work with all JDBC
drivers.

java -cp hibernate_classpaths org. hi bernate. t ool . hbn2ddl . SchemaUpdat e options
mapping_files

Table 22.4. schemaUpdate Command Line Options

Option Description

--qui et do not output the script to stdout
--text do not export the script to the database
- - nam ng=eg. MyNanmi ngSt r at egy select a Nani ngSt r at egy

-- read database properties from a file
properti es=hi bernate. properties

--confi g=hi bernate. cf g. xm specify a . cfg. xnl file

You can embed SchenaUpdat e in your application:

Configuration cfg =
new SchemaUpdat e(cf g) . execut e(fal se)

22.1.6. Using Ant for incremental schema updates

You can call SchemaUpdat e from the Ant script:

<target nanme="schenaupdate">
<t askdef name="schenmaupdat e"
cl assnane="or g. hi ber nat e. t ool . hbn2ddl . SchemaUpdat eTask"

352

Schema validation

cl asspat href ="cl ass. path"/ >

<schenmaupdat e
properties="hi bernate. properties”
qui et ="no" >
<fileset dir="src">

<include name="**/*_hbm xm "/ >
</[fileset>

</ schenaupdat e>

</target>

22.1.7. Schema validation

The SchenaVal i dator tool will validate that the existing database schema "matches" your
mapping documents. The SchenmaVval i dat or depends heavily upon the JDBC metadata API and,
as such, will not work with all JDBC drivers. This tool is extremely useful for testing.

java -cp hibernate_classpaths org. hi ber nate. t ool . hbnRddl . SchemaVval i dat or options
mapping_files

The following table displays the SchenaVval i dat or command line options:

Table 22.5. schemaval i dat or Command Line Options

Option Description

- - nam ng=eg. MyNami ngSt r at egy select a Nani ngSt r at egy

-- read database properties from a file
properti es=hi bernate. properties

--confi g=hi bernate. cf g. xnm specify a . cfg. xnl file

You can embed SchemaVval i dat or in your application:

Configuration cfg =;
new SchemaVal i dator (cfg).validate();

22.1.8. Using Ant for schema validation

You can call SchemaVval i dat or from the Ant script:

<target nanme="schenaval i date">
<t askdef name="schenaval i dator"
cl assname="or g. hi ber nat e. t ool . hbn2dd| . SchenaVal i dat or Task"
cl asspat href ="cl ass. path"/ >

<schenaval i dat or
properties="hi bernate. properties">
<fileset dir="src">
<include name="**/*_hbm xm "/ >

353

Chapter 22. Toolset Guide

</fileset>
</ schenmaval i dat or >
</target>

354

Chapter 23.

Additional modules

Hibernate Core also offers integration with some external modules/projects. This includes
Hibernate Validator the reference implementation of Bean Validation (JSR 303) and Hibernate
Search.

23.1. Bean Validation

Bean Validation standardizes how to define and declare domain model level constraints. You can,
for example, express that a property should never be null, that the account balance should be
strictly positive, etc. These domain model constraints are declared in the bean itself by annotating
its properties. Bean Validation can then read them and check for constraint violations. The
validation mechanism can be executed in different layers in your application without having to
duplicate any of these rules (presentation layer, data access layer). Following the DRY principle,
Bean Validation and its reference implementation Hibernate Validator has been designed for that
purpose.

The integration between Hibernate and Bean Validation works at two levels. First, it is able to
check in-memory instances of a class for constraint violations. Second, it can apply the constraints
to the Hibernate metamodel and incorporate them into the generated database schema.

Each constraint annotation is associated to a validator implementation responsible for checking
the constraint on the entity instance. A validator can also (optionally) apply the constraint to the
Hibernate metamodel, allowing Hibernate to generate DDL that expresses the constraint. With
the appropriate event listener, you can execute the checking operation on inserts, updates and
deletes done by Hibernate.

When checking instances at runtime, Hibernate Validator returns information about
constraint violations in a set of ConstraintViol ations. Among other information, the
Constrai nt Vi ol ati on contains an error description message that can embed the parameter
values bundle with the annotation (eg. size limit), and message strings that may be externalized
to a Resour ceBundl e.

23.1.1. Adding Bean Validation

To enable Hibernate's Bean Validation integration, simply add a Bean Validation provider
(preferably Hibernate Validation 4) on your classpath.

23.1.2. Configuration

By default, no configuration is necessary.

The Def aul t group is validated on entity insert and update and the database model is updated
accordingly based on the Def aul t group as well.

355

Chapter 23. Additional modules

You can customize the Bean Validation integration by setting the validation mode. Use
the javax. persistence. validation. node property and set it up for example in your
persi stence. xm file or your hi ber nat e. cf g. xm file. Several options are possible:

e aut o (default): enable integration between Bean Validation and Hibernate (callback and ddl
generation) only if Bean Validation is present in the classpath.

* none: disable all integration between Bean Validation and Hibernate

« cal | back: only validate entities when they are either inserted, updated or deleted. An exception
is raised if no Bean Validation provider is present in the classpath.

 ddl : only apply constraints to the database schema when generated by Hibernate. An exception
is raised if no Bean Validation provider is present in the classpath. This value is not defined by
the Java Persistence spec and is specific to Hibernate.

@ Note

You can use both cal | back and ddI together by setting the property to cal | back,
dl |

<persi stence ...>
<persi stence-unit ...>

<properties>
<property nanme="j avax. persi stence. val i dati on. node"
val ue="cal | back, ddl"/>
</ properties>
</ persi stence-unit>
</ per si st ence>

This is equivalent to aut o except that if no Bean Validation provider is present, an
exception is raised.

If you want to validate different groups during insertion, update and deletion, use:

e javax. persi stence. val i dati on. group. pre-persist: groups validated when an entity is
about to be persisted (default to Def aul t)

e javax. persi stence. val i dati on. group. pre-updat e: groups validated when an entity is
about to be updated (default to Def aul t)

e javax. persistence. validation. group. pre-renove: groups validated when an entity is
about to be deleted (default to no group)

e org. hi bernate. val i dat or. group. ddl : groups considered when applying constraints on the
database schema (default to Def aul t)

356

Catching violations

Each property accepts the fully qualified class names of the groups validated separated by a
comma (,)

Example 23.1. Using custom groups for validation

<persi stence ...>
<persi stence-unit ...>

<properties>
<property nanme="javax. persi stence. val i dation. group. pre-update"
val ue="j avax. val i dati on. group. Default, com acne. group. Strict"/>
<property nane="javax. persi stence. validation.group.pre-renove"
val ue="com acne. group. OnDel ete"/ >
<property nane="org. hi bernate. val i dator.group. ddl"
val ue="com acne. group. DDL"/ >
</ properties>
</ persi stence-uni t >
</ persi st ence>

@ Note

You can set these properties in hi ber nat e. cf g. xn , hi ber nat e. properti es or
programmatically.

23.1.3. Catching violations

If an entity is found to be invalid, the list of constraint violations is propagated by the
Constrai nt Vi ol ati onExcept i on which exposes the set of Const rai nt Vi ol ati ons.

This exception is wrapped in a Rol | backExcept i on when the violation happens at commit time.
Otherwise the Const r ai nt Vi ol ati onExcept i on is returned (for example when calling f I ush() .
Note that generally, catchable violations are validated at a higher level (for example in Seam /
JSF 2 via the JSF - Bean Validation integration or in your business layer by explicitly calling Bean
Validation).

An application code will rarely be looking for a Constrai nt Vi ol ati onExcepti on raised by
Hibernate. This exception should be treated as fatal and the persistence context should be
discarded (Enti t yManager or Sessi on).

23.1.4. Database schema

Hibernate uses Bean Validation constraints to generate an accurate database schema:

e @\ot Nul | leads to a not null column (unless it conflicts with components or table inheritance)

e @i ze. max leads to a var char (max) definition for Strings

357

Chapter 23. Additional modules

@ n, @hx lead to column checks (like val ue <= max)

e @i gits leads to the definition of precision and scale (ever wondered which is which? It's easy
now with @i gits :))

These constraints can be declared directly on the entity properties or indirectly by using constraint
composition.

For more information check the Hibernate Validator reference documentation [http://
docs.jboss.org/hibernate/stable/validator/reference/en-US/html/].

23.2. Hibernate Search

23.2.1. Description

Full text search engines like Apache Lucene™ are a very powerful technology to bring free text/
efficient queries to applications. If suffers several mismatches when dealing with a object domain
model (keeping the index up to date, mismatch between the index structure and the domain model,
querying mismatch...) Hibernate Search indexes your domain model thanks to a few annotations,
takes care of the database / index synchronization and brings you back regular managed objects
from free text queries. Hibernate Search is using Apache Lucene [http://lucene.apache.org] under
the cover.

23.2.2. Integration with Hibernate Annotations

Hibernate Search integrates with Hibernate Core transparently provided that the Hibernate Search
jar is present on the classpath. If you do not wish to automatically register Hibernate Search event
listeners, you can set hi ber nat e. search. aut oregi ster_| i steners to false. Such a need is
very uncommon and not recommended.

Check the Hibernate Search reference documentation [http://docs.jboss.org/hibernate/stable/
search/reference/en-US/html/] for more information.

358

http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/
http://docs.jboss.org/hibernate/stable/validator/reference/en-US/html/
http://lucene.apache.org
http://lucene.apache.org
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html/
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html/
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html/

Chapter 24.

Example: Parent/Child

One of the first things that new users want to do with Hibernate is to model a parent/child
type relationship. There are two different approaches to this. The most convenient approach,
especially for new users, is to model both Par ent and Chi | d as entity classes with a <one-t o-
many> association from Parent to Chi | d. The alternative approach is to declare the Child as
a <conposi t e- el enent >. The default semantics of a one-to-many association in Hibernate are
much less close to the usual semantics of a parent/child relationship than those of a composite
element mapping. We will explain how to use a bidirectional one-to-many association with
cascades to model a parent/child relationship efficiently and elegantly.

24.1. A note about collections

Hibernate collections are considered to be a logical part of their owning entity and not of the
contained entities. Be aware that this is a critical distinction that has the following consequences:

« When you remove/add an object from/to a collection, the version number of the collection owner
is incremented.

« If an object that was removed from a collection is an instance of a value type (e.g. a composite
element), that object will cease to be persistent and its state will be completely removed from
the database. Likewise, adding a value type instance to the collection will cause its state to be
immediately persistent.

» Conversely, if an entity is removed from a collection (a one-to-many or many-to-many
association), it will not be deleted by default. This behavior is completely consistent; a change
to the internal state of another entity should not cause the associated entity to vanish. Likewise,
adding an entity to a collection does not cause that entity to become persistent, by default.

Adding an entity to a collection, by default, merely creates a link between the two entities.
Removing the entity will remove the link. This is appropriate for all sorts of cases. However, it is
not appropriate in the case of a parent/child relationship. In this case, the life of the child is bound
to the life cycle of the parent.

24.2. Bidirectional one-to-many

Suppose we start with a simple <one- t o- many> association from Par ent to Chi | d.

<set name="children">
<key col um="parent_id"/>
<one-to-many class="Child"/>
</ set>

If we were to execute the following code:

359

Chapter 24. Example: Parent/Child

Parent p = ;
Child ¢ = new Child()
p. get Chil dren(). add(c)
sessi on. save(c);
session. flush();

Hibernate would issue two SQL statements:

¢ an | NSERT to create the record for c
e an UPDATE to create the link fromp to ¢

This is not only inefficient, but also violates any NOT NULL constraint on the parent _i d column.
You can fix the nullability constraint violation by specifying not - nul | ="t rue" in the collection

mapping:

<set nane="children">
<key columm="parent _id" not-null="true"/>
<one-to-nmany cl ass="Child"/>

</ set>

However, this is not the recommended solution.

The underlying cause of this behavior is that the link (the foreign key par ent _i d) from p to c is
not considered part of the state of the Chi | d object and is therefore not created in the | NSERT.
The solution is to make the link part of the Chi | d mapping.

<many-to-one nanme="parent" col um="parent_id" not-null="true"/>

You also need to add the par ent property to the Chi | d class.

Now that the Chi | d entity is managing the state of the link, we tell the collection not to update the
link. We use the i nver se attribute to do this:

<set nanme="children" inverse="true">
<key col um="parent_id"/>
<one-to-many class="Child"/>
</set>

The following code would be used to add a new Chi | d:

Parent p = (Parent) session.load(Parent.class, pid);
Child ¢ = new Child()
c.setParent (p);

360

Cascading life cycle

p. get Chil dren().add(c);
sessi on. save(c);
session. flush();

Only one SQL | NSERT would now be issued.

You could also create an add¢Chi | d() method of Par ent .

public void addChild(Child c) {
c.setParent(this);
chil dren. add(c);

The code to add a Chi | d looks like this:

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child();

p. addChi l d(c);

sessi on. save(c);

session. flush();

24.3. Cascading life cycle

You can address the frustrations of the explicit call to save() by using cascades.

<set nanme="children" inverse="true" cascade="all">
<key colum="parent_id"/>
<one-to-many class="Child"/>

</set>

This simplifies the code above to:

Parent p = (Parent) session.load(Parent.class, pid);
Child ¢ = new Child();

p. addChi l d(c);

session. flush();

Similarly, we do not need to iterate over the children when saving or deleting a Parent. The
following removes p and all its children from the database.

Parent p = (Parent) session.|oad(Parent.class, pid);
session. del ete(p);
session. flush();

361

Chapter 24. Example: Parent/Child

However, the following code:

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p. get Chil dren().renove(c);

c.setParent (null);

session. flush();

will not remove c from the database. In this case, it will only remove the link to p and cause a NOT
NULL constraint violation. You need to explicitly del et e() the Chi | d.

Parent p = (Parent) session.load(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p. get Children().renopve(c);

session. del ete(c);

session. flush();

In our case, a Chi | d cannot exist without its parent. So if we remove a Chi | d from the collection,
we do want it to be deleted. To do this, we must use cascade="al | - del et e- or phan".

<set name="children" inverse="true" cascade="all -del ete-orphan">
<key col um="parent _id"/>
<one-to-nmany class="Child"/>

</ set>

Even though the collection mapping specifies i nver se="t rue", cascades are still processed by
iterating the collection elements. If you need an object be saved, deleted or updated by cascade,
you must add it to the collection. It is not enough to simply call set Parent ().

24.4. Cascades and unsaved-val ue

Suppose we loaded up a Par ent in one Sessi on, made some changes in a Ul action and wanted
to persist these changes in a new session by calling updat e() . The Par ent will contain a collection
of children and, since the cascading update is enabled, Hibernate needs to know which children
are newly instantiated and which represent existing rows in the database. We will also assume
that both Par ent and Chi | d have generated identifier properties of type Long. Hibernate will use
the identifier and version/timestamp property value to determine which of the children are new.
(See Section 11.7, “Automatic state detection”.) In Hibernate3, it is no longer necessary to specify
an unsaved- val ue explicitly.

The following code will update par ent and chi | d and insert newchi | d:
/I parent and child were both | oaded in a previ ous session

parent.addChil d(child);
Child newChild = new Child();

362

Conclusion

parent . addChi | d(newChi | d) ;
sessi on. updat e(parent);
session. flush();

This may be suitable for the case of a generated identifier, but what about assigned identifiers
and composite identifiers? This is more difficult, since Hibernate cannot use the identifier property
to distinguish between a newly instantiated object, with an identifier assigned by the user, and
an object loaded in a previous session. In this case, Hibernate will either use the timestamp or
version property, or will actually query the second-level cache or, worst case, the database, to
see if the row exists.

24.5. Conclusion

The sections we have just covered can be a bit confusing. However, in practice, it all works out
nicely. Most Hibernate applications use the parent/child pattern in many places.

We mentioned an alternative in the first paragraph. None of the above issues exist in the case of
<conposi t e- el ement > mappings, which have exactly the semantics of a parent/child relationship.
Unfortunately, there are two big limitations with composite element classes: composite elements
cannot own collections and they should not be the child of any entity other than the unique parent.

363

364

Chapter 25.

Example: Weblog Application

25.1. Persistent Classes

The persistent classes here represent a weblog and an item posted in a weblog. They are to be
modelled as a standard parent/child relationship, but we will use an ordered bag, instead of a set:

package eg;
inmport java.util.List;

public class Blog {
private Long _id;
private String _nane;
private List _itens;

public Long getld() {
return _id;

}

public List getltenms() {
return _itemns;

}

public String getNane() {
return _nang;

}

public void setld(Long |ongl) {
_id = longl,;

}

public void setltens(List list) {
_items = list;

}

public void setNane(String string) {
_name = string;

package eg;

inport java.text. DateFormat;
inmport java.util.Cal endar;

public class Blogltem {
private Long _id;
private Cal endar _datetimne;
private String _text;
private String _title;
private Bl og _blog;

public Blog getBlog() {
return _bl og;

}
public Cal endar getDatetinme() {

365

Chapter 25. Example: Weblog A...

return _datetime;

}

public Long getld() {
return _id;

}

public String getText() {
return _text;

}

public String getTitle() {
return _title;

}

public void setBlog(Blog blog) {
_blog = bl og;

}

public void setDatetinme(Cal endar cal endar) {
_datetime = cal endar;

}

public void setld(Long |ongl) {
_id = 1longl;

}

public void setText(String string) {
_text = string;

}

public void setTitle(String string) {
_title = string;

25.2. Hibernate Mappings

The XML mappings are now straightforward. For example:

<?xm version="1.0"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DID 3. 0//EN'
"http://ww. hi bernate. org/ dtd/ hi ber nat e- mappi ng- 3. 0. dt d" >

<hi ber nat e- mappi ng package="eg">
<cl ass

nane="Bl og"
t abl e="BLOGS" >

<id
name="i d"
col um="BLOG | D' >
<generator class="native"/>
</id>
<property

nanme="nane"

col utm=" NAVE"
not-nul I ="true"
uni que="true"/>

366

Hibernate Mappings

<bag
name="itens"
inverse="true"
or der - by="DATE_TI ME"
cascade="al | ">

<key colum="BLOG | D'/ >
<one-to-nmany class="Bl oglteni/>

</ bag>

</ cl ass>

</ hi ber nat e- mappi ng>

<?xm version="1.0"7>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DID 3. 0//EN'
"http://ww. hi bernate. org/ dtd/ hi ber nat e- mappi ng- 3. 0. dt d" >

<hi ber nat e- mappi ng package="eg">

<cl ass
nane="Bl ogl tent
tabl e="BLOG_| TEMS"
dynami c-updat e="true">

<id
name="i d"
col um="BLOG_ | TEM | D" >
<generator class="native"/>
</id>
<property

name="title"
col um="TI TLE"

not-null="true"/>
<property

nane="t ext"

col utm="TEXT"

not-null ="true"/>
<property

nanme="dat eti me"
col um="DATE_TI ME"
not-null ="true"/>

<many-t o- one
name="bl og"
col um="BLOG | D'
not-null="true"/>

</ cl ass>

367

Chapter 25. Example: Weblog A...

</ hi ber nat e- mappi ng>

25.3. Hibernate Code

The following class demonstrates some of the kinds of things we can do with these classes using
Hibernate:

package eg;

inport java.util.ArraylList;
inmport java.util.Cal endar;
inmport java.util.lterator;
inmport java.util.List;

i nport org.hi bernate. H bernat eExcepti on;

import org.hibernate. Query;

import org. hi bernate. Sessi on;

inmport org. hi bernate. Sessi onFactory;

inmport org. hi bernate. Transacti on;

inmport org. hi bernate.cfg. Configuration;

inmport org.hibernate.tool.hbnRddl . SchemaExport ;

public class Bl ogMain {
private SessionFactory _sessions;

public void configure() throws H bernateException {
_sessions = new Configuration()
. addd ass(Bl og. cl ass)
.addd ass(Bl ogltem cl ass)
. bui | dSessi onFactory();

public void exportTabl es() throws Hi bernateException {
Configuration cfg = new Configuration()
. addd ass(Bl og. cl ass)
.addd ass(Bl ogltem cl ass);
new SchemaExport (cfg).create(true, true);

public Blog createBlog(String nane) throws Hi bernateException {

Bl og bl og = new Bl og();
bl og. set Nane(nane) ;
bl og. setltems(new ArrayList());

Sessi on session = _sessi ons. openSession();
Transaction tx = null;
try {

tx = session. begi nTransaction();

sessi on. persi st (bl og);

tx.commt();

}
catch (Hi bernateException he) {

368

Hibernate Code

if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

session. cl ose();
}

return bl og;

public BlogltemcreateBl oglten(Blog blog, String title, String text)
throws Hi bernat eException {

Bl ogltemitem = new Bl oglten();
itemsetTitle(title);

item set Text (text);

item set Bl og(bl og);

item setDateti ne(Cal endar. getlnstance());
bl og. getltenms().add(item;

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {
tx = session. begi nTransaction();
sessi on. updat e(bl 0g) ;
tx.commt();
}
catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

sessi on. cl ose();
}

return item

public BlogltemcreateBl oglten{Long blogid, String title, String text)
throws Hi bernat eException {

Bl ogltemitem = new Bl oglten();
itemsetTitle(title);

item set Text (text);

item setDateti me(Cal endar. getlnstance());

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {
tx = session. begi nTransaction();
Bl og bl og = (Bl og) session.|oad(Blog.class, blogid);
item set Bl og(bl og);
bl og. getltenms().add(itemn);
tx.commit();
}
catch (Hi bernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();

369

Chapter 25. Example: Weblog A...

}

return item

public void updateBloglten(Blogltemitem String text)
throws Hi bernat eException {

item set Text (text);

Sessi on session = _sessi ons. openSession();
Transaction tx = null;
try {
tx = session. begi nTransaction();
session. update(itemn);
tx.commt();
}
catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

throw he;
}
finally {

session. cl ose();
}

public void updateBl oglten(Long itemd, String text)
throws Hi bernat eException {

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {
tx = session. begi nTransaction();
Blogltemitem = (Bloglten) session.|load(Blogltemclass, itemd);
item set Text (text);
tx.commit();
}
catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

throw he;
}
finally {

sessi on. cl ose();
}

public List IistAllBIogNanmesAndltenCounts(int max)
throws Hi bernateException {

Sessi on session = _sessi ons. openSession();
Transaction tx = null;
List result = null;
try {
tx = session. begi nTransaction();
Query q = session.createQuery(
"sel ect blog.id, blog.nanme, count(blogltem " +
"fromBlog as blog " +
"left outer join blog.itens as blogltem" +
"group by blog.nane, blog.id " +
"order by max(bl ogltem datetine)"

370

Hibernate Code

DE
g. set MaxResul t s(nmax) ;
result = qg.list();
tx.commit();

}

catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

throw he;
}
finally {

session. cl ose();
}

return result;

public Bl og getBl ogAndAl | | t ens(Long bl ogi d)
throws Hi bernat eException {

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
Bl og blog = null;
try {
tx = session. begi nTransaction();
Query q = session.createQuery(
"fromBlog as blog " +
"left outer join fetch blog.itens " +
"where blog.id = :blogid"
DE
g. set Paranet er ("bl ogi d*, bl ogid);
blog = (Blog) g.uniqueResult();
tx.commt();
}
catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

throw he;
}
finally {

session. cl ose();
}

return bl og;

public List |istBlogsAndRecentltens() throws Hi bernateException {

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
List result = null;
try {
tx = session. begi nTransaction();
Query q = session. createQuery(
"fromBlog as blog " +
"inner join blog.itens as blogltem" +
"where blogltemdatetine > : mnDate"

)i

Cal endar cal = Cal endar. getlnstance();
cal .rol | (Cal endar. MONTH, fal se);
g. set Cal endar (" m nDate", cal);

371

Chapter 25. Example: Weblog A...

result = qg.list();
tx.commt();

}

catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

session. cl ose();
}

return result;

372

Chapter 26.

Example: Various Mappings

This chapters explores some more complex association mappings.

26.1. Employer/Employee

The following model of the relationship between Enpl oyer and Enpl oyee uses an entity class
(Enpl oynent) to represent the association. You can do this when there might be more than one
period of employment for the same two parties. Components are used to model monetary values
and employee names.

Employer employer 0. Employment -
-id : long -startDate : Date -
-hatme : String -endDate : Date +employee
+getldd : lang -id : long
+:zetldi_id:long) +getStartDated : Date
+getNamed : String +setitartDatel_startDate:Date)
+setlamel_hameString +getEndDated @ Date
+setEndbatel_endDate:Date)
+getHourlyRated : Monetoryfmount
+setHourlyRateirate:MonetoryAmaunt)
+getldd : long
+setldi_id:long
+hourlyRate

Employee

Name

+getEmployerd : Employer
+setEmployeriemp:Employen
+getEmployeel : Employee
+setEmployeelempEmployee)

-id : lang
~taxfileMumber : String

+getNamed : Name
+setNameiname:Namel
+getldd : long
+setldi_id:long
+getTaxfileMumberd : String

+setTaxfileNumber_taxfileNumberString

Here is a possible mapping document:

<hi ber nat e- mappi ng>

<cl ass name="Enpl oyer" tabl e="enpl oyers">
<id name="id">

<generator class="sequence">
<par am nane="sequence" >enpl oyer _i d_seq</ par an»
</ gener at or >

</id>

<property name="nane"/>

</cl ass>

Monetoryfmount

-amount : BigDhecimal
-currency - CUrrency

+getimounti : BigDhecimal
+setAmounti_amount:Bighecimal
+getCurrencyd @ Currency
+setCurrency_currency: Currencyl

<cl ass nanme="Enpl oynent" tabl e="enpl oynent _peri ods">

<id nane="id">

<gener at or cl ass="sequence">

</ gener at or >

</id>

<par am nane="sequence" >enpl oynent _i d_seq</ par an»

<property name="startDate" colum="start_date"/>
<property nane="endDate" col um="end_date"/>

<conponent

nanme="hour | yRate" cl ass="Mnet ar yAnount " >
<property nanme="anount">

</ property>

<col umm nane="hourly_rate" sql-type="NUMVERI C(12,

2)" />

+name

~firstName : 5tring
-initial : char
-lastMame : String

+aetFirstMamed : String
+ietFirstMamei_firstHame:String)
+aetlnitiald @ char
+setlnitialinitial:chan
+aetlastMamed : String
+ietlastMamel_lastHame:String

373

Chapter 26. Example: Various ...

<property name="currency" |ength="12"/>
</ conponent >

<many-to-one name="enpl oyer" col um="enpl oyer _id" not-null="true"/>
<many-to-one nanme="enpl oyee" col um="enpl oyee_i d" not-null="true"/>
</cl ass>

<cl ass name="Enpl oyee" tabl e="enpl oyees" >
<id name="id">
<gener at or cl ass="sequence">
<par am nane="sequence" >enpl oyee_i d_seq</ par an>
</ gener at or >
</id>
<property name="taxfil eNunber"/>
<conponent nane="name" class="Nanme">
<property nane="firstName"/>
<property name="initial"/>
<property nanme="| ast Nane"/ >
</ conponent >
</ cl ass>

</ hi ber nat e- mappi ng>

Here is the table schema generated by SchemaExport .

create table enployers (
id BPA@NT not null,
name VARCHAR(255),
primary key (id)

create tabl e enpl oynent _periods (
id BIA@NT not null,
hourly_rate NUMERI C(12, 2),
currency VARCHAR(12),
enpl oyee_id BI G NT not null,
enpl oyer _id BIG NT not null,
end_dat e Tl MESTAMP,
start_date TI MESTAWP,
primary key (id)

create table enpl oyees (
id BBANT not null,
firstName VARCHAR(255),
initial CHAR(1),
| ast Name VARCHAR(255),
taxfil eNunber VARCHAR(255),
primary key (id)

alter table enpl oynent_periods

add constraint enploynent_peri odsFKO foreign key (enployer_id)

alter table enpl oynent _peri ods

add constraint enploynent_periodsFK1l foreign key (enployee_id)

references enpl oyers

ref erences enpl oyees

374

Author/Work

create sequence enpl oyee_id_seq
create sequence enpl oynment _i d_seq
create sequence enpl oyer_id_seq

26.2. Author/Work

Consider the following model of the relationships between Work, Author and Person. In
the example, the relationship between Work and Aut hor is represented as a many-to-many
association and the relationship between Aut hor and Person is represented as one-to-one
association. Another possibility would be to have Aut hor extend Per son.

Wark Author Person

-id : long -id ; lang -id : lang
—title : String 0. 0.% | _alias : String —name : String
+3getldd :long Hwaorks +authordTaetldd long +persof |TOetldd o long
+setldi_id:lang +setldi_id:long +setld_id:long
+gethuthorsi : Set +getWwarksn : Set +getNamel : String
+sethuthorsiemployees:Set) +setWarks(employers:Set) +ietMame_name:string)
+getTitled : 5tring +getPersonb ; Person
+setTitlei_title:String +setPersoniperson:Persan)

+gethliash ; String

+ietAliasi_aliasstring

Song Book
~tempo : float —text :int
-genre :String

+qetTextd :int

+aettenred : String +ietTexti_text:int)
+setGenrel_genre:String

+getTempon ; float
+ietTempoi_tempo:float)

The following mapping document correctly represents these relationships:

<hi ber nat e- mappi ng>
<cl ass name="Work" tabl e="works" discrimnator-val ue="W>

<id nane="id" colum="id">
<generator class="native"/>
</id>
<di scrim nator colum="type" type="character"/>

<property name="title"/>
<set nanme="aut hors" tabl e="aut hor _work">

<key col um nane="work_id"/>

<many-to-many class="Author" col um nane="aut hor _id"/>
</ set>

<subcl ass nane="Book" di scri m nator-val ue="B">
<property name="text"/>
</ subcl ass>

375

Chapter 26. Example: Various ...

<subcl ass nane="Song" di scri m nator-val ue="S">
<property nanme="tenpo"/>
<property nanme="genre"/>
</ subcl ass>
</ cl ass>

<cl ass nane="Aut hor" tabl e="aut hors">

<id nane="id" colum="id">

<l-- The Author nust have the sane identifier as the Person -->
<generator class="assigned"/>
</id>

<property name="alias"/>
<one-to-one nane="person" constrai ned="true"/>

<set name="works" tabl e="author_work" inverse="true">
<key col um="aut hor _i d"/>
<many-to-many cl ass="Work" col um="work_i d"/>

</ set>

</cl ass>

<cl ass name="Person" tabl e="persons">
<id name="id" colum="id">
<generator class="native"/>
</id>
<property nanme="nane"/>
</ cl ass>

</ hi ber nat e- mappi ng>

There are four tables in this mapping: wor ks, aut hor s and per sons hold work, author and person
data respectively. aut hor _wor k is an association table linking authors to works. Here is the table
schema, as generated by SchemaExport :

create table works (
id BPBANT not null generated by default as identity,
tenpo FLOAT,
genre VARCHAR(255),
text | NTEGER,
title VARCHAR(255),
type CHAR(1) not null,
primary key (id)

create tabl e author_work (
aut hor _id BIG NT not null,
work_id BIG NT not null,
primary key (work_id, author_id)

create table authors (
id BPANT not null generated by default as identity,

376

Customer/Order/Product

al i as VARCHAR(255) ,
primary key (id)

create table persons (
id BPANT not null generated by default as identity,
nane VARCHAR(255),
primary key (id)

alter table authors
add constraint authorsFKO foreign key (id) references persons
alter table author_work
add constraint author_workFKO foreign key (author_id) references authors

alter tabl e author_work
add constraint author_workFK1l foreign key (work_id) references works

26.3. Customer/Order/Product

In this section we consider a model of the relationships between Cust omer, Order, Line Item
and Pr oduct . There is a one-to-many association between Cust oner and Or der , but how can you
represent Or der / Li nel t em/ Product ? In the example, Li nel t emis mapped as an association
class representing the many-to-many association between Or der and Pr oduct . In Hibernate this

is called a composite element.

Customer Grder Lineltem Product
- 0. = o™ — 0.+ -

-id :long -id : lang —quantity : int -id : lang
-hame : 5tring +eustamer +orders [-date : Date +Iine|terﬁ; +getQuantityd - int +pr0dtﬁ{ -serialMumber ; 5tring
+getldd : long +getldi : long +setQuantityl_quantityiint +getldi : lang
+setld_id:lang) +setldi_id:long +getProductd : Product +setldid:lang
+getMamel : String +getlineltemsd : List +setProductiproduct:Prodyct +getierialMumberd : String
+setMamel_name:String +setlineltemsilineltems:List +setSerialMumberi_serialMumber3tring
+getordersd ; Set +getCystamerd ; Customer
+setOrdersiorderssen +setCustomericustomer:Customen

+gethated : Date

+setDatel_date:Dated

The mapping document will look like this:

<hi ber nat e- mappi ng>

<cl ass nane="Custoner" tabl e="custoners’

<id nane="id">
<generator class="native"/>
</id>
<property name="nanme"/>
<set name="orders" inverse="true">
<key col um="custoner_id"/>
<one-to-many class="Order"/>
</ set>

</cl ass>

<cl ass nane="Order" table="orders">
<id nane="id">
<generator class="native"/>
</id>

">

377

Chapter 26. Example: Various ...

<property nanme="date"/>

<many-to-one nanme="custoner" col um="custoner _id"/>

<list nane="lineltens" table="line_itens">
<key colum="order _id"/>
<list-index colum="Iline_nunber"/>
<conposi te-el ement class="Linelteni>
<property name="quantity"/>

<many-to-one nanme="product" col utm="product _id"/>

</ conposi te-el ement >
</[list>
</ cl ass>

<cl ass nane="Product" tabl e="products">
<id name="id">
<generator class="native"/>
</id>
<property nanme="seri al Nunber"/>
</ cl ass>

</ hi ber nat e- mappi ng>

customers, orders,|ine_itens and product s hold customer, order, order line item and product
data respectively. | i ne_i t ens also acts as an association table linking orders with products.

create table custoners (
id BPANT not null generated by default as identity,
name VARCHAR(255),
primary key (id)

create table orders (
id BPANT not null generated by default as identity,
custoner _id Bl G NT,
date TI MESTAWP,
primary key (id)

create table line_items (
l'i ne_nunmber | NTEGER not null,
order_id BIG NT not null,
product _id Bl G NT,
quantity | NTEGER,
primary key (order_id, |ine_nunber)

create table products (
id BIGNT not null generated by default as identity,
seri al Nunmber VARCHAR(255),
primary key (id)

alter table orders

add constraint ordersFKO foreign key (custoner_id) references custoners

alter table line_itens
add constraint |line_itemsFKO foreign key (product_id)
alter table line_itens

references products

378

Miscellaneous example mappings

add constraint line_itenmsFKL foreign key (order_id) references orders

26.4. Miscellaneous example mappings

These examples are available from the Hibernate test suite. You will find many other useful
example mappings there by searching in the t est folder of the Hibernate distribution.

26.4.1. "Typed" one-to-one association

<cl ass nane="Person">
<i d nane="nanme"/>
<one-to-one name="address"
cascade="al | ">
<f or mul a>name</ f or nul a>
<f or mul a>' HOVE' </ f or mul a>
</ one-t o- one>
<one-to-one nanme="nwilingAddress"
cascade="al | ">
<f or nul a>name</ f or nul a>
<f ornul a>" MAI LI NG </ f or mul a>
</ one-t o- one>
</cl ass>

<cl ass nanme="Address" batch-size="2"
check="addressType in (' MAILING, 'HOVE ,k 'BUSINESS)">
<conposi te-id>
<key- many-t o- one nanme="person"
col utm="per sonNane"/ >
<key-property nane="type"
col um="addr essType"/ >
</ conposi te-id>
<property name="street" type="text"/>
<property name="state"/>
<property nanme="zip"/>
</ cl ass>

26.4.2. Composite key example

<cl ass nane="Cust onmer" >

<i d nane="custoner|d"

| engt h="10">

<generator class="assigned"/>
</id>
<property nanme="nanme" not-null="true" |ength="100"/>
<property nanme="address" not-null="true" |ength="200"/>

<list nane="orders"
inverse="true"
cascade="save- updat e" >

379

Chapter 26. Example: Various ...

<key col um="custonerld"/>

<i ndex col um="or der Nunber"/ >

<one-to-nmany cl ass="Order"/>
</list>

</ cl ass>

<cl ass nanme="Order" tabl e="CustonerOrder" lazy="true">
<synchroni ze tabl e="Li neltent/>
<synchroni ze tabl e="Product"/>

<conposite-id name="id"
cl ass="Order $l d" >
<key- property name="custonerl|d" |ength="10"/>
<key- property nane="order Number"/>
</ conposi te-id>

<property nane="order Dat e"
type="cal endar _dat e"
not-nul I ="true"/>

<property name="total ">
<f or nul a>
(select sunm(li.quantity*p.price)
fromLineltemli, Product p
where |i.productld = p.productld
and |i.custonmerld = custonerld
and |i.orderNunber = orderNunber)
</ fornul a>
</ property>

<many-to-one name="custoner"
col um="cust oner | d"
insert="fal se"
updat e="f al se"
not-null="true"/>

<bag nane="lineltens"
fetch="join"
inverse="true"
cascade="save- updat e" >
<key>
<col um nane="cust oner|d"/>
<col umm namne="or der Nurmber"/ >
</ key>
<one-to-nmany cl ass="Lineltent/>
</ bag>

</cl ass>

<cl ass nane="Li nel tent>

<conposite-id name="id"
cl ass="Li nel tentl d" >
<key-property name="customnerld" |ength="10"/>
<key- property nane="order Nunber"/>
<key-property name="product!d" |ength="10"/>
</ conposi te-id>

380

Many-to-many with shared composite key attribute

<property name="quantity"/>

<many-t o- one nanme="order"
insert="fal se"
updat e="f al se"
not-null ="true">
<col um nane="custoner!d"/>
<col umm nane="or der Nunber "/ >
</ many-t o- one>

<many-t o- one name="product"
insert="fal se"
updat e="f al se"
not-nul I ="true"
col um="product | d"/>

</cl ass>

<cl ass nane="Product">
<synchroni ze tabl e="Lineltent/>

<i d nane="product|d"

| engt h="10">

<generator class="assigned"/>
</id>

<property nanme="descri ption"
not-nul I ="true"
| engt h="200"/ >
<property name="price" |ength="3"/>
<property nanme="nunber Avai |l abl e"/>

<property name="nunber Ordered">
<f or mul a>
(select sunm(li.quantity)
fromLineltemli
where |i.productld = productld)
</ fornul a>
</ property>

</cl ass>

26.4.3. Many-to-many with shared composite key attribute

<cl ass name="User" tabl e=""User ">
<conposi te-id>
<key- property name="nane"/>
<key-property nane="org"/>
</ conposi te-id>
<set nanme="groups" tabl e="User G oup">
<key>
<col um nane="user Nane"/ >
<col um nanme="org"/>
</ key>
<many-to-many cl ass="G oup">
<col um nane="gr oupNane"/ >

381

Chapter 26. Example: Various ...

<f or nul a>or g</ f or nul a>
</ many-t o- nany>
</set>
</ cl ass>

<cl ass name="G oup" table=""Goup ">
<conposi te-id>
<key-property nane="name"/>
<key-property nane="org"/>
</ conposi te-id>
<property nanme="description"/>
<set name="users" table="User G oup"” inverse="true">
<key>
<col urm nane="gr oupNane"/ >
<col um name="org"/>
</ key>
<many-to- nany class="User">
<col um nane="user Nane"/ >
<f or nul a>or g</ f or nul a>
</ many-t o- nany>
</ set>
</ cl ass>

26.4.4. Content based discrimination

<cl ass nane="Per son"
di scri m nator-val ue="pP">

<id name="id"
col um="person_i d"
unsaved-val ue="0">
<generator class="native"/>
</id>

<di scri m nat or
type="character">
<f ornmul a>
case
when title is not null then 'E
when sal esperson is not null then
else 'P

Q

end
</ forml a>
</ di scri m nat or >

<property nanme="nane"
not-nul I ="true"
| engt h="80"/ >

<property name="sex"
not-nul I ="true"
updat e="fal se"/ >

<conponent nane="address">
<property name="address"/>

382

Associations on alternate keys

<property name="zip"/>
<property name="country"/>
</ conponent >

<subcl ass nanme="Enpl oyee"
di scri m nat or-val ue="E">
<property name="title"
| engt h="20"/>
<property name="sal ary"/>
<many-t o- one nane="manager"/>
</ subcl ass>

<subcl ass name="Cust oner"
di scri m nator-val ue="C'>
<property nanme="comments"/>
<many-to-one nane="sal esperson"/>
</ subcl ass>

</ cl ass>

26.4.5. Associations on alternate keys

<cl ass nane="Person">

<id name="id">
<generator class="hilo"/>
</id>

<property nanme="nane" |ength="100"/>

<one-to-one name="address"
property-ref="person"
cascade="al | "
fetch="join"/>

<set name="accounts"
inverse="true">
<key col um="user|d"
property-ref="userld"/>
<one-to-many class="Account"/>
</ set>

<property nanme="userld" |ength="8"/>
</ cl ass>
<cl ass name="Address">
<id nane="id">
<generator class="hilo"/>
</id>
<property nanme="address" |ength="300"/>
<property nanme="zip" |ength="5"/>

<property name="country" |ength="25"/>
<many-to-one nane="person" uni que="true" not-null="true"/>

383

Chapter 26. Example: Various ...

</ cl ass>

<cl ass name="Account">
<i d nane="account|d" |ength="32">
<generator class="uuid"/>
</id>

<many-t o- one name="user"
col um="user | d"
property-ref="userld"/>

<property name="type" not-null="true"/>

</ cl ass>

384

Chapter 27.

Best Practices

Write fine-grained classes and map them using <conponent >:
Use an Addr ess class to encapsulate street, subur b, st ate, post code. This encourages
code reuse and simplifies refactoring.

Declare identifier properties on persistent classes:
Hibernate makes identifier properties optional. There are a range of reasons why you should
use them. We recommend that identifiers be 'synthetic', that is, generated with no business
meaning.

Identify natural keys:
Identify natural keys for all entities, and map them using <nat ur al - i d>. Implement equal s()
and hashCode() to compare the properties that make up the natural key.

Place each class mapping in its own file:
Do not use a single monolithic mapping document. Map com eg. Foo in the file conl eg/
Foo. hbm xm . This makes sense, particularly in a team environment.

Load mappings as resources:
Deploy the mappings along with the classes they map.

Consider externalizing query strings:
This is recommended if your queries call non-ANSI-standard SQL functions. Externalizing the
query strings to mapping files will make the application more portable.

Use bind variables.
As in JDBC, always replace non-constant values by "?". Do not use string manipulation to
bind a non-constant value in a query. You should also consider using named parameters in
queries.

Do not manage your own JDBC connections:
Hibernate allows the application to manage JDBC connections, but his approach should be
considered a last-resort. If you cannot use the built-in connection providers, consider providing
your own implementation of or g. hi ber nat e. connecti on. Connect i onPr ovi der.

Consider using a custom type:
Suppose you have a Java type from a library that needs to be persisted but does not
provide the accessors needed to map it as a component. You should consider implementing
or g. hi ber nat e. User Type. This approach frees the application code from implementing
transformations to/from a Hibernate type.

Use hand-coded JDBC in bottlenecks:
In performance-critical areas of the system, some kinds of operations might benefit from
direct JDBC. Do not assume, however, that JDBC is necessarily faster. Please wait until you
know something is a bottleneck. If you need to use direct JDBC, you can open a Hibernate

385

Chapter 27. Best Practices

Sessi on, wrap your JDBC operation as a or g. hi ber nat e. j dbc. Wr k object and using that
JDBC connection. This way you can still use the same transaction strategy and underlying
connection provider.

Understand Sessi on flushing:
Sometimes the Session synchronizes its persistent state with the database. Performance
will be affected if this process occurs too often. You can sometimes minimize unnecessary
flushing by disabling automatic flushing, or even by changing the order of queries and other
operations within a particular transaction.

In a three tiered architecture, consider using detached objects:
When using a servlet/session bean architecture, you can pass persistent objects loaded in
the session bean to and from the servlet/JSP layer. Use a new session to service each
request. Use Sessi on. mer ge() or Sessi on. saveOr Updat e() to synchronize objects with the
database.

In a two tiered architecture, consider using long persistence contexts:

Database Transactions have to be as short as possible for best scalability. However, it is
often necessary to implement long running application transactions, a single unit-of-work from
the point of view of a user. An application transaction might span several client request/
response cycles. Itis common to use detached objects to implement application transactions.
An appropriate alternative in a two tiered architecture, is to maintain a single open persistence
contact session for the whole life cycle of the application transaction. Then simply disconnect
from the JDBC connection at the end of each request and reconnect at the beginning of
the subsequent request. Never share a single session across more than one application
transaction or you will be working with stale data.

Do not treat exceptions as recoverable:
This is more of a necessary practice than a "best" practice. When an exception occurs,
roll back the Transacti on and close the Sessi on. If you do not do this, Hibernate cannot
guarantee that in-memory state accurately represents the persistent state. For example, do
not use Sessi on. | oad() to determine if an instance with the given identifier exists on the
database; use Sessi on. get () or a query instead.

Prefer lazy fetching for associations:
Use eager fetching sparingly. Use proxies and lazy collections for most associations to classes
that are not likely to be completely held in the second-level cache. For associations to cached
classes, where there is an a extremely high probability of a cache hit, explicitly disable eager
fetching using | azy="f al se". When join fetching is appropriate to a particular use case, use
aquerywithaleft join fetch.

Use the open session in view pattern, or a disciplined assembly phase to avoid problems with
unfetched data:
Hibernate frees the developer from writing tedious Data Transfer Objects (DTO). In a
traditional EJB architecture, DTOs serve dual purposes: first, they work around the problem
that entity beans are not serializable; second, they implicitly define an assembly phase where
all data to be used by the view is fetched and marshalled into the DTOs before returning control

386

to the presentation tier. Hibernate eliminates the first purpose. Unless you are prepared to
hold the persistence context (the session) open across the view rendering process, you will
still need an assembly phase. Think of your business methods as having a strict contract
with the presentation tier about what data is available in the detached objects. This is not a
limitation of Hibernate. It is a fundamental requirement of safe transactional data access.

Consider abstracting your business logic from Hibernate:
Hide Hibernate data-access code behind an interface. Combine the DAO and Thread Local
Session patterns. You can even have some classes persisted by handcoded JDBC associated
to Hibernate via a User Type. This advice is, however, intended for "sufficiently large"
applications. It is not appropriate for an application with five tables.

Do not use exotic association mappings:
Practical test cases for real many-to-many associations are rare. Most of the time you need
additional information stored in the "link table". In this case, it is much better to use two one-
to-many associations to an intermediate link class. In fact, most associations are one-to-
many and many-to-one. For this reason, you should proceed cautiously when using any other
association style.

Prefer bidirectional associations:
Unidirectional associations are more difficult to query. In a large application, almost all
associations must be navigable in both directions in queries.

387

388

Chapter 28.

Database Portability Considerations

28.1. Portability Basics

One of the selling points of Hibernate (and really Object/Relational Mapping as a whole) is the
notion of database portability. This could mean an internal IT user migrating from one database
vendor to another, or it could mean a framework or deployable application consuming Hibernate to
simultaneously target multiple database products by their users. Regardless of the exact scenario,
the basic idea is that you want Hibernate to help you run against any number of databases without
changes to your code, and ideally without any changes to the mapping metadata.

28.2. Dialect

The first line of portability for Hibernate is the dialect, which is a specialization of the
org. hi bernate. di al ect. Di al ect contract. A dialect encapsulates all the differences in how
Hibernate must communicate with a particular database to accomplish some task like getting a
sequence value or structuring a SELECT query. Hibernate bundles a wide range of dialects for
many of the most popular databases. If you find that your particular database is not among them,
it is not terribly difficult to write your own.

28.3. Dialect resolution

Originally, Hibernate would always require that users specify which dialect to use. In the case of
users looking to simultaneously target multiple databases with their build that was problematic.
Generally this required their users to configure the Hibernate dialect or defining their own method
of setting that value.

Starting with version 3.2, Hibernate introduced the notion of automatically detecting the dialect to
use based on the j ava. sql . Dat abaseMet aDat a obtained from a j ava. sql . Connect i on to that
database. This was much better, expect that this resolution was limited to databases Hibernate
know about ahead of time and was in ho way configurable or overrideable.

Starting with version 3.3, Hibernate has a fare more powerful way to automatically determine
which dialect to should be used by relying on a series of delegates which implement the
or g. hi bernate. di al ect. resol ver. Di al ect Resol ver which defines only a single method:

public Dialect resolveD al ect (Dat abaseMet aDat a nmet aData) t hrows JDBCConnecti onExcepti on

The basic contract here is that if the resolver 'understands' the given database metadata then
it returns the corresponding Dialect; if not it returns null and the process continues to the next
resolver. The signature also identifies or g. hi ber nat e. except i on. JDBCConnect i onExcepti on
as possibly being thrown. A JDBCConnectionException here is interpreted to imply a "non
transient" (aka non-recoverable) connection problem and is used to indicate an immediate stop to
resolution attempts. All other exceptions result in a warning and continuing on to the next resolver.

389

Chapter 28. Database Portabil...

The cool part about these resolvers is that users can also register their own custom resolvers
which will be processed ahead of the built-in Hibernate ones. This might be useful in a number
of different situations: it allows easy integration for auto-detection of dialects beyond those
shipped with Hlbernate itself; it allows you to specify to use a custom dialect when a particular
database is recognized; etc. To register one or more resolvers, simply specify them (seperated
by commas, tabs or spaces) using the 'hibernate.dialect_resolvers' configuration setting (see the
DI ALECT_RESOLVERS constant on or g. hi ber nat e. cf g. Envi r onnent).

28.4. ldentifier generation

When considering portability between databases, another important decision is selecting the
identifier generation stratagy you want to use. Originally Hibernate provided the native generator
for this purpose, which was intended to select between a sequence, identity, or table strategy
depending on the capability of the underlying database. However, an insidious implication of this
approach comes about when targtetting some databases which support identity generation and
some which do not. identity generation relies on the SQL definition of an IDENTITY (or auto-
increment) column to manage the identifier value; it is what is known as a post-insert generation
strategy becauase the insert must actually happen before we can know the identifier value.
Because Hibernate relies on this identifier value to uniquely reference entities within a persistence
context it must then issue the insert immediately when the users requests the entitiy be associated
with the session (like via save() e.g.) regardless of current transactional semantics.

@ Note

Hibernate was changed slightly once the implication of this was better understood
so that the insert is delayed in cases where that is feasible.

The underlying issue is that the actual semanctics of the application itself changes in these cases.

Starting with version 3.2.3, Hibernate comes with a set of enhanced [http://in.relation.to/2082.lace]
identifier generators targetting portability in a much different way.

@ Note

There are specifically 2 bundled enhancedgenerators:

e org. hi bernate.id. enhanced. SequenceSt yl eGener at or

e org. hi bernate.id.enhanced. Tabl eGener at or

The idea behind these (generators is to port the actual semantics of
the identifer value generation to the different databases. For example, the
org. hi bernate. i d. enhanced. SequenceSt yl eGener at or mimics the behavior of a sequence on
databases which do not support sequences by using a table.

390

http://in.relation.to/2082.lace
http://in.relation.to/2082.lace

Database functions

28.5. Database functions

Warning

This is an area in Hibernate in need of improvement. In terms of portability
concerns, this function handling currently works pretty well from HQL; however, it
is quite lacking in all other aspects.

SQL functions can be referenced in many ways by users. However, not all databases support
the same set of functions. Hibernate, provides a means of mapping a logical function name to a
delegate which knows how to render that particular function, perhaps even using a totally different
physical function call.

Important

Technically this function registration is handled through the
or g. hi bernate. di al ect . functi on. SQLFuncti onRegi stry class which is
intended to allow users to provide custom function definitions without having to

provide a custom dialect. This specific behavior is not fully completed as of yet.

Itis sort of implemented such that users can programatically register functions with
the or g. hi ber nat e. cf g. Confi gur ati on and those functions will be recognized
for HQL.

28.6. Type mappings

This section scheduled for completion at a later date...

391

392

References

[POEAA] Patterns of Enterprise Application Architecture. 0-321-12742-0. by Martin Fowler.
Copyright © 2003 Pearson Education, Inc.. Addison-Wesley Publishing Company.

[JPwH] Java Persistence with Hibernate. Second Edition of Hibernate in Action. 1-932394-88-5.
http://www.manning.com/bauer?2 . by Christian Bauer and Gavin King. Copyright © 2007
Manning Publications Co.. Manning Publications Co..

393

http://www.manning.com/bauer2

394

	HIBERNATE - Relational Persistence for Idiomatic Java
	Table of Contents
	Preface
	Chapter 1. Tutorial
	1.1. Part 1 - The first Hibernate Application
	1.1.1. Setup
	1.1.2. The first class
	1.1.3. The mapping file
	1.1.4. Hibernate configuration
	1.1.5. Building with Maven
	1.1.6. Startup and helpers
	1.1.7. Loading and storing objects

	1.2. Part 2 - Mapping associations
	1.2.1. Mapping the Person class
	1.2.2. A unidirectional Set-based association
	1.2.3. Working the association
	1.2.4. Collection of values
	1.2.5. Bi-directional associations
	1.2.6. Working bi-directional links

	1.3. Part 3 - The EventManager web application
	1.3.1. Writing the basic servlet
	1.3.2. Processing and rendering
	1.3.3. Deploying and testing

	1.4. Summary

	Chapter 2. Architecture
	2.1. Overview
	2.1.1. Minimal architecture
	2.1.2. Comprehensive architecture
	2.1.3. Basic APIs

	2.2. JMX Integration
	2.3. Contextual sessions

	Chapter 3. Configuration
	3.1. Programmatic configuration
	3.2. Obtaining a SessionFactory
	3.3. JDBC connections
	3.4. Optional configuration properties
	3.4.1. SQL Dialects
	3.4.2. Outer Join Fetching
	3.4.3. Binary Streams
	3.4.4. Second-level and query cache
	3.4.5. Query Language Substitution
	3.4.6. Hibernate statistics

	3.5. Logging
	3.6. Implementing a NamingStrategy
	3.7. Implementing a PersisterClassProvider
	3.8. XML configuration file
	3.9. Java EE Application Server integration
	3.9.1. Transaction strategy configuration
	3.9.2. JNDI-bound SessionFactory
	3.9.3. Current Session context management with JTA
	3.9.4. JMX deployment

	Chapter 4. Persistent Classes
	4.1. A simple POJO example
	4.1.1. Implement a no-argument constructor
	4.1.2. Provide an identifier property
	4.1.3. Prefer non-final classes (semi-optional)
	4.1.4. Declare accessors and mutators for persistent fields (optional)

	4.2. Implementing inheritance
	4.3. Implementing equals() and hashCode()
	4.4. Dynamic models
	4.5. Tuplizers
	4.6. EntityNameResolvers

	Chapter 5. Basic O/R Mapping
	5.1. Mapping declaration
	5.1.1. Entity
	5.1.2. Identifiers
	5.1.2.1. Composite identifier
	5.1.2.1.1. id as a property using a component type
	5.1.2.1.2. Multiple id properties without identifier type
	5.1.2.1.3. Multiple id properties with with a dedicated identifier type

	5.1.2.2. Identifier generator
	5.1.2.2.1. Various additional generators
	5.1.2.2.2. Hi/lo algorithm
	5.1.2.2.3. UUID algorithm
	5.1.2.2.4. Identity columns and sequences
	5.1.2.2.5. Assigned identifiers
	5.1.2.2.6. Primary keys assigned by triggers
	5.1.2.2.7. Identity copy (foreign generator)

	5.1.2.3. Enhanced identifier generators
	5.1.2.3.1. Identifier generator optimization

	5.1.2.4. Partial identifier generation

	5.1.3. Optimistic locking properties (optional)
	5.1.3.1. Version number
	5.1.3.2. Timestamp

	5.1.4. Property
	5.1.4.1. Property mapping with annotations
	5.1.4.1.1. Type
	5.1.4.1.2. Access type
	5.1.4.1.3. Optimistic lock
	5.1.4.1.4. Declaring column attributes
	5.1.4.1.5. Formula
	5.1.4.1.6. Non-annotated property defaults

	5.1.4.2. Property mapping with hbm.xml

	5.1.5. Embedded objects (aka components)
	5.1.6. Inheritance strategy
	5.1.6.1. Single table per class hierarchy strategy
	5.1.6.1.1. Discriminator

	5.1.6.2. Joined subclass strategy
	5.1.6.3. Table per class strategy
	5.1.6.4. Inherit properties from superclasses
	5.1.6.5. Mapping one entity to several tables

	5.1.7. Mapping one to one and one to many associations
	5.1.7.1. Using a foreign key or an association table
	5.1.7.2. Sharing the primary key with the associated entity

	5.1.8. Natural-id
	5.1.9. Any
	5.1.10. Properties
	5.1.11. Some hbm.xml specificities
	5.1.11.1. Doctype
	5.1.11.1.1. EntityResolver

	5.1.11.2. Hibernate-mapping
	5.1.11.3. Key
	5.1.11.4. Import
	5.1.11.5. Column and formula elements

	5.2. Hibernate types
	5.2.1. Entities and values
	5.2.2. Basic value types
	5.2.3. Custom value types

	5.3. Mapping a class more than once
	5.4. SQL quoted identifiers
	5.5. Generated properties
	5.6. Column transformers: read and write expressions
	5.7. Auxiliary database objects

	Chapter 6. Types
	6.1. Value types
	6.1.1. Basic value types
	6.1.1.1. java.lang.String
	6.1.1.2. java.lang.Character (or char primitive)
	6.1.1.3. java.lang.Boolean (or boolean primitive)
	6.1.1.4. java.lang.Byte (or byte primitive)
	6.1.1.5. java.lang.Short (or short primitive)
	6.1.1.6. java.lang.Integer (or int primitive)
	6.1.1.7. java.lang.Long (or long primitive)
	6.1.1.8. java.lang.Float (or float primitive)
	6.1.1.9. java.lang.Double (or double primitive)
	6.1.1.10. java.math.BigInteger
	6.1.1.11. java.math.BigDecimal
	6.1.1.12. java.util.Date or java.sql.Timestamp
	6.1.1.13. java.sql.Time
	6.1.1.14. java.sql.Date
	6.1.1.15. java.util.Calendar
	6.1.1.16. java.util.Currency
	6.1.1.17. java.util.Locale
	6.1.1.18. java.util.TimeZone
	6.1.1.19. java.net.URL
	6.1.1.20. java.lang.Class
	6.1.1.21. java.sql.Blob
	6.1.1.22. java.sql.Clob
	6.1.1.23. byte[]
	6.1.1.24. Byte[]
	6.1.1.25. char[]
	6.1.1.26. Character[]
	6.1.1.27. java.util.UUID
	6.1.1.28. java.io.Serializable

	6.1.2. Composite types
	6.1.3. Collection types

	6.2. Entity types
	6.3. Significance of type categories
	6.4. Custom types
	6.4.1. Custom types using org.hibernate.type.Type
	6.4.2. Custom types using org.hibernate.usertype.UserType
	6.4.3. Custom types using org.hibernate.usertype.CompositeUserType

	6.5. Type registry

	Chapter 7. Collection mapping
	7.1. Persistent collections
	7.2. How to map collections
	7.2.1. Collection foreign keys
	7.2.2. Indexed collections
	7.2.2.1. Lists
	7.2.2.2. Maps

	7.2.3. Collections of basic types and embeddable objects

	7.3. Advanced collection mappings
	7.3.1. Sorted collections
	7.3.2. Bidirectional associations
	7.3.3. Bidirectional associations with indexed collections
	7.3.4. Ternary associations
	7.3.5. Using an <idbag>

	7.4. Collection examples

	Chapter 8. Association Mappings
	8.1. Introduction
	8.2. Unidirectional associations
	8.2.1. Many-to-one
	8.2.2. One-to-one
	8.2.3. One-to-many

	8.3. Unidirectional associations with join tables
	8.3.1. One-to-many
	8.3.2. Many-to-one
	8.3.3. One-to-one
	8.3.4. Many-to-many

	8.4. Bidirectional associations
	8.4.1. one-to-many / many-to-one
	8.4.2. One-to-one

	8.5. Bidirectional associations with join tables
	8.5.1. one-to-many / many-to-one
	8.5.2. one to one
	8.5.3. Many-to-many

	8.6. More complex association mappings

	Chapter 9. Component Mapping
	9.1. Dependent objects
	9.2. Collections of dependent objects
	9.3. Components as Map indices
	9.4. Components as composite identifiers
	9.5. Dynamic components

	Chapter 10. Inheritance mapping
	10.1. The three strategies
	10.1.1. Table per class hierarchy
	10.1.2. Table per subclass
	10.1.3. Table per subclass: using a discriminator
	10.1.4. Mixing table per class hierarchy with table per subclass
	10.1.5. Table per concrete class
	10.1.6. Table per concrete class using implicit polymorphism
	10.1.7. Mixing implicit polymorphism with other inheritance mappings

	10.2. Limitations

	Chapter 11. Working with objects
	11.1. Hibernate object states
	11.2. Making objects persistent
	11.3. Loading an object
	11.4. Querying
	11.4.1. Executing queries
	11.4.1.1. Iterating results
	11.4.1.2. Queries that return tuples
	11.4.1.3. Scalar results
	11.4.1.4. Bind parameters
	11.4.1.5. Pagination
	11.4.1.6. Scrollable iteration
	11.4.1.7. Externalizing named queries

	11.4.2. Filtering collections
	11.4.3. Criteria queries
	11.4.4. Queries in native SQL

	11.5. Modifying persistent objects
	11.6. Modifying detached objects
	11.7. Automatic state detection
	11.8. Deleting persistent objects
	11.9. Replicating object between two different datastores
	11.10. Flushing the Session
	11.11. Transitive persistence
	11.12. Using metadata

	Chapter 12. Read-only entities
	12.1. Making persistent entities read-only
	12.1.1. Entities of immutable classes
	12.1.2. Loading persistent entities as read-only
	12.1.3. Loading read-only entities from an HQL query/criteria
	12.1.4. Making a persistent entity read-only

	12.2. Read-only affect on property type
	12.2.1. Simple properties
	12.2.2. Unidirectional associations
	12.2.2.1. Unidirectional one-to-one and many-to-one
	12.2.2.2. Unidirectional one-to-many and many-to-many

	12.2.3. Bidirectional associations
	12.2.3.1. Bidirectional one-to-one
	12.2.3.2. Bidirectional one-to-many/many-to-one
	12.2.3.3. Bidirectional many-to-many

	Chapter 13. Transactions and Concurrency
	13.1. Session and transaction scopes
	13.1.1. Unit of work
	13.1.2. Long conversations
	13.1.3. Considering object identity
	13.1.4. Common issues

	13.2. Database transaction demarcation
	13.2.1. Non-managed environment
	13.2.2. Using JTA
	13.2.3. Exception handling
	13.2.4. Transaction timeout

	13.3. Optimistic concurrency control
	13.3.1. Application version checking
	13.3.2. Extended session and automatic versioning
	13.3.3. Detached objects and automatic versioning
	13.3.4. Customizing automatic versioning

	13.4. Pessimistic locking
	13.5. Connection release modes

	Chapter 14. Interceptors and events
	14.1. Interceptors
	14.2. Event system
	14.3. Hibernate declarative security

	Chapter 15. Batch processing
	15.1. Batch inserts
	15.2. Batch updates
	15.3. The StatelessSession interface
	15.4. DML-style operations

	Chapter 16. HQL: The Hibernate Query Language
	16.1. Case Sensitivity
	16.2. The from clause
	16.3. Associations and joins
	16.4. Forms of join syntax
	16.5. Referring to identifier property
	16.6. The select clause
	16.7. Aggregate functions
	16.8. Polymorphic queries
	16.9. The where clause
	16.10. Expressions
	16.11. The order by clause
	16.12. The group by clause
	16.13. Subqueries
	16.14. HQL examples
	16.15. Bulk update and delete
	16.16. Tips & Tricks
	16.17. Components
	16.18. Row value constructor syntax

	Chapter 17. Criteria Queries
	17.1. Creating a Criteria instance
	17.2. Narrowing the result set
	17.3. Ordering the results
	17.4. Associations
	17.5. Dynamic association fetching
	17.6. Example queries
	17.7. Projections, aggregation and grouping
	17.8. Detached queries and subqueries
	17.9. Queries by natural identifier

	Chapter 18. Native SQL
	18.1. Using a SQLQuery
	18.1.1. Scalar queries
	18.1.2. Entity queries
	18.1.3. Handling associations and collections
	18.1.4. Returning multiple entities
	18.1.4.1. Alias and property references

	18.1.5. Returning non-managed entities
	18.1.6. Handling inheritance
	18.1.7. Parameters

	18.2. Named SQL queries
	18.2.1. Using return-property to explicitly specify column/alias names
	18.2.2. Using stored procedures for querying
	18.2.2.1. Rules/limitations for using stored procedures

	18.3. Custom SQL for create, update and delete
	18.4. Custom SQL for loading

	Chapter 19. Filtering data
	19.1. Hibernate filters

	Chapter 20. XML Mapping
	20.1. Working with XML data
	20.1.1. Specifying XML and class mapping together
	20.1.2. Specifying only an XML mapping

	20.2. XML mapping metadata
	20.3. Manipulating XML data

	Chapter 21. Improving performance
	21.1. Fetching strategies
	21.1.1. Working with lazy associations
	21.1.2. Tuning fetch strategies
	21.1.3. Single-ended association proxies
	21.1.4. Initializing collections and proxies
	21.1.5. Using batch fetching
	21.1.6. Using subselect fetching
	21.1.7. Fetch profiles
	21.1.8. Using lazy property fetching

	21.2. The Second Level Cache
	21.2.1. Cache mappings
	21.2.2. Strategy: read only
	21.2.3. Strategy: read/write
	21.2.4. Strategy: nonstrict read/write
	21.2.5. Strategy: transactional
	21.2.6. Cache-provider/concurrency-strategy compatibility

	21.3. Managing the caches
	21.4. The Query Cache
	21.4.1. Enabling query caching
	21.4.2. Query cache regions

	21.5. Understanding Collection performance
	21.5.1. Taxonomy
	21.5.2. Lists, maps, idbags and sets are the most efficient collections to update
	21.5.3. Bags and lists are the most efficient inverse collections
	21.5.4. One shot delete

	21.6. Monitoring performance
	21.6.1. Monitoring a SessionFactory
	21.6.2. Metrics

	Chapter 22. Toolset Guide
	22.1. Automatic schema generation
	22.1.1. Customizing the schema
	22.1.2. Running the tool
	22.1.3. Properties
	22.1.4. Using Ant
	22.1.5. Incremental schema updates
	22.1.6. Using Ant for incremental schema updates
	22.1.7. Schema validation
	22.1.8. Using Ant for schema validation

	Chapter 23. Additional modules
	23.1. Bean Validation
	23.1.1. Adding Bean Validation
	23.1.2. Configuration
	23.1.3. Catching violations
	23.1.4. Database schema

	23.2. Hibernate Search
	23.2.1. Description
	23.2.2. Integration with Hibernate Annotations

	Chapter 24. Example: Parent/Child
	24.1. A note about collections
	24.2. Bidirectional one-to-many
	24.3. Cascading life cycle
	24.4. Cascades and unsaved-value
	24.5. Conclusion

	Chapter 25. Example: Weblog Application
	25.1. Persistent Classes
	25.2. Hibernate Mappings
	25.3. Hibernate Code

	Chapter 26. Example: Various Mappings
	26.1. Employer/Employee
	26.2. Author/Work
	26.3. Customer/Order/Product
	26.4. Miscellaneous example mappings
	26.4.1. "Typed" one-to-one association
	26.4.2. Composite key example
	26.4.3. Many-to-many with shared composite key attribute
	26.4.4. Content based discrimination
	26.4.5. Associations on alternate keys

	Chapter 27. Best Practices
	Chapter 28. Database Portability Considerations
	28.1. Portability Basics
	28.2. Dialect
	28.3. Dialect resolution
	28.4. Identifier generation
	28.5. Database functions
	28.6. Type mappings

	References

