
Hibernate Envers - Easy Entity Auditing

1

Hibernate Envers

Reference Documentation
3.6.10.Final

iii

Preface ... v

1. Quickstart .. 1

2. Short example ... 5

3. Configuration ... 7

3.1. Basic configuration .. 7

3.2. Choosing an audit strategy .. 7

3.3. Reference .. 7

4. Logging data for revisions .. 13

4.1. Tracking entity names modified during revisions ... 15

5. Queries .. 17

5.1. Querying for entities of a class at a given revision ... 17

5.2. Querying for revisions, at which entities of a given class changed 18

6. Generating schema with Ant ... 21

7. Generated tables and their content ... 23

8. Audit table partitioning .. 25

8.1. Benefits of audit table partitioning .. 25

8.2. Suitable columns for audit table partitioning .. 25

8.3. Audit table partitioning example ... 26

8.3.1. Determining a suitable partitioning column ... 26

8.3.2. Determining a suitable partitioning scheme .. 27

9. Building from source and testing .. 29

9.1. Building from source ... 29

9.2. Contributing .. 29

9.3. Envers integration tests ... 29

10. Mapping exceptions ... 31

10.1. What isn't and will not be supported ... 31

10.2. What isn't and will be supported .. 31

10.3. @OneToMany+@JoinColumn .. 31

11. Migration from Envers standalone ... 33

11.1. Changes to code .. 33

11.2. Changes to configuration ... 33

11.3. Changes to the revision entity .. 34

12. Links .. 35

iv

v

Preface

The Envers project aims to enable easy auditing of persistent classes. All that you have to do is

annotate your persistent class or some of its properties, that you want to audit, with @Audited.

For each audited entity, a table will be created, which will hold the history of changes made to the

entity. You can then retrieve and query historical data without much effort.

Similarly to Subversion, the library has a concept of revisions. Basically, one transaction is one

revision (unless the transaction didn't modify any audited entities). As the revisions are global,

having a revision number, you can query for various entities at that revision, retrieving a (partial)

view of the database at that revision. You can find a revision number having a date, and the other

way round, you can get the date at which a revision was commited.

The library works with Hibernate and requires Hibernate Annotations or Entity Manager. For the

auditing to work properly, the entities must have immutable unique identifiers (primary keys). You

can use Envers wherever Hibernate works: standalone, inside JBoss AS, with JBoss Seam or

Spring.

Some of the features:

1. auditing of all mappings defined by the JPA specification

2. auditing of Hibernate mappings, which extend JPA, like custom types and collections/maps of

"simple" types (Strings, Integers, etc.) (see also Chapter 10, Mapping exceptions)

3. logging data for each revision using a "revision entity"

4. querying historical data

vi

Chapter 1.

1

Quickstart
If you're using JPA, when coniguring Hibernate (in persistence.xml), add the following event

listeners: (this will allow Envers to check if any audited entities were modified)

<persistence-unit ...>

<provider>org.hibernate.ejb.HibernatePersistence</provider>

<class>...</class>

<properties>

 <property name="hibernate.dialect" ... />

 <!-- other hibernate properties -->

 <property name="hibernate.ejb.event.post-insert"

 value="org.hibernate.ejb.event.EJB3PostInsertEventListener,org.hibernate.envers.event.AuditEventListener" /

>

 <property name="hibernate.ejb.event.post-update"

 value="org.hibernate.ejb.event.EJB3PostUpdateEventListener,org.hibernate.envers.event.AuditEventListener" /

>

 <property name="hibernate.ejb.event.post-delete"

 value="org.hibernate.ejb.event.EJB3PostDeleteEventListener,org.hibernate.envers.event.AuditEventListener" /

>

 <property name="hibernate.ejb.event.pre-collection-update"

 value="org.hibernate.envers.event.AuditEventListener" />

 <property name="hibernate.ejb.event.pre-collection-remove"

 value="org.hibernate.envers.event.AuditEventListener" />

 <property name="hibernate.ejb.event.post-collection-recreate"

 value="org.hibernate.envers.event.AuditEventListener" />

</properties>

</persistence-unit>

If you're using Hibernate directly, add the following to hibernate.cfg.xml:

 <hibernate-configuration>

 <session-factory>

 <listener class="org.hibernate.envers.event.AuditEventListener" type="post-insert"/>

 <listener class="org.hibernate.envers.event.AuditEventListener" type="post-update"/>

 <listener class="org.hibernate.envers.event.AuditEventListener" type="post-delete"/>

 <listener class="org.hibernate.envers.event.AuditEventListener" type="pre-collection-update"/>

 <listener class="org.hibernate.envers.event.AuditEventListener" type="pre-collection-remove"/>

 <listener class="org.hibernate.envers.event.AuditEventListener" type="post-collection-

recreate"/>

 </session-factory>

 </hibernate-configuration>

Chapter 1. Quickstart

2

The EJB3Post...EvenListeners are needed, so that ejb3 entity lifecycle callback methods work

(@PostPersist, @PostUpdate, @PostRemove.

Then, annotate your persistent class with @Audited - this will make all properties audited. For

example:

import org.hibernate.envers.Audited;

import javax.persistence.Entity;

import javax.persistence.Id;

import javax.persistence.GeneratedValue;

import javax.persistence.Column;

@Entity

@Audited // that's the important part :)

public class Person {

 @Id

 @GeneratedValue

 private int id;

 private String name;

 private String surname;

 @ManyToOne

 private Address address;

 // add getters, setters, constructors, equals and hashCode here

}

And the referenced entity:

@Entity

@Audited

public class Address {

 @Id

 @GeneratedValue

 private int id;

 private String streetName;

 private Integer houseNumber;

 private Integer flatNumber;

 @OneToMany(mappedBy = "address")

 private Set<Person> persons;

 // add getters, setters, constructors, equals and hashCode here

}

3

And that's it! You create, modify and delete the entites as always. If you look at the generated

schema, you will notice that it is unchanged by adding auditing for the Address and Person entities.

Also, the data they hold is the same. There are, however, two new tables - Address_AUD and

Person_AUD, which store the historical data, whenever you commit a transaction.

Instead of annotating the whole class and auditing all properties, you can annotate only some

persistent properties with @Audited. This will cause only these properties to be audited.

You can access the audit (history) of an entity using the AuditReader interface, which you can

obtain when having an open EntityManager.

AuditReader reader = AuditReaderFactory.get(entityManager);

Person oldPerson = reader.find(Person.class, personId, revision)

The T find(Class<T> cls, Object primaryKey, Number revision) method returns an entity

with the given primary key, with the data it contained at the given revision. If the entity didn't exist

at this revision, null is returned. Only the audited properties will be set on the returned entity.

The rest will be null.

You can also get a list of revisions at which an entity was modified using the getRevisions

method, as well as retrieve the date, at which a revision was created using the getRevisionDate

method.

4

Chapter 2.

5

Short example
For example, using the entities defined above, the following code will generate revision number

1, which will contain two new Person and two new Address entities:

entityManager.getTransaction().begin();

Address address1 = new Address("Privet Drive", 4);

Person person1 = new Person("Harry", "Potter", address1);

Address address2 = new Address("Grimmauld Place", 12);

Person person2 = new Person("Hermione", "Granger", address2);

entityManager.persist(address1);

entityManager.persist(address2);

entityManager.persist(person1);

entityManager.persist(person2);

entityManager.getTransaction().commit();

Now we change some entities. This will generate revision number 2, which will contain

modifications of one person entity and two address entities (as the collection of persons living at

address2 and address1 changes):

entityManager.getTransaction().begin();

Address address1 = entityManager.find(Address.class, address1.getId());

Person person2 = entityManager.find(Person.class, person2.getId());

// Changing the address's house number

address1.setHouseNumber(5)

// And moving Hermione to Harry

person2.setAddress(address1);

entityManager.getTransaction().commit();

We can retrieve the old versions (the audit) easily:

AuditReader reader = AuditReaderFactory.get(entityManager);

Person person2_rev1 = reader.find(Person.class, person2.getId(), 1);

assert person2_rev1.getAddress().equals(new Address("Grimmauld Place", 12));

Address address1_rev1 = reader.find(Address.class, address1.getId(), 1);

assert address1_rev1.getPersons().getSize() == 1;

// and so on

6

Chapter 3.

7

Configuration

3.1. Basic configuration

To start working with Envers, all configuration that you must do is add the event listeners to

persistence.xml, as described in the Chapter 1, Quickstart.

However, as Envers generates some entities, and maps them to tables, it is possible to set the

prefix and suffix that is added to the entity name to create an audit table for an entity, as well as

set the names of the fields that are generated.

3.2. Choosing an audit strategy

After the basic configuration it is important to choose the audit strategy that will be used to persist

and retrieve audit information. There is a trade-off is between the performance of persisting and

the performance of querying the audit information. Currently there two audit strategies:

1. The default audit strategy persists the audit data together with a start revision. For each row

inserted, updated or deleted in an audited table, one or more rows are inserted in the audit

tables, together with the start revision of its validity. Rows in the audit tables are never updated

after insertion. Queries of audit information use subqueries to select the applicable rows in the

audit tables. These subqueries are notoriously slow and difficult to index.

2. The alternative is a validity audit strategy. This strategy stores the start-revision and the end-

revision of audit information. For each row inserted, updated or deleted in an audited table,

one or more rows are inserted in the audit tables, together with the start revision of its validity.

But at the same time the end-revision field of the previous audit rows (if available) are set to

this revision. Queries on the audit information can then use 'between start and end revision'

instead of subqueries as used by the default audit strategy. The consequence of this strategy is

that persisting audit information will be a bit slower, because of the extra updates involved, but

retrieving audit information will be a lot faster. This can be improved by adding extra indexes.

3.3. Reference

In more detail, here are the properties that you can set:

Table 3.1. Envers Configuration Properties

Property name Default value Description

org.hibernate.envers.audit_table_prefix String that will be prepended

to the name of an audited

entity to create the name of

the entity, that will hold audit

information.

Chapter 3. Configuration

8

Property name Default value Description

org.hibernate.envers.audit_table_suffix_AUD String that will be appended

to the name of an audited

entity to create the name

of the entity, that will hold

audit information. If you

audit an entity with a table

name Person, in the default

setting Envers will generate

a Person_AUD table to store

historical data.

org.hibernate.envers.revision_field_nameREV Name of a field in the audit

entity that will hold the revision

number.

org.hibernate.envers.revision_type_field_nameREVTYPE Name of a field in the audit

entity that will hold the type of

the revision (currently, this can

be: add, mod, del).

org.hibernate.envers.revision_on_collection_changetrue Should a revision be

generated when a not-owned

relation field changes (this can

be either a collection in a one-

to-many relation, or the field

using "mappedBy" attribute in

a one-to-one relation).

org.hibernate.envers.do_not_audit_optimistic_locking_fieldtrue When true, properties to be

used for optimistic locking,

annotated with @Version, will

be automatically not audited

(their history won't be stored;

it normally doesn't make sense

to store it).

org.hibernate.envers.store_data_at_deletefalse Should the entity data be

stored in the revision when

the entity is deleted (instead

of only storing the id and all

other properties as null). This

is not normally needed, as the

data is present in the last-

but-one revision. Sometimes,

however, it is easier and more

efficient to access it in the

Reference

9

Property name Default value Description

last revision (then the data

that the entity contained before

deletion is stored twice).

org.hibernate.envers.default_schemanull (same as normal tables) The default schema name

that should be used

for audit tables. Can

be overriden using the

@AuditTable(schema="...")

annotation. If not present, the

schema will be the same as

the schema of the normal

tables.

org.hibernate.envers.default_catalognull (same as normal tables) The default catalog name

that should be used

for audit tables. Can

be overriden using the

@AuditTable(catalog="...")

annotation. If not present, the

catalog will be the same as the

catalog of the normal tables.

org.hibernate.envers.audit_strategyorg.hibernate.envers.strategy.DefaultAuditStrategyThe audit strategy that should

be used when persisting

audit data. The default

stores only the revision,

at which an entity was

modified. An alternative, the

org.hibernate.envers.strategy.ValidityAuditStrategy

stores both the start revision

and the end revision. Together

these define when an audit

row was valid, hence the name

ValidityAuditStrategy.

org.hibernate.envers.audit_strategy_validity_end_rev_field_nameREVEND The column name that will hold

the end revision number in

audit entities. This property is

only valid if the validity audit

strategy is used.

org.hibernate.envers.audit_strategy_validity_store_revend_timestampfalse Should the timestamp of the

end revision be stored, until

which the data was valid, in

addition to the end revision

itself. This is useful to be able

Chapter 3. Configuration

10

Property name Default value Description

to purge old Audit records

out of a relational database

by using table partitioning.

Partitioning requires a column

that exists within the table.

This property is only evaluated

if the ValidityAuditStrategy is

used.

org.hibernate.envers.audit_strategy_validity_revend_timestamp_field_nameREVEND_TSTMP Column name of the

timestamp of the end revision

until which the data was

valid. Only used if the

ValidityAuditStrategy is used,

and

org.hibernate.envers.audit_strategy_validity_store_revend_timestamp

evaluates to true

Important

The following configuration options have been added recently and should be

regarded as experimental:

1. org.hibernate.envers.audit_strategy

2. org.hibernate.envers.audit_strategy_validity_end_rev_field_name

3. org.hibernate.envers.audit_strategy_validity_store_revend_timestamp

4. org.hibernate.envers.audit_strategy_validity_revend_timestamp_field_name

To change the name of the revision table and its fields (the table, in which the numbers of

revisions and their timestamps are stored), you can use the @RevisionEntity annotation. For

more information, see Chapter 4, Logging data for revisions.

To set the value of any of the properties described above, simply add an entry to your

persistence.xml. For example:

<persistence-unit ...>

<provider>org.hibernate.ejb.HibernatePersistence</provider>

<class>...</class>

<properties>

 <property name="hibernate.dialect" ... />

 <!-- other hibernate properties -->

Reference

11

 <property name="hibernate.ejb.event.post-insert"

 value="org.hibernate.ejb.event.EJB3PostInsertEventListener,org.hibernate.envers.event.AuditEventListener" /

>

 <property name="hibernate.ejb.event.post-update"

 value="org.hibernate.ejb.event.EJB3PostUpdateEventListener,org.hibernate.envers.event.AuditEventListener" /

>

 <property name="hibernate.ejb.event.post-delete"

 value="org.hibernate.ejb.event.EJB3PostDeleteEventListener,org.hibernate.envers.event.AuditEventListener" /

>

 <property name="hibernate.ejb.event.pre-collection-update"

 value="org.hibernate.envers.event.AuditEventListener" />

 <property name="hibernate.ejb.event.pre-collection-remove"

 value="org.hibernate.envers.event.AuditEventListener" />

 <property name="hibernate.ejb.event.post-collection-recreate"

 value="org.hibernate.envers.event.AuditEventListener" />

 <property name="org.hibernate.envers.versionsTableSuffix" value="_V" />

 <property name="org.hibernate.envers.revisionFieldName" value="ver_rev" />

 <!-- other envers properties -->

</properties>

</persistence-unit>

The EJB3Post...EvenListeners are needed, so that ejb3 entity lifecycle callback methods work

(@PostPersist, @PostUpdate, @PostRemove.

You can also set the name of the audit table on a per-entity basis, using the @AuditTable

annotation. It may be tedious to add this annotation to every audited entity, so if possible, it's

better to use a prefix/suffix.

If you have a mapping with secondary tables, audit tables for them will be generated in the same

way (by adding the prefix and suffix). If you wish to overwrite this behaviour, you can use the

@SecondaryAuditTable and @SecondaryAuditTables annotations.

If you'd like to override auditing behaviour of some fields/properties in an embedded component,

you can use the @AuditOverride(s) annotation on the place where you use the component.

If you want to audit a relation mapped with @OneToMany+@JoinColumn, please see Chapter 10,

Mapping exceptions for a description of the additional @AuditJoinTable annotation that you'll

probably want to use.

If you want to audit a relation, where the target entity is not audited (that is the case for example

with dictionary-like entities, which don't change and don't have to be audited), just annotate it

with @Audited(targetAuditMode = RelationTargetAuditMode.NOT_AUDITED). Then, when

reading historic versions of your entity, the relation will always point to the "current" related entity.

If you'd like to audit properties encapsulated by any subset of your entity's mapped superclasses

(which are not explicitly audited), list desired supertypes in auditParents attribute of @Audited

annotation. If any @MappedSuperclass (or any of it's properties) is marked as @Audited, it's

behavior is implicitly inherited by all audited subclasses.

12

Chapter 4.

13

Logging data for revisions
Envers provides an easy way to log additional data for each revision. You simply need to annotate

one entity with @RevisionEntity, and a new instance of this entity will be persisted when a new

revision is created (that is, whenever an audited entity is modified). As revisions are global, you

can have at most one revisions entity.

Please note that the revision entity must be a mapped Hibernate entity.

This entity must have at least two properties:

1. an integer- or long-valued property, annotated with @RevisionNumber. Most often, this will be

an auto-generated primary key.

2. a long- or j.u.Date- valued property, annotated with @RevisionTimestamp. Value of this

property will be automatically set by Envers.

You can either add these properties to your entity, or extend

org.hibernate.envers.DefaultRevisionEntity, which already has those two properties.

When using a Date, instead of a long/Long for the revision timestamp, take care not to use a

mapping of the property which will loose precision (for example, using @Temporal(DATE) is wrong,

as it doesn't store the time information, so many of your revisions will appear to happen at exactly

the same time). A good choice is a @Temporal(TIMESTAMP).

To fill the entity with additional data, you'll need to implement the

org.jboss.envers.RevisionListener interface. Its newRevision method will be called when

a new revision is created, before persisting the revision entity. The implementation should be

stateless and thread-safe. The listener then has to be attached to the revisions entity by specifying

it as a parameter to the @RevisionEntity annotation.

Alternatively, you can use the getCurrentRevision method of the AuditReader interface to

obtain the current revision, and fill it with desired information. The method has a persist

parameter specifying, if the revision entity should be persisted before returning. If set to true,

the revision number will be available in the returned revision entity (as it is normally generated by

the database), but the revision entity will be persisted regardless of wheter there are any audited

entities changed. If set to false, the revision number will be null, but the revision entity will be

persisted only if some audited entities have changed.

A simplest example of a revisions entity, which with each revision associates the username of the

user making the change is:

package org.jboss.envers.example;

import org.hibernate.envers.RevisionEntity;

import org.hibernate.envers.DefaultRevisionEntity;

import javax.persistence.Entity;

Chapter 4. Logging data for r...

14

@Entity

@RevisionEntity(ExampleListener.class)

public class ExampleRevEntity extends DefaultRevisionEntity {

 private String username;

 public String getUsername() { return username; }

 public void setUsername(String username) { this.username = username; }

}

Or, if you don't want to extend any class:

package org.hibernate.envers.example;

import org.hibernate.envers.RevisionNumber;

import org.hibernate.envers.RevisionTimestamp;

import org.hibernate.envers.RevisionEntity;

import javax.persistence.Id;

import javax.persistence.GeneratedValue;

import javax.persistence.Entity;

@Entity

@RevisionEntity(ExampleListener.class)

public class ExampleRevEntity {

 @Id

 @GeneratedValue

 @RevisionNumber

 private int id;

 @RevisionTimestamp

 private long timestamp;

 private String username;

 // Getters, setters, equals, hashCode ...

}

An example listener, which, if used in a JBoss Seam application, stores the currently logged in

user username:

package org.hibernate.envers.example;

import org.hibernate.envers.RevisionListener;

import org.jboss.seam.security.Identity;

import org.jboss.seam.Component;

public class ExampleListener implements RevisionListener {

 public void newRevision(Object revisionEntity) {

 ExampleRevEntity exampleRevEntity = (ExampleRevEntity) revisionEntity;

 Identity identity = (Identity) Component.getInstance("org.jboss.seam.security.identity");

 exampleRevEntity.setUsername(identity.getUsername());

 }

Tracking entity names modified during revisions

15

}

Having an "empty" revision entity - that is, with no additional properties except the two mandatory

ones - is also an easy way to change the names of the table and of the properties in the revisions

table automatically generated by Envers.

In case there is no entity annotated with @RevisionEntity, a default table will be generated, with

the name REVINFO.

4.1. Tracking entity names modified during revisions

By default entity types that have been changed in each revision are not being tracked.

This implies the necessity to query all tables storing audited data in order to retrieve

changes made during specified revision. Users are allowed to implement custom mechanism

of tracking modified entity names. In this case, they shall pass their own implementation

of org.hibernate.envers.EntityTrackingRevisionListener interface as the value of

@org.hibernate.envers.RevisionEntity annotation. EntityTrackingRevisionListener

interface exposes one method that notifies whenever audited entity instance has been added,

modified or removed within current revision boundaries.

Example 4.1. Custom implementation of tracking entity classes modified

during revisions

 CustomEntityTrackingRevisionListener.java

public class CustomEntityTrackingRevisionListener

 implements EntityTrackingRevisionListener {

 @Override

 public void entityChanged(Class entityClass, String entityName,

 Serializable entityId, RevisionType revisionType,

 Object revisionEntity) {

 String type = entityClass.getName();

 ((CustomTrackingRevisionEntity)revisionEntity).addModifiedEntityType(type);

 }

 @Override

 public void newRevision(Object revisionEntity) {

 }

}

 CustomTrackingRevisionEntity.java

@Entity

@RevisionEntity(CustomEntityTrackingRevisionListener.class)

public class CustomTrackingRevisionEntity {

 @Id

Chapter 4. Logging data for r...

16

 @GeneratedValue

 @RevisionNumber

 private int customId;

 @RevisionTimestamp

 private long customTimestamp;

 @OneToMany(mappedBy="revision", cascade={CascadeType.PERSIST, CascadeType.REMOVE})

 private Set<ModifiedEntityTypeEntity> modifiedEntityTypes =

 new HashSet<ModifiedEntityTypeEntity>();

 public void addModifiedEntityType(String entityClassName) {

 modifiedEntityTypes.add(new ModifiedEntityTypeEntity(this, entityClassName));

 }

 ...

}

 ModifiedEntityTypeEntity.java

@Entity

public class ModifiedEntityTypeEntity {

 @Id

 @GeneratedValue

 private Integer id;

 @ManyToOne

 private CustomTrackingRevisionEntity revision;

 private String entityClassName;

 ...

}

CustomTrackingRevisionEntity revEntity =

 getAuditReader().findRevision(CustomTrackingRevisionEntity.class, revisionNumber);

Set<ModifiedEntityTypeEntity> modifiedEntityTypes = revEntity.getModifiedEntityTypes()

Chapter 5.

17

Queries
You can think of historic data as having two dimension. The first - horizontal - is the state of the

database at a given revision. Thus, you can query for entities as they were at revision N. The

second - vertical - are the revisions, at which entities changed. Hence, you can query for revisions,

in which a given entity changed.

The queries in Envers are similar to Hibernate Criteria [http://www.hibernate.org/hib_docs/v3/

reference/en/html/querycriteria.html], so if you are common with them, using Envers queries will

be much easier.

The main limitation of the current queries implementation is that you cannot traverse relations.

You can only specify constraints on the ids of the related entities, and only on the "owning" side

of the relation. This however will be changed in future releases.

Please note, that queries on the audited data will be in many cases much slower than

corresponding queries on "live" data, as they involve correlated subselects.

In the future, queries will be improved both in terms of speed and possibilities, when using the valid-

time audit strategy, that is when storing both start and end revisions for entities. See Chapter 3,

Configuration.

5.1. Querying for entities of a class at a given revision

The entry point for this type of queries is:

AuditQuery query = getAuditReader().createQuery().forEntitiesAtRevision(MyEntity.class,

 revisionNumber);

You can then specify constraints, which should be met by the entities returned, by adding

restrictions, which can be obtained using the AuditEntity factory class. For example, to select

only entities, where the "name" property is equal to "John":

query.add(AuditEntity.property("name").eq("John"));

And to select only entites that are related to a given entity:

query.add(AuditEntity.property("address").eq(relatedEntityInstance));

// or

query.add(AuditEntity.relatedId("address").eq(relatedEntityId));

http://www.hibernate.org/hib_docs/v3/reference/en/html/querycriteria.html
http://www.hibernate.org/hib_docs/v3/reference/en/html/querycriteria.html
http://www.hibernate.org/hib_docs/v3/reference/en/html/querycriteria.html

Chapter 5. Queries

18

You can limit the number of results, order them, and set aggregations and projections (except

grouping) in the usual way. When your query is complete, you can obtain the results by calling

the getSingleResult() or getResultList() methods.

A full query, can look for example like this:

List personsAtAddress = getAuditReader().createQuery()

 .forEntitiesAtRevision(Person.class, 12)

 .addOrder(AuditEntity.property("surname").desc())

 .add(AuditEntity.relatedId("address").eq(addressId))

 .setFirstResult(4)

 .setMaxResults(2)

 .getResultList();

5.2. Querying for revisions, at which entities of a given

class changed

The entry point for this type of queries is:

AuditQuery query = getAuditReader().createQuery()

 .forRevisionsOfEntity(MyEntity.class, false, true);

You can add constraints to this query in the same way as to the previous one. There are some

additional possibilities:

1. using AuditEntity.revisionNumber() you can specify constraints, projections and order on

the revision number, in which the audited entity was modified

2. similarly, using AuditEntity.revisionProperty(propertyName) you can specify

constraints, projections and order on a property of the revision entity, corresponding to the

revision in which the audited entity was modified

3. AuditEntity.revisionType() gives you access as above to the type of the revision (ADD,

MOD, DEL).

Using these methods, you can order the query results by revision number, set projection or

constraint the revision number to be greater or less than a specified value, etc. For example, the

following query will select the smallest revision number, at which entity of class MyEntity with id

entityId has changed, after revision number 42:

Number revision = (Number) getAuditReader().createQuery()

 .forRevisionsOfEntity(MyEntity.class, false, true)

 .setProjection(AuditEntity.revisionNumber().min())

 .add(AuditEntity.id().eq(entityId))

 .add(AuditEntity.revisionNumber().gt(42))

Querying for revisions, at which entities of a given class changed

19

 .getSingleResult();

The second additional feature you can use in queries for revisions is the ability to maximalize/

minimize a property. For example, if you want to select the revision, at which the value of the

actualDate for a given entity was larger then a given value, but as small as possible:

Number revision = (Number) getAuditReader().createQuery()

 .forRevisionsOfEntity(MyEntity.class, false, true)

 // We are only interested in the first revision

 .setProjection(AuditEntity.revisionNumber().min())

 .add(AuditEntity.property("actualDate").minimize()

 .add(AuditEntity.property("actualDate").ge(givenDate))

 .add(AuditEntity.id().eq(givenEntityId)))

 .getSingleResult();

The minimize() and maximize() methods return a criteria, to which you can add constraints,

which must be met by the entities with the maximized/minimized properties.

You probably also noticed that there are two boolean parameters, passed when creating the query.

The first one, selectEntitiesOnly, is only valid when you don't set an explicit projection. If true,

the result of the query will be a list of entities (which changed at revisions satisfying the specified

constraints).

If false, the result will be a list of three element arrays. The first element will be the changed entity

instance. The second will be an entity containing revision data (if no custom entity is used, this

will be an instance of DefaultRevisionEntity). The third will be the type of the revision (one of

the values of the RevisionType enumeration: ADD, MOD, DEL).

The second parameter, selectDeletedEntities, specifies if revisions, in which the entity was

deleted should be included in the results. If yes, such entities will have the revision type DEL and

all fields, except the id, null.

20

Chapter 6.

21

Generating schema with Ant
If you'd like to generate the database schema file with the Hibernate Tools Ant task, you'll probably

notice that the generated file doesn't contain definitions of audit tables. To generate also the audit

tables, you simply need to use org.hibernate.tool.ant.EnversHibernateToolTask instead of

the usual org.hibernate.tool.ant.HibernateToolTask. The former class extends the latter,

and only adds generation of the version entities. So you can use the task just as you used to.

For example:

<target name="schemaexport" depends="build-demo"

 description="Exports a generated schema to DB and file">

 <taskdef name="hibernatetool"

 classname="org.hibernate.tool.ant.EnversHibernateToolTask"

 classpathref="build.demo.classpath"/>

 <hibernatetool destdir=".">

 <classpath>

 <fileset refid="lib.hibernate" />

 <path location="${build.demo.dir}" />

 <path location="${build.main.dir}" />

 </classpath>

 <jpaconfiguration persistenceunit="ConsolePU" />

 <hbm2ddl

 drop="false"

 create="true"

 export="false"

 outputfilename="versioning-ddl.sql"

 delimiter=";"

 format="true"/>

 </hibernatetool>

</target>

Will generate the following schema:

 create table Address (

 id integer generated by default as identity (start with 1),

 flatNumber integer,

 houseNumber integer,

 streetName varchar(255),

 primary key (id)

);

 create table Address_AUD (

 id integer not null,

 REV integer not null,

 flatNumber integer,

 houseNumber integer,

 streetName varchar(255),

 REVTYPE tinyint,

 primary key (id, REV)

Chapter 6. Generating schema ...

22

);

 create table Person (

 id integer generated by default as identity (start with 1),

 name varchar(255),

 surname varchar(255),

 address_id integer,

 primary key (id)

);

 create table Person_AUD (

 id integer not null,

 REV integer not null,

 name varchar(255),

 surname varchar(255),

 REVTYPE tinyint,

 address_id integer,

 primary key (id, REV)

);

 create table REVINFO (

 REV integer generated by default as identity (start with 1),

 REVTSTMP bigint,

 primary key (REV)

);

 alter table Person

 add constraint FK8E488775E4C3EA63

 foreign key (address_id)

 references Address;

Chapter 7.

23

Generated tables and their content
For each audited entity (that is, for each entity containing at least one audited field), an audit table

is created. By default, the audit table's name is created by adding a "_AUD" suffix to the original

name, but this can be overriden by specifing a different suffix/prefix (see Chapter 3, Configuration)

or on a per-entity basis using the @AuditTable annotation.

The audit table has the following fields:

1. id of the original entity (this can be more then one column, if using an embedded or multiple id)

2. revision number - an integer

3. revision type - a small integer

4. audited fields from the original entity

The primary key of the audit table is the combination of the original id of the entity and the revision

number - there can be at most one historic entry for a given entity instance at a given revision.

The current entity data is stored in the original table and in the audit table. This is a duplication of

data, however as this solution makes the query system much more powerful, and as memory is

cheap, hopefully this won't be a major drawback for the users. A row in the audit table with entity

id ID, revision N and data D means: entity with id ID has data D from revision N upwards. Hence,

if we want to find an entity at revision M, we have to search for a row in the audit table, which has

the revision number smaller or equal to M, but as large as possible. If no such row is found, or a

row with a "deleted" marker is found, it means that the entity didn't exist at that revision.

The "revision type" field can currently have three values: 0, 1, 2, which means, respectively, ADD,

MOD and DEL. A row with a revision of type DEL will only contain the id of the entity and no data

(all fields NULL), as it only serves as a marker saying "this entity was deleted at that revision".

Additionaly, there is a "REVINFO" table generated, which contains only two fields: the revision id

and revision timestamp. A row is inserted into this table on each new revision, that is, on each

commit of a transaction, which changes audited data. The name of this table can be configured, as

well as additional content stored, using the @RevisionEntity annotation, see Chapter 4, Logging

data for revisions.

While global revisions are a good way to provide correct auditing of relations, some people have

pointed out that this may be a bottleneck in systems, where data is very often modified. One viable

solution is to introduce an option to have an entity "locally revisioned", that is revisions would be

created for it independently. This wouldn't enable correct versioning of relations, but wouldn't also

require the "REVINFO" table. Another possibility if to have "revisioning groups", that is groups of

entities which share revision numbering. Each such group would have to consist of one or more

strongly connected component of the graph induced by relations between entities. Your opinions

on the subject are very welcome on the forum! :)

24

Chapter 8.

25

Audit table partitioning

8.1. Benefits of audit table partitioning

Because audit tables tend to grow indefinitely they can quickly become really large. When the

audit tables have grown to a certain limit (varying per RDBMS and/or operating system) it makes

sense to start using table partitioning. SQL table partitioning offers a lot of advantages including,

but certainly not limited to:

1. Improved query performance by selectively moving rows to various partitions (or even purging

old rows)

2. Faster data loads, index creation, etc.

8.2. Suitable columns for audit table partitioning

Generally SQL tables must be partitioned on a column that exists within the table. As a rule it

makes sense to use either the end revision or the end revision timestamp column for partioning

of audit tables.

Note

End revision information is not available for the default AuditStrategy.

Therefore the following Envers configuration options are required:

org.hibernate.envers.audit_strategy =

org.hibernate.envers.strategy.ValidityAuditStrategy

org.hibernate.envers.audit_strategy_validity_store_revend_timestamp

= true

Optionally, you can also override the default values following properties:

org.hibernate.envers.audit_strategy_validity_end_rev_field_name

org.hibernate.envers.audit_strategy_validity_revend_timestamp_field_name

For more information, see Chapter 3, Configuration.

The reason why the end revision information should be used for audit table partioning is based on

the assumption that audit tables should be partionioned on an 'increasing level of interestingness',

like so:

1. A couple of partitions with audit data that is not very (or no longer) interesting. This can be

stored on slow media, and perhaps even be purged eventually.

Chapter 8. Audit table partit...

26

2. Some partitions for audit data that is potentially interesting.

3. One partition for audit data that is most likely to be interesting. This should be stored on the

fastest media, both for reading and writing.

8.3. Audit table partitioning example

In order to determine a suitable column for the 'increasing level of interestingness', consider a

simplified example of a salary registration for an unnamed agency.

Currently, the salary table contains the following rows for a certain person X:

Table 8.1. Salaries table

Year Salary (USD)

2006 3300

2007 3500

2008 4000

2009 4500

The salary for the current fiscal year (2010) is unknown. The agency requires that all changes in

registered salaries for a fiscal year are recorded (i.e. an audit trail). The rationale behind this is

that decisions made at a certain date are based on the registered salary at that time. And at any

time it must be possible reproduce the reason why a certain decision was made at a certain date.

The following audit information is available, sorted on in order of occurrence:

Table 8.2. Salaries - audit table

Year Revision type Revision

timestamp

Salary (USD) End revision

timestamp

2006 ADD 2007-04-01 3300 null

2007 ADD 2008-04-01 35 2008-04-02

2007 MOD 2008-04-02 3500 null

2008 ADD 2009-04-01 3700 2009-07-01

2008 MOD 2009-07-01 4100 2010-02-01

2008 MOD 2010-02-01 4000 null

2009 ADD 2010-04-01 4500 null

8.3.1. Determining a suitable partitioning column

To partition this data, the 'level of interestingness' must be defined. Consider the following:

Determining a suitable partitioning scheme

27

1. For fiscal year 2006 there is only one revision. It has the oldest revision timestamp of all audit

rows, but should still be regarded as interesting because it is the latest modification for this

fiscal year in the salary table; its end revision timestamp is null.

Also note that it would be very unfortunate if in 2011 there would be an update of the salary

for fiscal year 2006 (which is possible in until at least 10 years after the fiscal year) and the

audit information would have been moved to a slow disk (based on the age of the revision

timestamp). Remember that in this case Envers will have to update the end revision timestamp

of the most recent audit row.

2. There are two revisions in the salary of fiscal year 2007 which both have nearly the same

revision timestamp and a different end revision timestamp. On first sight it is evident that the

first revision was a mistake and probably uninteresting. The only interesting revision for 2007

is the one with end revision timestamp null.

Based on the above, it is evident that only the end revision timestamp is suitable for audit table

partitioning. The revision timestamp is not suitable.

8.3.2. Determining a suitable partitioning scheme

A possible partitioning scheme for the salary table would be as follows:

1. end revision timestamp year = 2008

This partition contains audit data that is not very (or no longer) interesting.

2. end revision timestamp year = 2009

This partition contains audit data that is potentially interesting.

3. end revision timestamp year >= 2010 or null

This partition contains the most interesting audit data.

This partitioning scheme also covers the potential problem of the update of the end revision

timestamp, which occurs if a row in the audited table is modified. Even though Envers will update

the end revision timestamp of the audit row to the system date at the instant of modification, the

audit row will remain in the same partition (the 'extension bucket').

And sometime in 2011, the last partition (or 'extension bucket') is split into two new partitions:

1. end revision timestamp year = 2010

This partition contains audit data that is potentially interesting (in 2011).

2. end revision timestamp year >= 2011 or null

This partition contains the most interesting audit data and is the new 'extension bucket'.

28

Chapter 9.

29

Building from source and testing

9.1. Building from source

Envers, as a module of Hibernate, uses the standard Hibernate build. So all the usual build targets

(compile, test, install) will work.

The public Hibernate Git repository is hosted at GitHub and can be browsed using GitHub [https://

github.com/hibernate/hibernate-core]. The source can be checked out using either

 git clone https://github.com/hibernate/hibernate-core hibernate-core.git

 git clone git://github.com/hibernate/hibernate-core.git

9.2. Contributing

If you want to contribute a fix or new feature, either:

• use the GitHub fork capability: clone, work on a branch, fork the repo on GitHub (fork button),

push the work there and trigger a pull request (pull request button).

• use the pure Git approach: clone, work on a branch, push to a public fork repo hosted

somewhere, trigger a pull request (git pull-request)

• provide a good old patch file: clone the repo, create a patch with git format-patch or diff and

attach the patch file to JIRA

9.3. Envers integration tests

The tests use, by default, use a H2 in-memory database. The configuration file can be found in

src/test/resources/hibernate.test.cfg.xml.

The tests use TestNG, and can be found in the org.hibernate.envers.test.integration

package (or rather, in subpackages of this package). The tests aren't unit tests, as they don't test

individual classes, but the behaviour and interaction of many classes, hence the name of package.

A test normally consists of an entity (or two entities) that will be audited and extends the

AbstractEntityTest class, which has one abstract method: configure(Ejb3Configuration).

The role of this method is to add the entities that will be used in the test to the configuration.

The test data is in most cases created in the "initData" method (which is called once before the

tests from this class are executed), which normally creates a couple of revisions, by persisting

and updating entities. The tests first check if the revisions, in which entities where modified are

https://github.com/hibernate/hibernate-core
https://github.com/hibernate/hibernate-core
https://github.com/hibernate/hibernate-core

Chapter 9. Building from sour...

30

correct (the testRevisionCounts method), and if the historic data is correct (the testHistoryOfXxx

methods).

Chapter 10.

31

Mapping exceptions

10.1. What isn't and will not be supported

Bags (the corresponding Java type is List), as they can contain non-unique elements. The reason

is that persisting, for example a bag of String-s, violates a principle of relational databases: that

each table is a set of tuples. In case of bags, however (which require a join table), if there is

a duplicate element, the two tuples corresponding to the elements will be the same. Hibernate

allows this, however Envers (or more precisely: the database connector) will throw an exception

when trying to persist two identical elements, because of a unique constraint violation.

There are at least two ways out if you need bag semantics:

1. use an indexed collection, with the @IndexColumn annotation, or

2. provide a unique id for your elements with the @CollectionId annotation.

10.2. What isn't and will be supported

1. collections of components

10.3. @OneToMany+@JoinColumn

When a collection is mapped using these two annotations, Hibernate doesn't generate a join table.

Envers, however, has to do this, so that when you read the revisions in which the related entity

has changed, you don't get false results.

To be able to name the additional join table, there is a special annotation: @AuditJoinTable,

which has similar semantics to JPA's @JoinTable.

One special case are relations mapped with @OneToMany+@JoinColumn on the one side,

and @ManyToOne+@JoinColumn(insertable=false, updatable=false) on the many side.

Such relations are in fact bidirectional, but the owning side is the collection (see

alse here [http://docs.jboss.org/hibernate/stable/annotations/reference/en/html_single/#entity-

hibspec-collection-extratype]).

To properly audit such relations with Envers, you can use the @AuditMappedBy annotation.

It enables you to specify the reverse property (using the mappedBy element). In case of

indexed collections, the index column must also be mapped in the referenced entity (using

@Column(insertable=false, updatable=false), and specified using positionMappedBy. This

annotation will affect only the way Envers works. Please note that the annotation is experimental

and may change in the future.

http://docs.jboss.org/hibernate/stable/annotations/reference/en/html_single/#entity-hibspec-collection-extratype
http://docs.jboss.org/hibernate/stable/annotations/reference/en/html_single/#entity-hibspec-collection-extratype
http://docs.jboss.org/hibernate/stable/annotations/reference/en/html_single/#entity-hibspec-collection-extratype

32

Chapter 11.

33

Migration from Envers standalone
With the inclusion of Envers as a Hibernate module, some of the public API and configuration

defaults changed. In general, "versioning" is renamed to "auditing" (to avoid confusion with the

annotation used for indicating an optimistic locking field - @Version).

Because of changing some configuration defaults, there should be no more problems using Envers

out-of-the-box with Oracle and other databases, which don't allow tables and field names to start

with "_".

11.1. Changes to code

Public API changes involve changing "versioning" to "auditing". So, @Versioned became

@Audited; @VersionsTable became @AuditTable and so on.

Also, the query interface has changed slightly, mainly in the part for specifying restrictions,

projections and order. Please refer to the Javadoc for further details.

11.2. Changes to configuration

First of all, the name of the event listener changed. It

is now named org.hibernate.envers.event.AuditEventListener, instead of

org.jboss.envers.event.VersionsEventListener. So to make Envers work, you will have to

change these settings in your persistence.xml or Hibernate configuration.

Secondly, the names of the audit (versions) tables and additional auditing (versioning) fields

changed. The default suffix added to the table name is now _AUD, instead of _versions. The name

of the field that holds the revision number, and which is added to each audit (versions) table, is

now REV, instead of _revision. Finally, the name of the field that holds the type of the revision,

is now REVTYPE, instead of _rev_type.

If you have a schema generated with the old version of Envers, you will have to set those

properties, to use the new version of Envers without problems:

<persistence-unit ...>

<provider>org.hibernate.ejb.HibernatePersistence</provider>

<class>...</class>

<properties>

 <property name="hibernate.dialect" ... />

 <!-- other hibernate properties -->

 <!-- Envers listeners -->

 <property name="org.hibernate.envers.auditTableSuffix" value="_versions" />

 <property name="org.hibernate.envers.revisionFieldName" value="_revision" />

 <property name="org.hibernate.envers.revisionTypeFieldName" value="_rev_type" />

 <!-- other envers properties -->

</properties>

Chapter 11. Migration from En...

34

</persistence-unit>

The org.hibernate.envers.doNotAuditOptimisticLockingField property is now by default

true, instead of false. You probably never would want to audit the optimistic locking field. Also,

the org.hibernate.envers.warnOnUnsupportedTypes configuraiton option was removed. In

case you are using some unsupported types, use the @NotAudited annotation.

See Chapter 3, Configuration for details on the configuration and a description of the configuration

options.

11.3. Changes to the revision entity

This section applies only if you don't have a custom revision entity. The name of the revision entity

generated by default changed, so if you used the default one, you'll have to add a custom revision

entity, and map it to the old table. Here's the class that you have to create:

package org.hibernate.envers.example;

import org.hibernate.envers.RevisionNumber;

import org.hibernate.envers.RevisionTimestamp;

import org.hibernate.envers.RevisionEntity;

import javax.persistence.Id;

import javax.persistence.GeneratedValue;

import javax.persistence.Entity;

import javax.persistence.Column;

import javax.persistence.Table;

@Entity

@RevisionEntity

@Table(name="_revisions_info")

public class ExampleRevEntity {

 @Id

 @GeneratedValue

 @RevisionNumber

 @Column(name="revision_id")

 private int id;

 @RevisionTimestamp

 @Column(name="revision_timestamp")

 private long timestamp;

 // Getters, setters, equals, hashCode ...

}

Chapter 12.

35

Links
Some useful links:

1. Hibernate [http://hibernate.org]

2. Forum [http://community.jboss.org/en/envers?view=discussions]

3. Anonymous SVN [http://anonsvn.jboss.org/repos/hibernate/core/trunk/envers/]

4. JIRA issue tracker [http://opensource.atlassian.com/projects/hibernate/browse/HHH] (when

adding issues concerning Envers, be sure to select the "envers" component!)

5. IRC channel [irc://irc.freenode.net:6667/envers]

6. Blog [http://www.jboss.org/feeds/view/envers]

7. FAQ [https://community.jboss.org/wiki/EnversFAQ]

http://hibernate.org
http://hibernate.org
http://community.jboss.org/en/envers?view=discussions
http://community.jboss.org/en/envers?view=discussions
http://anonsvn.jboss.org/repos/hibernate/core/trunk/envers/
http://anonsvn.jboss.org/repos/hibernate/core/trunk/envers/
http://opensource.atlassian.com/projects/hibernate/browse/HHH
http://opensource.atlassian.com/projects/hibernate/browse/HHH
irc://irc.freenode.net:6667/envers
irc://irc.freenode.net:6667/envers
http://www.jboss.org/feeds/view/envers
http://www.jboss.org/feeds/view/envers
https://community.jboss.org/wiki/EnversFAQ
https://community.jboss.org/wiki/EnversFAQ

36

	Hibernate Envers - Easy Entity Auditing
	Table of Contents
	Preface
	Chapter 1. Quickstart
	Chapter 2. Short example
	Chapter 3. Configuration
	3.1. Basic configuration
	3.2. Choosing an audit strategy
	3.3. Reference

	Chapter 4. Logging data for revisions
	4.1. Tracking entity names modified during revisions

	Chapter 5. Queries
	5.1. Querying for entities of a class at a given revision
	5.2. Querying for revisions, at which entities of a given class changed

	Chapter 6. Generating schema with Ant
	Chapter 7. Generated tables and their content
	Chapter 8. Audit table partitioning
	8.1. Benefits of audit table partitioning
	8.2. Suitable columns for audit table partitioning
	8.3. Audit table partitioning example
	8.3.1. Determining a suitable partitioning column
	8.3.2. Determining a suitable partitioning scheme

	Chapter 9. Building from source and testing
	9.1. Building from source
	9.2. Contributing
	9.3. Envers integration tests

	Chapter 10. Mapping exceptions
	10.1. What isn't and will not be supported
	10.2. What isn't and will be supported
	10.3. @OneToMany+@JoinColumn

	Chapter 11. Migration from Envers standalone
	11.1. Changes to code
	11.2. Changes to configuration
	11.3. Changes to the revision entity

	Chapter 12. Links

