
FAUSTQuick Reference
(version 0.9.80)

GRAME
Centre National de CréationMusicale

June 2016

2

Contents

1 Introduction 7

1.1 Design Principles . 7

1.2 Signal Processor Semantic . 8

2 Compiling and installing Faust 9

2.1 Organization of the distribution . 9

2.2 Compilation . 9

2.3 Installation . 10

2.4 Compilation of the examples . 10

3 Faust syntax 11

3.1 Faust program . 12

3.2 Statements . 12

3.2.1 Declarations . 13

3.2.2 Imports . 13

3.2.3 Documentation . 13

3.3 Definitions . 15

3.3.1 Simple Definitions . 16

3.3.2 Function Definitions . 16

3.3.3 Definitions with pattern matching 17

3.4 Expressions . 18

3

4 CONTENTS

3.4.1 Diagram Expressions . 18
3.4.2 Numerical Expressions . 24
3.4.3 Time expressions . 25
3.4.4 Environment expressions . 26
3.4.5 Foreign expressions . 30
3.4.6 Applications and Abstractions . 32

3.5 Primitives . 34
3.5.1 Numbers . 34
3.5.2 Waveforms . 34
3.5.3 C-equivalent primitives . 35
3.5.4 math.h-equivalent primitives . 36
3.5.5 Delay, Table, Selector primitives 36
3.5.6 User Interface Elements . 37

4 Invoking the Faust compiler 43
4.1 Compilation options . 43

5 Architecture files 47
5.1 Audio architecture modules . 47
5.2 UI architecture modules . 49

5.2.1 Active widgets . 51
5.2.2 Passive widgets . 51
5.2.3 Widgets layout . 51
5.2.4 Metadata . 51

6 OSC support 53
6.1 A simple example . 53
6.2 Automatic port allocation . 55
6.3 Discovering OSC applications . 56
6.4 Discovering the OSC interface of an application 56
6.5 Widget’s OSC address . 57
6.6 Controlling the application via OSC . 58

CONTENTS 5

6.7 Turning transmission ON . 58

6.8 Filtering OSCmessages . 59

6.9 Using OSC aliases . 60

6.10 OSC cheat sheet . 62

7 HTTP support 63

7.1 A simple example . 63

7.2 JSON description of the user interface . 65

7.3 Quering the state of the application . 66

7.4 Changing the value of a widget . 67

7.5 Proxy control access to the Web server . 67

7.6 HTTP cheat sheet . 68

8 MIDI support 71

8.1 MIDI messages description in the dsp source code 71

8.2 Description of the possible standardMIDI messages 71

8.3 A simple examples . 72

8.4 MIDI synchronization . 73

9 Controlling the code generation 75

9.1 Vector Code generation . 75

9.2 Parallel Code generation . 78

9.2.1 The OpenMP code generator . 78

9.2.2 Adding OpenMP directives . 80

9.2.3 Example of parallel OpenMP code 81

9.2.4 The scheduler code generator . 84

9.2.5 Example of parallel scheduler code 85

10 Mathematical Documentation 89

10.1 Goals of the mathdoc . 89

10.2 Installation requirements . 89

10.3 Generating the mathdoc . 90

6 CONTENTS

10.3.1 Invoking the -mdoc option . 90
10.3.2 Invoking faust2mathdoc . 90
10.3.3 Online examples . 91

10.4 Automatic documentation . 91
10.5 Manual documentation . 91

10.5.1 Six tags . 92
10.5.2 The mdoc top-level tags . 92
10.5.3 An example of manual mathdoc 93
10.5.4 The -stripmdoc option . 94

10.6 Localization of mathdoc files . 95
10.7 Summary of the mathdoc generation steps 99

11 Acknowledgments 101

Chapter 1

Introduction

Faust (Functional Audio Stream) is a functional programming language specifically
designed for real-time signal processing and synthesis. Faust targets high-performance
signal processing applications and audio plug-ins for a variety of platforms and standards.

1.1 Design Principles

Various principles have guided the design of Faust:

• Faust is a specification language. It aims at providing an adequate notation to
describe signal processors from a mathematical point of view. Faust is, as much as
possible, free from implementation details.

• Faust programs are fully compiled, not interpreted. The compiler translates
Faust programs into equivalent C++ programs taking care of generating the
most efficient code. The result can generally compete with, and sometimes even
outperform, C++ code written by seasoned programmers.

• The generated code works at the sample level. It is therefore suited to implement
low-level DSP functions like recursive filters. Moreover the code can be easily
embedded. It is self-contained and doesn’t depend of any DSP library or runtime
system. It has a very deterministic behavior and a constant memory footprint.

• The semantic of Faust is simple and well defined. This is not just of academic in-
terest. It allows the Faust compiler to be semantically driven. Instead of compiling
a program literally, it compiles the mathematical function it denotes. This feature
is useful for example to promote components reuse while preserving optimal
performance.

7

8 CHAPTER 1. INTRODUCTION

• Faust is a textual language but nevertheless block-diagram oriented. It actually
combines two approaches: functional programming and algebraic block-diagrams.
The key idea is to view block-diagram construction as function composition.
For that purpose, Faust relies on a block-diagram algebra of five composition
operations (: , ~ <: :>).

• Thanks to the notion of architecture, Faust programs can be easily deployed on a
large variety of audio platforms and plugin formats without any change to the
Faust code.

1.2 Signal Processor Semantic

AFaust program describes a signal processor. The role of a signal processor is to transforms
a (possibly empty) group of input signals in order to produce a (possibly empty) group
of output signals. Most audio equipments can be modeled as signal processors. They
have audio inputs, audio outputs as well as control signals interfaced with sliders, knobs,
vu-meters, etc.
More precisely :

• A signal s is a discrete function of time s :Z→R. The value of a signal s at time
Faust considers two

type of signals: integer
signals (s :Z→Z) and

floating point signals
(s :Z→Q) Exchanges
with the outside world

are, by convention,
made using floating

point signals. The full
range is represented by
sample values between

-1.0 and +1.0.

t is written s(t). The values of signals are usually needed starting from time 0. But
to take into account delay operations, negative times are possible and are always
mapped to zeros. Therefore for any Faust signal s we have ∀t < 0, s(t) = 0.
In operational terms this corresponds to assuming that all delay lines are signals
initialized with 0s.

• The set of all possible signals is S=Z→R.

• A group of n signals (a n-tuple of signals) is written (s1, . . . , sn) ∈ Sn . The empty
tuple, single element of S0 is notated ().

• A signal processors p , is a function from n-tuples of signals tom-tuples of signals
p : Sn → Sm . The set P =

⋃

n,m S
n → Sm is the set of all possible signal

processors.

As an example, let’s express the semantic of the Faust primitive +. Like any Faust expres-
sion, it is a signal processor. Its signature is S2→ S. It takes two input signals X0 and X1
and produce an output signal Y such that Y (t) =X0(t)+X1(t).
Numbers are signal processors too. For example the number 3 has signature S0→ S. It
takes no input signals and produce an output signal Y such that Y (t) = 3.

Chapter 2

Compiling and installing Faust

The Faust source distributionfaust-0.9.73.tar.gz can be downloaded from source-
forge (http://sourceforge.net/projects/faudiostream/).

2.1 Organization of the distribution

The first thing is to decompress the downloaded archive.
tar xzf faust -0.9.73. tar.gz

The resulting faust-0.9.73/ folder should contain the following elements:
architecture/ Faust libraries and architecture files
benchmark tools to measure the efficiency of the generated code
compiler/ sources of the Faust compiler
examples/ examples of Faust programs
syntax-highlighting/ support for syntax highlighting for several editors
documentation/ Faust’s documentation, including this manual
tools/ tools to produce audio applications and plugins
COPYING license information
Makefile Makefile used to build and install Faust
README instructions on how to build and install Faust

2.2 Compilation

Faust has no dependencies outside standard libraries. Therefore the compilation should
be straightforward. There is no configuration phase, to compile the Faust compiler
simply do :

9

http://sourceforge.net/projects/faudiostream/

10 CHAPTER 2. COMPILING AND INSTALLING FAUST

cd faust -0.9.73/
make

If the compilation was successful you can test the compiler before installing it:
[cd faust -0.9.73/]
./ compiler/faust -v

It should output:
FAUST , DSP to C++ compiler , Version 0.9.73
Copyright (C) 2002 -2015 , GRAME - Centre ...

Then you can also try to compile one of the examples :
[cd faust -0.9.73/]
./ compiler/faust examples/noise.dsp

It should produce some C++ code on the standard output

2.3 Installation

You can install Faust with:
[cd faust -0.9.73/]
sudo make install

or
[cd faust -0.9.73/]
su
make install

depending on your system.

2.4 Compilation of the examples

Once Faust correctly installed, you can have a look at the provided examples in the
examples/ folder. This folder contains a Makefilewith all the required instructions
to build these examples for various architectures, either standalone audio applications or

An architecture file
provides the code

needed to connect a
signal processor to the

outside world. It
typically defines the

audio communications
and user interface.

plugins.
The command make helpwill list the available targets. Before using a specific target,
make sure you have the appropriate development tools, libraries and headers installed.
For example to compile the examples as ALSA applications with a GTK user interface
do a make alsagtk. This will create a alsagtkdir/ subfolder with all the binaries.

Chapter 3

Faust syntax

This section describes the syntax of Faust. Figure 3.1 gives an overview of the various
concepts and where they are defined in this section.

3.2.1 Declarations 3.2.2 File Imports 3.2.3 Documentation

3.3.1 Simple

3.4 Expressions

3.3.2 Function 3.3.3 Pattern

3.4.1 Diag.

3.4.2.1 Math

3.5 Primitives

3.4.2.2 Bitwise 3.4.2.3 Compare

3.4.3 Time 3.4.4 Lexical 3.4.5 Foreign 3.4.6 Lambda3.4.2 Infix

3.1 Program

3.2 Statements

3.3 Definitions

Figure 3.1: Overview of Faust syntax

As we will see, definitions and expressions have a central role.

11

12 CHAPTER 3. FAUST SYNTAX

3.1 Faust program

A Faust program is essentially a list of statements. These statements can be declarations,
imports, definitions and documentation tags, with optional C++ style (//... and /*...*/)
comments.

program

- statement�
�

�
�

-

Here is a short Faust program that implements of a simple noise generator. It exhibits
various kind of statements : two declarations, an import, a comment and a definition. We
will see later on documentation statements (3.2.3).
declare name "noise";
declare copyright "(c)GRAME 2006";

import("music.lib");

// noise level controlled by a slider
process = noise * vslider("volume", 0, 0, 1, 0.1);

The keyword process is the equivalent of main in C/C++. Any Faust program, to be
valid, must at least define process.

3.2 Statements

The statements of a Faust program are of four kinds : metadata declarations, file imports,
definitions and documentation. All statements but documentation end with a semicolon
(;).

statement

- declaration�
�- fileimport

�- definition

�- documentation

�
�
�
�

-

3.2. STATEMENTS 13

3.2.1 Declarations

Meta-data declarations (for example declare name "noise";) are optional and typi-
cally used to document a Faust project.

declaration

- declare
�� ��- key - string - ;

����-

key

- identifier -

Contrary to regular comments, these declarations will appear in the C++ code gener-
ated by the compiler. A good practice is to start a Faust program with some standard
declarations:

declare name "MyProgram";
declare author "MySelf";
declare copyright "MyCompany";
declare version "1.00";
declare license "BSD";

3.2.2 Imports

File imports allow to import definitions from other source files.

fileimport

- import
�� ��- (

����- filename -)
����- ;

����-

For example import("math.lib"); imports the definitions of the math.lib library,
a set of additional mathematical functions provided as foreign functions.

3.2.3 Documentation

Documentation statements are optional and typically used to control the generation
of the mathematical documentation of a Faust program. This documentation system
is detailed chapter 10. In this section we will essentially describe the documentation
statements syntax.

14 CHAPTER 3. FAUST SYNTAX

A documentation statement starts with an opening <mdoc> tag and ends with a closing
</mdoc> tag. Free text content, typically in LATEX format, can be placed in between these
two tags.

documentation

- <mdoc>
�� �� - freetext�

�- equation

�- diagram

�- metadata

�- notice

�- listing

�
�
�
�
�
�

�

�

�

�

- </mdoc>
�� ��-

Moreover, optional sub-tags can be inserted in the text content itself to require the
generation, at the insertion point, of mathematical equations, graphical block-diagrams,
Faust source code listing and explanation notice.

equation

- <equation>
�� ��- expression - </equation>

�� ��-

The generation of the mathematical equations of a Faust expression can be requested by
placing this expression between an opening <equation> and a closing </equation>
tag. The expression is evaluated within the lexical context of the Faust program.

diagram

- <diagram>
�� ��- expression - </diagram>

�� ��-

Similarly, the generation of the graphical block-diagram of a Faust expression can be
requested by placing this expression between an opening <diagram> and a closing
</diagram> tag. The expression is evaluated within the lexical context of the Faust
program.

3.3. DEFINITIONS 15

metadata

- <metadata>
�� ��- keyword - </metadata>

�� ��-

The <metadata> tags allow to reference Faust metadatas (cf. declarations), calling the
corresponding keyword.

notice

- <notice />
�� ��-

The <notice /> empty-element tag is used to generate the conventions used in the
mathematical equations.

listing

- <listing
�� ���

� - listingattribute�
�

�
�

�
�
- />
�� ��-

listingattribute

- mdoctags
�� ���

�- dependencies
�� ���- distributed
�� ��

�
�
�

- =
����- "true"

�� ���
�- "false"

�� ��
�
�

-

The<listing /> empty-element tag is used to generate the listing of the Faust program.
Its three attributes mdoctags, dependencies and distributed enable or disable
respectively <mdoc> tags, other files dependencies and distribution of interleaved faust
code between <mdoc> sections.

3.3 Definitions

A definition associates an identifier with an expression it stands for.

16 CHAPTER 3. FAUST SYNTAX

Definitions are essentially a convenient shortcut avoiding to type long expressions. Dur-
ing compilation, more precisely during the evaluation stage, identifiers are replaced
by their definitions. It is therefore always equivalent to use an identifier or directly its
definition. Please note that multiple definitions of a same identifier are not allowed,
unless it is a pattern matching based definition.

3.3.1 Simple Definitions

The syntax of a simple definition is:

definition

- identifier - =
����- expression - ;

����-

For example here is the definition of random, a simple pseudo-random number genera-
tor:

random = +(12345) ~ *(1103515245);

3.3.2 Function Definitions

Definitions with formal parameters correspond to functions definitions.

definition

- identifier - (
����- parameter�

� ,
�����

�
�
-)
����- =

����- expression - ;
����-

For example the definition of linear2db, a function that converts linear values to
decibels, is :

linear2db(x) = 20* log10(x);

Please note that this notation is only a convenient alternative to the direct use of lambda-
abstractions (also called anonymous functions). The following is an equivalent definition
of linear2db using a lambda-abstraction:

linear2db = \(x).(20* log10(x));

3.3. DEFINITIONS 17

3.3.3 Definitions with pattern matching

Moreover, formal parameters can alsobe full expressions representingpatterns.

definition

- identifier - (
����- pattern�

� ,
�����

�
�
-)
����- =

����- expression - ;
����-

pattern

- identifier�
�- expression

�
�

-

This powerful mechanism allows to algorithmically create and manipulate block di-
agrams expressions. Let’s say that you want to describe a function to duplicate an
expression several times in parallel:
duplicate(1,x) = x;
duplicate(n,x) = x, duplicate(n-1,x);

Please note that this last definition is a convenient alternative to the more verbose :
duplicate = case {

(1,x) => x;
(n,x) => duplicate(n-1,x);

};

Here is another example to count the number of elements of a list. Please note that
we simulate lists using parallel composition : (1,2,3,5,7,11). The main limitation of this
approach is that there is no empty list. Moreover lists of only one element are represented
by this element :
count((x,xs)) = 1+count(xs);
count(x) = 1;

If we now write count(duplicate(10,666)) the expression will be evaluated to 10.
Please note that the order of pattern matching rules matters. The more specific rules
must precede the more general rules. When this order is not respected, as in :
count(x) = 1;
count((x,xs)) = 1+count(xs);

the first rule will always match and the second rule will never be called.

18 CHAPTER 3. FAUST SYNTAX

3.4 Expressions

Despite its textual syntax, Faust is conceptually a block-diagram language. Faust ex-
pressions represent DSP block-diagrams and are assembled from primitive ones using
various composition operations. More traditional numerical expressions in infix notation
are also possible. Additionally Faust provides time based expressions, like delays, expres-
sions related to lexical environments, expressions to interface with foreign function and
lambda expressions.

expression

- diagram�
�- insouts

�- numerical

�- time

�- lexical

�- foreign

�- lambda

�
�
�
�
�
�
�

-

3.4.1 Diagram Expressions

Diagram expressions are assembled from primitive ones using either binary composition
operations or high level iterative constructions.

diagramexp

- diagcomposition�
�- diagiteration

�
�

-

Diagram composition operations

Five binary composition operations are available to combine block-diagrams : recursion,
parallel, sequential, split andmerge composition. One can think of each of these compo-
sition operations as a particular way to connect two block diagrams.

3.4. EXPRESSIONS 19

diagcomposition

- expression - ∼
�����

�- ,
�����- :
�����- <:
�����- :>
����

�
�
�
�
�

- expression -

To describe precisely how these connections are done, we have to introduce some no-
tation. The number of inputs and outputs of a bloc-diagram A are notated inputs(A)
and outputs(A) . The inputs and outputs themselves are respectively notated : [0]A,
[1]A, [2]A, . . . and A[0], A[1], A[2], etc..

For each composition operation between two block-diagrams A and B we will describe
the connections A[i] → [j]B that are created and the constraints on their relative
numbers of inputs and outputs.

The priority and associativity of this five operations are given table 3.1.

Syntax Pri. Assoc. Description
expression ∼ expression 4 left recursive composition
expression , expression 3 right parallel composition
expression : expression 2 right sequential composition
expression <: expression 1 right split composition
expression :> expression 1 right merge composition

Table 3.1: Block-Diagram composition operation priorities

Parallel Composition The parallel composition (A,B) (figure 3.2) is probably the sim-
plest one. It places the two block-diagrams one on top of the other, without connections.
The inputs of the resulting block-diagram are the inputs of A and B. The outputs of the
resulting block-diagram are the outputs of A and B.

Parallel composition is an associative operation : (A,(B,C)) and ((A,B),C) are equiv-
alents. When no parenthesis are used : A,B,C,D, Faust uses right associativity and
therefore build internally the expression (A,(B,(C,D))). This organization is impor-
tant to know when using pattern matching techniques on parallel compositions.

20 CHAPTER 3. FAUST SYNTAX

10

*

process

Figure 3.2: Example of parallel composition(10,*)

Sequential Composition The sequential composition A:B (figure 3.3) expects:

outputs(A) = inputs(B) (3.1)

It connects each output of A to the corresponding input of B :

A[i]→ [i]B (3.2)

*

/

A

+

B

process

Figure 3.3: Example of sequential composition((*,/):+)

Sequential composition is an associative operation : (A:(B:C)) and ((A:B):C) are
equivalents. When no parenthesis are used, like in A:B:C:D, Faust uses right associativity
and therefore build internally the expression (A:(B:(C:D))).

Split Composition The split composition A<:B (figure 3.4) operator is used to distribute
the outputs of A to the inputs of B .
For the operation to be valid the number of inputs of B must be a multiple of the
number of outputs of A :

outputs(A).k = inputs(B) (3.3)

Each input i of B is connected to the output i mod k of A :

A[i mod k]→ [i]B (3.4)

3.4. EXPRESSIONS 21

10

20

A
+

*

/

B

process

Figure 3.4: example of split composition((10,20)<: (+,*,/))

Merge Composition Themerge composition A:>B (figure 3.5) is the dual of the split
composition. The number of outputs of Amust be a multiple of the number of inputs
of B :

outputs(A) = k .inputs(B) (3.5)

Each output i of A is connected to the input i mod k of B :

A[i]→ [i mod k]B (3.6)

The k incoming signals of an input of B are summed together.

10

20

30

40

A

*

B

process

Figure 3.5: example of merge composition((10,20,30,40):> *)

22 CHAPTER 3. FAUST SYNTAX

Recursive Composition The recursive composition A~B (figure 3.6) is used to create
cycles in the block-diagram in order to express recursive computations. It is the most
complex operation in terms of connections.
To be applicable it requires that :

outputs(A)≥ inputs(B)and inputs(A)≥ outputs(B) (3.7)

Each input of B is connected to the corresponding output of A via an implicit 1-sample
delay :

A[i] Z−1

→ [i]B (3.8)

and each output of B is connected to the corresponding input of A:

B[i]→ [i]A (3.9)

The inputs of the resulting block diagram are the remaining unconnected inputs of A.
The outputs are all the outputs of A.

12345
+

A

1103515245
*

B

process

Figure 3.6: example of recursive composition+(12345)~ *(1103515245)

Inputs and outputs of an expression

These two constructions can be used to know at compile time the number of inputs
and outputs of any Faust expression.

insouts

- inputs
�� ��- (

����- expression -)
�����

�- outputs
�� ��- (

����- expression -)
����

�
�

-

3.4. EXPRESSIONS 23

They are useful to define high order functions and build algorithmically complex block-
diagrams. Here is an example to automatically reverse the order of the outputs of an
expression.

Xo(expr) = expr <: par(i,n,selector(n-i-1,n))
with { n=outputs(expr); };

And the inputs of an expression :

Xi(expr) = bus(n) <: par(i,n,selector(n-i-1,n)) :
expr

with { n=inputs(expr); };

For example Xi(-)will reverse the order of the two inputs of the substraction.

Iterations

Iterations are analogous to for(...) loops and provide a convenient way to automate
some complex block-diagram constructions.

diagiteration

- par
�� ��- (

����- ident - ,
����- numiter - ,

����- expression -)
�����

�- seq
�� ��- (

����- ident - ,
����- numiter - ,

����- expression -)
�����- sum

�� ��- (
����- ident - ,

����- numiter - ,
����- expression -)

�����- prod
�� ��- (

����- ident - ,
����- numiter - ,

����- expression -)
����

�
�
�
�

-

The following example shows the usage of seq to create a 10-bands filter:

process = seq(i, 10,
vgroup("band %i",

bandfilter(1000*(1+i))
)

);

numiter

- expression -

The number of iterations must be a constant expression.

24 CHAPTER 3. FAUST SYNTAX

3.4.2 Numerical Expressions

Numerical expressions are essentially syntactic sugar allowing to use a familiar infix
notation to express mathematical expressions, bitwise operations and to compare signals.
Please note that is this section only built-in primitives with an infix syntax are presented.
A complete description of all the build-ins is available in the primitive section (see 3.5).

numerical

- math�
�- bitwise

�- comparison

�
�
�

-

Mathematical expressions

are the familiar 4 operations as well as the modulo and power operations

math

- expression - +
�����

�- -
�����- *
�����- /
�����- %
�����- ∧����

�
�
�
�
�
�

- expression -

Bitwise expressions

are the boolean operations and the left and right arithmetic shifts.

3.4. EXPRESSIONS 25

bitwise

- expression - |
�����

�- &
�����- xor
�� ���- «
�����- »
����

�
�
�
�
�

- expression -

Comparison

operations allow to compare signals and result in a boolean signal that is 1 when the
condition is true and 0 when the condition is false.

comparison

- expression - <
�����

�- <=
�����- >
�����- >=
�����- ==
�����- !=
����

�
�
�
�
�
�

- expression -

3.4.3 Time expressions

Time expressions are used to express delays. The notation X@10 represent the signal X
delayed by 10 samples. The notation X’ represent the signal X delayed by one sample
and is therefore equivalent to X@1.

time

- expression - @
����- expression�

�- expression - ’
����

�
�

-

26 CHAPTER 3. FAUST SYNTAX

The delay don’t have to be fixed, but it must be positive and bounded. The values of a
slider are perfectly acceptable as in the following example:

process = _ @ hslider("delay" ,0, 0, 100, 1);

3.4.4 Environment expressions

Faust is a lexically scoped language. The meaning of a Faust expression is determined by
its context of definition (its lexical environment) and not by its context of use.

To keep their original meaning, Faust expressions are bounded to their lexical environ-
ment in structures called closures. The following constructions allow to explicitly create
and access such environments. Moreover they provide powerful means to reuse existing
code and promote modular design.

envexp

- expression - with
�� ��- {

����- definition�
�

�
�
- }
�����

�- expression - letrec
�� ��- {

����- diffequation�
�

�
�
- }
����

�- environment
�� ��- {

����- definition�
�

�
�
- }
����

�- expression - .
����- ident

�- library
�� ��- (

����- filename -)
�����- component

�� ��- (
����- filename -)

�����- expression - [
����- definition�

�
�
�
-]
����

�

�

�

�
�
�
�

-

3.4. EXPRESSIONS 27

With

The with construction allows to specify a local environment, a private list of definition
that will be used to evaluate the left hand expression

withexpression

- expression - with
�� ��- {

����- definition�
�

�
�
- }
����-

In the following example :

pink = f : + ~ g with {
f(x) = 0.04957526213389*x

- 0.06305581334498*x’
+ 0.01483220320740*x’’;

g(x) = 1.80116083982126*x
- 0.80257737639225*x’;

};

the definitions of f(x) and g(x) are local to f : + ~ g.

Please note that with is left associative and has the lowest priority:

- f : + ~ g with {...} is equivalent to (f : + ~ g) with {...}.

- f : + ~ g with {...} with {...} is equivalent to ((f : + ~ g) with
{...}) with {...}.

Letrec

The letrec construction is somehow similar to with, but for di�erence equations
instead of regular definitions. It allows to easily express groups of mutually recursive
signals, for example:

x(t) = y(t − 1)+ 10;
y(t) = x(t − 1)− 1;

as E letrec { ’x = y+10; ’y = x-1; }

The syntax is defined by the following rules:

28 CHAPTER 3. FAUST SYNTAX

letrecexpression

- expression - letrec
�� ��- {

����- diffequation�
�

�
�
- }
����-

di�equation

- ’
����- ident - =

����- expression - ;
����-

Please remarks the special notation ’x=y+10 instead of x=y’+10. It makes syntactically
impossible to write non-sensical equations like x=x+1.

Here is a more involved example. Let say we want to define an envelop generator with
an attack time, a release time and a gate signal. A possible definition is the following:

ar(a,r,g) = v
letrec {

’n = (n+1) * (g<=g’);
’v = max(0, v + (n<a)/a - (n>=a)/r) * (g<=g’);

};

With the following semantics for n(t) and v(t):

n(t) = (n(t − 1)+ 1) ∗ (g (t)<= g (t − 1))
v(t) = max(0, v(t − 1)+ (n(t − 1)< a(t))/a(t)− (n(t − 1)>= a(t))/r (t)) ∗ (g (t)<= g (t − 1))

Environment

The environment construction allows to create an explicit environment. It is like a
with, but without the left hand expression. It is a convenient way to group together
related definitions, to isolate groups of definitions and to create a name space hierarchy.

environment

- environment
�� ��- {

����- definition�
�

�
�
- }
����-

In the following example an environment construction is used to group together some
constant definitions :

3.4. EXPRESSIONS 29

constant = environment {
pi = 3.14159;
e = 2,718 ;
...

};

The . construction allows to access the definitions of an environment (see next para-
graph).

Access

Definitions inside an environment can be accessed using the ’.’ construction.

access

- expression - .
����- ident -

For example constant.pi refers to the definition of pi in the above constant envi-
ronment.

Please note that environment don’t have to be named. We could have written directly
environment{pi = 3.14159; e = 2,718;....}.pi

Library

The library construct allows to create an environment by reading the definitions from
a file.

library

- library
�� ��- (

����- filename -)
����-

For example library("filter.lib") represents the environment obtained by read-
ing the file "filter.lib". It works like import("filter.lib") but all the read defini-
tions are stored in a new separate lexical environment. Individual definitions can be
accessed as described in the previous paragraph. For example library("filter.lib
").lowpass denotes the function lowpass as defined in the file "filter.lib".

To avoid name conflicts when importing libraries it is recommended to prefer library
to import. So instead of :

30 CHAPTER 3. FAUST SYNTAX

import("filter.lib");
...

... lowpass
...

};

the following will ensure an absence of conflicts :

fl = library("filter.lib");
...

...fl.lowpass
...

};

Component

The component(...) construction allows to reuse a full Faust program as a simple
expression.

component

- component
�� ��- (

����- filename -)
����-

For example component("freeverb.dsp") denotes the signal processor defined in
file "freeverb.dsp".

Components can be used within expressions like in:

... component("karplus32.dsp"):component("freeverb.
dsp")...

Please note thatcomponent("freeverb.dsp") is equivalent tolibrary("freeverb
.dsp").process.

Explicit substitution

Explicit substitution can be used to customize a component or any expression with
a lexical environment by replacing some of its internal definitions, without having to
modify it.

3.4. EXPRESSIONS 31

explicitsubst

- expression - [
����- definition�

�
�
�
-]
����-

For example we can create a customized version of component("freeverb.dsp"),
with a different definition of foo(x), by writing :

... component("freeverb.dsp")[foo(x) = ...;]...
};

3.4.5 Foreign expressions

Reference to external C functions, variables and constants can be introduced using the
foreign functionmechanism.

foreignexp

- ffunction
�� ��- (

����- signature - ,
����- includefile - ,

����- library -)
�����

�- fvariable
�� ��- (

����- type - identifier - ,
����- includefile -)

�����- fconstant
�� ��- (

����- type - identifier - ,
����- includefile -)

����

�
�
�

-

ffunction

An external C function is declared by indicating its name and signature as well as the
required include file. The file "math.lib" of the Faust distribution contains several
foreign function definitions, for example the inverse hyperbolic sine function asinh:

asinh = ffunction(float asinh (float), <math.h>, "");

Foreign functions with input parameters are considered pure math functions. They are
therefore considered free of side effects and called only when their parameters change
(that is at the rate of the fastest parameter).

Exceptions are functions with no input parameters. A typical example is the C rand()
function. In this case the compiler generate code to call the function at sample rate.

32 CHAPTER 3. FAUST SYNTAX

signature

The signature part (float asinh (float) in our previous example) describes the
prototype of the C function : return type, function name and list of parameter types.
Because the name of the foreign function can possibly depend on the floating point
precision in use (float, double and quad), it is possible to give a different function name
for each floating point precision using a signature with up to three function names.

signature

- type - funnames - (
����- type�

� ,
�����

�
�
-)
����-

funnames

- identifier �
�- |

����- identifier

�
�

�
�- |

����- identifier

�
�

-

For example in thedeclarationasinh = ffunction(float asinhf|asinh|asinhl
(float), <math.h>, "");, the signaturefloat asinhf|asinh|asinhl (float
) indicates to use the function name asinhf in single precision, asinh in double preci-
sion and asinhl in long double (quad) precision.

types

Note that currently only numerical functions involving simple int and float parameters
are allowed. No vectors, tables or data structures can be passed as parameters or returned.

type

- int
�� ���

�- float
�� ��

�
�

-

variables and constants

External variables and constants can also be declared with a similar syntax. In the same
"math.lib" file we can found the definition of the sampling rate constant SR and the
definition of the block-size variable BS :

3.4. EXPRESSIONS 33

SR = fconstant(int fSamplingFreq , <math.h>);
BS = fvariable(int count , <math.h>);

Foreign constants are not supposed to vary. Therefore expressions involving only foreign
constants are only computed once, during the initialization period.
Variable are considered to vary at block speed. This means that expressions depending
of external variables are computed every block.

include file

In declaring foreign functions one has also to specify the include file. It allows the Faust
compiler to add the corresponding #include... in the generated code.

includefile

- <
����- char�

�
�
�
- >
�����

�- "
����- char�

�
�
�
- "
����

�

�

-

library file

In declaring foreign functions one can possibly specify the library where the actual
code is located. It allows the Faust compiler to (possibly) automatically link the library.
Note that this feature is only used with the LLVM backend in ’libfaust’ dynamic library
model.

3.4.6 Applications and Abstractions

Abstractions and applications are fundamental programming constructions directly in-
spired by the Lambda-Calculus. These constructions provide powerful ways to describe
and transform block-diagrams algorithmically.

progexp

- abstraction�
�- application

�
�

-

34 CHAPTER 3. FAUST SYNTAX

Abstractions

Abstractions correspond to functions definitions and allow to generalize a block-diagram
bymaking variable some of its parts.

abstraction

- lambdaabstraction�
�- patternabstraction

�
�

-

lambdaabstraction

- \
����- (

����- ident�
� ,

�����
�
�
-)
����- .

����- (
����- expression -)

����-

Let’s say you want to transform a stereo reverb, freeverb for instance, into a mono
effect. You can write the following expression:

_ <: freeverb :> _

The incoming mono signal is splitted to feed the two input channels of the reverb, while
the two output channels of the reverb are mixed together to produce the resulting mono
output.

Imagine now that you are interested in transforming other stereo effects. It can be
interesting to generalize this principle by making freeverb a variable:

\(freeverb).(_ <: freeverb :> _)

The resulting abstraction can then be applied to transform other effects. Note that if
freeverb is a perfectly valid variable name, a more neutral name would probably be
easier to read like:

\(fx).(_ <: fx :> _)

Moreover it could be convenient to give a name to this abstraction:

mono = \(fx).(_ <: fx :> _);

Or even use a more traditional, but equivalent, notation:

mono(fx) = _ <: fx :> _;

3.4. EXPRESSIONS 35

Applications

Applications correspond to function calls and allow to replace the variable parts of an
abstraction with the specified arguments.

application

- expression - (
����- expression�

� ,
�����

�
�
-)
����-

For example you can apply the previous abstraction to transform your stereo harmonizer:

mono(harmonizer)

The compiler will start by replacing mono by its definition:

\(fx).(_ <: fx :> _)(harmonizer)

Whenever the Faust compiler find an application of an abstraction it replaces the variable
Replacing the variable
part with the argument
is calledβ-reduction
in Lambda-Calculus

part with the argument. The resulting expression is as expected:

(_ <: harmonizer :> _)

PatternMatching

Patternmatching rules provide an effective way to analyze and transform block-diagrams
algorithmically.

patternabstraction

- case
�� ��- {

����- rule�
�

�
�
- }
����-

Rule

- (
����- pattern�

� ,
�����

�
�
-)
����- =>

����- expression - ;
����-

36 CHAPTER 3. FAUST SYNTAX

Pattern

- ident�
�- expression

�
�

-

For example case{ (x:y)=> y:x; (x)=> x; } contains two rules. The first one
will match a sequential expression and invert the two part. The second one will match
all remaining expressions and leave it untouched. Therefore the application:

case{(x:y) => y:x; (x) => x;}(freeverb:harmonizer
)

will produce:

(harmonizer:freeverb)

Please note that patterns are evaluated before the pattern matching operation. There-
fore only variables that appear free in the pattern are binding variables during pattern
matching.

3.5 Primitives

The primitive signal processing operations represent the built-in functionalities of Faust,
that is the atomic operations on signals provided by the language. All these primitives
denote signal processors, functions transforming input signals into output signals.

primitive

- number�
�- waveform

�- cprimitive

�- mathprimitive

�- delayandtables

�- uielements

�
�
�
�
�
�

-

3.5. PRIMITIVES 37

3.5.1 Numbers

Faust considers two types of numbers : integers and floats. Integers are implemented as
32-bits integers, and floats are implemented either with a simple, double or extended
precision depending of the compiler options. Floats are available in decimal or scientific
notation.

int

�
�- +

�����- -
����

�
�
�

- digit�
�

�
�

-

float

�
�- +

�����- -
����

�
�
�

- digit�
�

�
�
- .
�����

� - digit�
�

�
�

�
�

�

��
� - digit�

�
�
�

�
�
- .
����- digit�

�
�
�

�

�

�
�- exponent

�
�

-

exponent

- e
�����

�- +
�����- -
����

�
�
�

- digit�
�

�
�

-

digit

- 0–9
�� ��-

38 CHAPTER 3. FAUST SYNTAX

Like any other Faust expression, numbers are signal processors. For example the number
0.95 is a signal processor of type S0→ S1 that transforms an empty tuple of signals ()
into a 1-tuple of signals (y) such that ∀t ∈N, y(t) = 0.95.

3.5.2 Waveforms

Awaveform is a fixed periodic signal defined by a list of samples. A waveform has two
outputs. The first output is constant and indicates the size (number of samples) of the
period. The second output is the periodic signal itself.

waveform

- waveform
�� ��- {

����- number�
� ,

�����
�
�
- }
����-

For example waveform {0,1,2,3} produces two outputs, the constant signal 4 and
the periodic signal 0,1,2,3,0,1,2,3,0,1. . . .

Please note that waveform works nicely with rdtable. Its first output, known at
compile time, gives the size of the table, while the second signal gives the content of the
table. Here is an example:

process = waveform {10,20,30,40,50,60,70}, %(7) ~+(3)
: rdtable;

3.5.3 C-equivalent primitives

Most Faust primitives are analogue to their C counterpart but lifted to signal processing.
For example + is a function of type S2 → S1 that transforms a pair of signals (x1, x2)
into a 1-tuple of signals (y) such that ∀t ∈N, y(t) = x1(t)+ x2(t). The function - has
type S2→ S1 and transforms a pair of signals (x1, x2) into a 1-tuple of signals (y) such
that ∀t ∈N, y(t) = x1(t)− x2(t).

Please be aware that the unary - only exists in a limited form. It can be used with num-
Warning: unlinke

other programming
languages the unary

operatior - only exists
in limited form in

Faust

bers: -0.5 and variables: -myvar, but not with expressions surrounded by parenthesis,
because in this case it represents a partial application. For instance -(a * b) is a partial
application. It is syntactic sugar for _,(a * b): -. If you want to negate a complex
term in parenthesis, you’ll have to use 0 - (a * b) instead.

3.5. PRIMITIVES 39

Syntax Type Description
n S0→ S1 integer number: y(t) = n
n.m S0→ S1 floating point number: y(t) = n.m
_ S1→ S1 identity function: y(t) = x(t)
! S1→ S0 cut function: ∀x ∈ S, (x)→ ()
int S1→ S1 cast into an int signal: y(t) = (i nt)x(t)
float S1→ S1 cast into an float signal: y(t) = (f l oat)x(t)
+ S2→ S1 addition: y(t) = x1(t)+ x2(t)
- S2→ S1 subtraction: y(t) = x1(t)− x2(t)
* S2→ S1 multiplication: y(t) = x1(t) ∗ x2(t)
∧ S2→ S1 power: y(t) = x1(t)

x2(t)

/ S2→ S1 division: y(t) = x1(t)/x2(t)
% S2→ S1 modulo: y(t) = x1(t)%x2(t)
& S2→ S1 logical AND: y(t) = x1(t)&x2(t)
| S2→ S1 logical OR: y(t) = x1(t)|x2(t)
xor S2→ S1 logical XOR: y(t) = x1(t)∧ x2(t)
<< S2→ S1 arith. shift left: y(t) = x1(t)<< x2(t)
>> S2→ S1 arith. shift right: y(t) = x1(t)>> x2(t)
< S2→ S1 less than: y(t) = x1(t)< x2(t)
<= S2→ S1 less or equal: y(t) = x1(t)<= x2(t)
> S2→ S1 greater than: y(t) = x1(t)> x2(t)
>= S2→ S1 greater or equal: y(t) = x1(t)>= x2(t)
== S2→ S1 equal: y(t) = x1(t) == x2(t)
!= S2→ S1 different: y(t) = x1(t)!= x2(t)

3.5.4 math.h-equivalent primitives

Most of the C math.h functions are also built-in as primitives (the others are defined as
external functions in file math.lib).

40 CHAPTER 3. FAUST SYNTAX

Syntax Type Description
acos S1→ S1 arc cosine: y(t) = acosf(x(t))
asin S1→ S1 arc sine: y(t) = asinf(x(t))
atan S1→ S1 arc tangent: y(t) = atanf(x(t))
atan2 S2→ S1 arc tangent of 2 signals: y(t) = atan2f(x1(t), x2(t))
cos S1→ S1 cosine: y(t) = cosf(x(t))
sin S1→ S1 sine: y(t) = sinf(x(t))
tan S1→ S1 tangent: y(t) = tanf(x(t))
exp S1→ S1 base-e exponential: y(t) = expf(x(t))
log S1→ S1 base-e logarithm: y(t) = logf(x(t))
log10 S1→ S1 base-10 logarithm: y(t) = log10f(x(t))
pow S2→ S1 power: y(t) = powf(x1(t), x2(t))
sqrt S1→ S1 square root: y(t) = sqrtf(x(t))
abs S1→ S1 absolute value (int): y(t) = abs(x(t))

absolute value (float): y(t) = fabsf(x(t))
min S2→ S1 minimum: y(t) =min(x1(t), x2(t))
max S2→ S1 maximum: y(t) =max(x1(t), x2(t))
fmod S2→ S1 float modulo: y(t) = fmodf(x1(t), x2(t))
remainder S2→ S1 float remainder: y(t) = remainderf(x1(t), x2(t))
floor S1→ S1 largest int≤: y(t) = floorf(x(t))
ceil S1→ S1 smallest int≥: y(t) = ceilf(x(t))
rint S1→ S1 closest int: y(t) = rintf(x(t))

3.5.5 Delay, Table, Selector primitives

The following primitives allow to define fixed delays, read-only and read-write tables
and 2 or 3-ways selectors (see figure 3.7).

Syntax Type Description
mem S1→ S1 1-sample delay: y(t + 1) = x(t), y(0) = 0
prefix S2→ S1 1-sample delay: y(t + 1) = x2(t), y(0) = x1(0)
@ S2→ S1 fixed delay: y(t + x2(t)) = x1(t), y(t < x2(t)) = 0
rdtable S3→ S1 read-only table: y(t) = T [r (t)]
rwtable S5→ S1 read-write table: T [w(t)] = c(t); y(t) = T [r (t)]
select2 S3→ S1 select between 2 signals: T [] = {x0(t), x1(t)}; y(t) = T [s(t)]
select3 S4→ S1 select between 3 signals: T [] = {x0(t), x1(t), x2(t)}; y(t) = T [s(t)]

3.5. PRIMITIVES 41

prefix

prefix (1sample delay)

a

b
y

y(0)=a(0)
y(t)=b(t1)

@

@ (nsamples delay)

a

b
y

t < b(0) : y(t)=0
t >=b(0) : y(t)=a(tb(0))

mem

mem (1sample delay)

a y

y(0)=0
y(t)=a(t1)

s rdtable

rdtable (readonly table)

n

r

y

y(t) = T(t,r(t))
T(t,i) = s(i)

s

rwtable (readwrite table)

n

w y

y(t) = T(t,r(t))
T(0,i) = c(0) (i == w(0))
T(0,i) = s(i) (i != w(0))
T(t,i) = c(t) (i == w(t))
T(t,i) = T(t1,i) (i != w(t))

c

r

rwtable

a[0] select2

select2 (twoways selector)

s

a[1]

y

y(t) = a[s(t)](t)

a[0]

select3 (threeways selector)

s

a[1]
y

a[2]

select3

y(t) = a[s(t)](t)

Figure 3.7: Delays, tables and selectors primitives

42 CHAPTER 3. FAUST SYNTAX

3.5.6 User Interface Elements

Faust user interface widgets allow an abstract description of the user interface from
within the Faust code. This description is independent of any GUI toolkits. It is based
on buttons, checkboxes, sliders, etc. that are grouped together vertically and horizontally
using appropriate grouping schemes.

All these GUI elements produce signals. A button for example (see figure 3.8) produces a
signal which is 1 when the button is pressed and 0 otherwise. These signals can be freely
combined with other audio signals.

Figure 3.8: User Interface Button

Syntax Example
button(str) button("play")
checkbox(str) checkbox("mute")
vslider(str,cur,min,max,step) vslider("vol",50,0,100,1)
hslider(str,cur,min,max,step) hslider("vol",0.5,0,1,0.01)
nentry(str,cur,min,max,step) nentry("freq",440,0,8000,1)
vgroup(str,block-diagram) vgroup("reverb", ...)
hgroup(str,block-diagram) hgroup("mixer", ...)
tgroup(str,block-diagram) vgroup("parametric", ...)
vbargraph(str,min,max) vbargraph("input",0,100)
hbargraph(str,min,max) hbargraph("signal",0,1.0)
attach attach(x, vumeter(x))

Labels

Every user interface widget has a label (a string) that identifies it and informs the user of
its purpose. There are three important mechanisms associated with labels (and coded
inside the string): variable parts, pathnames andmetadata.

3.5. PRIMITIVES 43

Variable parts. Labels can contain variable parts. These variable parts are indicated
by the sign ’%’ followed by the name of a variable. During compilation each label is
processed in order to replace the variable parts by the value of the variable. For example
par(i,8,hslider("Voice %i", 0.9, 0, 1, 0.01)) creates 8 different sliders in
parallel :

hslider("Voice 0", 0.9, 0, 1, 0.01),
hslider("Voice 1", 0.9, 0, 1, 0.01),
...
hslider("Voice 7", 0.9, 0, 1, 0.01).

while par(i,8,hslider("Voice", 0.9, 0, 1, 0.01))would have created only
one slider and duplicated its output 8 times.
The variable part can have an optional format digit. For example "Voice %2i"would
indicate to use two digit when inserting the value of i in the string.
An escape mechanism is provided. If the sign % is followed by itself, it will be included in
the resulting string. For example "feedback (%%)"will result in "feedback (%)".

Pathnames. Thanks to horizontal, vertical and tabs groups, user interfaces have a
hierarchical structure analog to a hierarchical file system. Each widget has an associated
pathname obtained by concatenating the labels of all its surrounding groups with its
own label.
In the following example :

hgroup("Foo",
...
vgroup("Faa",

...
hslider("volume" ,...)
...

)
...

)

the volume slider has pathname /h:Foo/v:Faa/volume.
In order to give more flexibility to the design of user interfaces, it is possible to explicitly
specify the absolute or relative pathname of a widget directly in its label.
In our previous example the pathname of :

hslider("../ volume" ,...)

would have been "/h:Foo/volume", while the pathname of :

44 CHAPTER 3. FAUST SYNTAX

hslider("t:Fii/volume" ,...)

would have been : "/h:Foo/v:Faa/t:Fii/volume".

The grammar for labels with pathnames is the following:

label

- path - name -

path

�
�- /

����
�
�

�
� - folder - /

�����
�

�
�

�
�

-

folder

- ..
�����

� - h:
�����

�- v:
�����- t:
����

�
�
�

- name

�
�

-

Metadata Widget labels can contain metadata enclosed in square brackets. These
metadata associate a key with a value and are used to provide additional information
to the architecture file. They are typically used to improve the look and feel of the user
interface. The Faust code :

process = *(hslider("foo [key1: val 1][key2: val 2]",
0, 0, 1, 0.1));

will produce and the corresponding C++ code :

class mydsp : public dsp {
...
virtual void buildUserInterface(UI* interface) {

interface ->openVerticalBox("m");

3.5. PRIMITIVES 45

interface ->declare (&fslider0 , "key1", "val 1"
);

interface ->declare (&fslider0 , "key2", "val 2"
);

interface ->addHorizontalSlider("foo", &
fslider0 ,

0.0f, 0.0f, 1.0f, 0.1
f);

interface ->closeBox ();
}

...
};

All the metadata are removed from the label by the compiler and transformed in calls
to the UI::declare()method. All these UI::declare() calls will always take place
before the UI::AddSomething() call that creates the User Interface element. This
allows the UI::AddSomething()method to make full use of the available metadata.
It is the role of the architecture file to decide what to do with these metadata. The
jack-qt.cpp architecture file for example implements the following :

1. "...[style:knob]..." creates a rotating knob instead of a regular slider or
nentry.

2. "...[style:led]..." in a bargraph’s label creates a small LED instead of a
full bargraph

3. "...[unit:dB]..." in a bargraph’s label creates a more realistic bargraph with
colors ranging from green to red depending of the level of the value

4. "...[unit:xx]..." in a widget postfixes the value displayed with xx

5. "...[tooltip:bla bla]..." add a tooltip to the widget

6. "...[osc:/address min max]..."Open Sound Control message alias

Moreover starting a label with a number option like in "[1]..." provides a convenient
means to control the alphabetical order of the widgets.

Attach

The attach primitive takes two input signals and produce one output signal which
is a copy of the first input. The role of attach is to force its second input signal to

46 CHAPTER 3. FAUST SYNTAX

be compiled with the first one. From a mathematical point of view attach(x,y) is
equivalent to 1*x+0*y, which is in turn equivalent to x, but it tells the compiler not to
optimize-out y.
To illustrate this role let say that we want to develop a mixer application with a vumeter
for each input signals. Such vumeters can be easily coded in Faust using an envelop
detector connected to a bargraph. The problem is that these envelop signals have no role
in the output signals. Using attach(x,vumeter(x)) one can tell the compiler that
when x is compiled vumeter(x) should also be compiled.

Chapter 4

Invoking the Faust compiler

The Faust compiler is invoked using the faust command. It translate Faust programs
into C++ code. The generated code can be wrapped into an optional architecture file
allowing to directly produce a fully operational program.

compiler

- faust
�� ��- options - file�

�
�
�

-

For example faust noise.dspwill compile noise.dsp and output the correspond-
ing C++ code on the standard output. The option -o allows to choose the output file :
faust noise.dsp -o noise.cpp. The option -a allows to choose the architecture
file : faust -a alsa-gtk.cpp noise.dsp.
To compile a Faust program into an ALSA application on Linux you can use the follow-
ing commands:

faust -a alsa -gtk.cpp noise.dsp -o noise.cpp
g++ -lpthread -lasound

‘pkg -config --cflags --libs gtk+-2.0‘
noise.cpp -o noise

4.1 Compilation options

Compilation options are listed in the following table :

47

48 CHAPTER 4. INVOKING THE FAUST COMPILER

Short Long Description
-h –help print the help message
-v –version print version information
-d –details print compilation details
-tg –task-graph draw a graph of all internal compu-

tation loops as a .dot (graphviz) file.
-sg –signal-graph draw a graph of all internal signal

expressions as a .dot (graphviz) file.
-ps –postscript generate block-diagram postscript

files
-svg –svg generate block-diagram svg files
-blur –shadow-blur add a blur to boxes shadows
-sd –simplify-diagrams simplify block-diagram before

drawing them
-f n –fold n max complexity of svg diagrams be-

fore splitting into several files (de-
fault 25 boxes)

-mns n –max-name-size n max character size used in svg dia-
gram labels

-sn –simple-names use simple names (without argu-
ments) for block-diagram (default
max size : 40 chars)

-xml –xml generate an additional description
file in xml format

-uim –user-interface-macros add user interface macro defini-
tions to the C++ code

-flist –file-list list all the source files and libraries
implied in a compilation

-norm –normalized-form prints the internal signals in nor-
malized form and exits

-lb –left-balanced generate left-balanced expressions
-mb –mid-balanced generate mid-balanced expressions

(default)
-rb –right-balanced generate right-balanced expressions
-lt –less-temporaries generate less temporaries in compil-

ing delays
-mcd n –max-copy-delay n threshold between copy and ring

buffer delays (default 16 samples)
continued on next page

4.1. COMPILATION OPTIONS 49

Short Long Description
-vec –vectorize generate easier to vectorize code
-vs n –vec-size n size of the vector (default 32 sam-

ples) when -vec
-lv n –loop-variant n loop variant [0:fastest (default),

1:simple] when -vec
-dfs –deepFirstScheduling schedule vector loops in deep first

order when -vec
-omp –openMP generate parallel code using

OpenMP (implies -vec)
-sch –scheduler generate parallel code using threads

directly (implies -vec)
-g –groupTasks group sequential tasks together

when -omp or -sch is used
-single –single-precision-floatsuse floats for internal computations

(default)
-double –double-precision-floatsuse doubles for internal computa-

tions
-quad –quad-precision-floats use extended for internal computa-

tions
-mdoc –mathdoc generates the full mathematical de-

scription of a Faust program
-mdlang
l

–mathdoc-lang l choose the language of the mathe-
matical description (l = en, fr, ...)

-stripmdoc–strip-mdoc-tags remove documentation tags when
printing Faust listings

-cn name –class-name name name of the dsp class to be used in-
stead of ’mydsp’

-t time –timeout time time out of time seconds (default
600) for the compiler to abort

-a file architecture file to use
-o file C++ output file

50 CHAPTER 4. INVOKING THE FAUST COMPILER

Chapter 5

Architecture files

A Faust program describes a signal processor, a pure computation that maps input signals
to output signals. It says nothing about audio drivers or GUI toolkits. This missing
information is provided by architecture files.

An architecture file describes how to relate a Faust program to the external world, in
particular the audio drivers and the user interface to be used. This approach allows a
single Faust program tobe easily deployed to a large variety of audio standards (Max/MSP
externals, PD externals, VST plugins, CoreAudio applications, Jack applications, iPhone,
etc.).

The architecture to be used is specified at compile time with the -a options. For example
faust -a jack-gtk.cpp foo.dsp indicates to use the Jack GTK architecture when
compiling foo.dsp.

The main available architecture files are listed table 5.1. Since Faust 0.9.40 some of these
architectures are a modular combination of an audio module and one or more user
interface modules. Among these user interface modules OSCUI provide supports for
Open Sound Control allowing Faust programs to be controlled by OSCmessages.

5.1 Audio architecture modules

An audio architecture module typically connects a Faust program to the audio drivers. It
is responsible for allocating and releasing the audio channels and for calling the Faust
dsp::compute method to handle incoming audio buffers and/or to produce audio
output. It is also responsible for presenting the audio as non-interleaved float data,
normalized between -1.0 and 1.0.

A Faust audio architecture module derives an audio class defined as below:

51

52 CHAPTER 5. ARCHITECTURE FILES

File name Description
alchemy-as.cpp Flash - ActionScript plugin
ca-qt.cpp CoreAudio QT4 standalone application
jack-gtk.cpp Jack GTK standalone application
jack-qt.cpp Jack QT4 standalone application
jack-console.cpp Jack command line application
jack-internal.cpp Jack server plugin
alsa-gtk.cpp ALSAGTK standalone application
alsa-qt.cpp ALSAQT4 standalone application
oss-gtk.cpp OSS GTK standalone application
pa-gtk.cpp PortAudio GTK standalone application
pa-qt.cpp PortAudio QT4 standalone application
max-msp.cpp Max/MSP external
vst.cpp VST plugin
vst2p4.cpp VST 2.4 plugin
vsti-mono.cpp VSTi mono instrument
vsti-poly.cpp VSTi polyphonic instrument
ladspa.cpp LADSPA plugin
q.cpp Q language plugin
supercollider.cpp SuperCollider Unit Generator
snd-rt-gtk.cpp Snd-RTmusic programming language
csound.cpp CSOUND opcode
puredata.cpp PD external
sndfile.cpp sound file transformation command
bench.cpp speed benchmark
octave.cpp Octave plugin
plot.cpp Command line application
sndfile.cpp Command line application

Table 5.1: Available architectures.

5.2. UI ARCHITECTURE MODULES 53

class audio {
public:

audio() {}
virtual ~audio() {}
virtual bool init(const char*, dsp*) = 0;
virtual bool start() = 0;
virtual void stop() = 0;

};

The API is simple enough to give a great flexibility to audio architectures implementa-
tions. The initmethod should initialize the audio. At init exit, the system should be
in a safe state to recall the dsp object state.
Table 5.2 gives the audio architectures currently available for various operating systems.

Audio system Operating system
Alsa Linux

Core audio Mac OS X, iOS
Jack Linux, Mac OS X,Windows

Portaudio Linux, Mac OS X,Windows
OSC Linux, Mac OS X,Windows
VST Mac OS X,Windows

Max/MSP Mac OS X,Windows
CSound Linux, Mac OS X,Windows

SuperCollider Linux, Mac OS X,Windows
PureData Linux, Mac OS X,Windows
Pure Linux, Mac OS X,Windows

Table 5.2: Faust audio architectures.

5.2 UI architecture modules

AUI architecture module links user actions (via graphic widgets, command line parame-
ters, OSCmessages, etc.) with the Faust program to control. It is responsible for asso-
ciating programparameters to user interface elements and toupdate parameter’s values ac-
cording touser actions. This association is triggeredby thedsp::buildUserInterface
call, where the dsp asks a UI object to build the DSP module controllers.
Since the interface is basically graphic oriented, the main concepts are widget based: a UI
architecture module is semantically oriented to handle active widgets, passive widgets
and widgets layout.
A Faust UI architecture module derives anUI class (Figure 5.1).

54 CHAPTER 5. ARCHITECTURE FILES

class UI
{
public:

UI() {}
virtual ~UI() {}

-- active widgets
virtual void addButton(const char* l, float* z) = 0;
virtual void addCheckButton(const char* l, float* z) = 0;

virtual void addVerticalSlider(const char* l, float* z,
float init , float min , float max , float step) = 0;

virtual void addHorizontalSlider(const char* l, float* z,
float init , float min , float max , float step) = 0;

virtual void addNumEntry(const char* l, float* z,
float init , float min , float max , float step) = 0;

-- passive widgets
virtual void addHorizontalBargraph(const char* l,

float* z, float min , float max) = 0;

virtual void addVerticalBargraph(const char* l,
float* z, float min , float max) = 0;

-- widget layouts
virtual void openTabBox(const char* l) = 0;
virtual void openHorizontalBox(const char* l) = 0;
virtual void openVerticalBox(const char* l) = 0;
virtual void closeBox () = 0;

-- metadata declarations
virtual void declare(float*, const char*, const char*) {}

};

Figure 5.1: UI, the root user interface class.

5.2. UI ARCHITECTURE MODULES 55

5.2.1 Active widgets

Active widgets are graphical elements that control a parameter value. They are initialized
with the widget name and a pointer to the linked value. The widget currently considered
are Button, CheckButton, VerticalSlider, HorizontalSlider and NumEntry.
A GUI architecture must implement a method
addXxx(const char* name, float* zone, ...) for each active widget. Addi-
tional parameters are available for Slider and NumEntry: the init, min, max and
step values.

5.2.2 Passive widgets

Passive widgets are graphical elements that reflect values. Similarly to active widgets,
they are initialized with the widget name and a pointer to the linked value. The widget
currently considered are HorizontalBarGraph and VerticalBarGraph.
A UI architecture must implement a method
addXxx(const char* name, float* zone, ...) for each passive widget. Addi-
tional parameters are available, depending on the passive widget type.

5.2.3 Widgets layout

Generally, a GUI is hierarchically organized into boxes and/or tab boxes. A UI architec-
ture must support the following methods to setup this hierarchy :
openTabBox(const char* label)
openHorizontalBox(const char* label)
openVerticalBox(const char* label)
closeBox(const char* label)

Note that all the widgets are added to the current box.

5.2.4 Metadata

The Faust language allows widget labels to contain metadata enclosed in square brackets.
These metadata are handled at GUI level by a declaremethod taking as argument, a
pointer to the widget associated zone, the metadata key and value:
declare(float* zone, const char* key, const char* value)

56 CHAPTER 5. ARCHITECTURE FILES

UI Comment
console a textual command line UI
GTK a GTK-based GUI
Qt a multi-platformQt-based GUI
FUI a file-based UI to store and recall modules states
OSC OSC control (see ??)

Table 5.3: Available UI architectures.

Chapter 6

OSC support

Most Faust architectures provide Open Sound Control (OSC) support 1. This allows
Faust applications to be remotely controlled from any OSC capable application, pro-
gramming language, or hardware device. OSC support can be activated using the -osc
option when building the application with the appropriate faust2xxx command. The
following table (table 6.1) lists Faust’s architectures which provide OSC support.

6.1 A simple example

To illustrate howOSC support works let’s define a very simple noise generator with a
level control: noise.dsp

process = library("music.lib").noise
* hslider("level", 0, 0, 1, 0.01);

We are going to compile this example as a standalone Jack QT application with OSC
support using the command:

faust2jaqt -osc noise.dsp

When we start the application from the command line:

./noise

we get various information on the standard output, including:

Faust OSC version 0.93 application ’noise’ is
running on UDP ports 5510, 5511, 5512

1The implementation is based internally on the oscpack library by Ross Bencina

57

58 CHAPTER 6. OSC SUPPORT

Audio system Environment OSC support

Linux
Alsa GTK, Qt, Console yes
Jack GTK, Qt, Console yes

Netjack GTK, Qt, Console yes
PortAudio GTK, Qt yes

Mac OS X
CoreAudio Qt yes

Jack Qt, Console yes
Netjack Qt, Console yes

PortAudio Qt yes

Windows
Jack Qt, Console yes

PortAudio Qt yes

Table 6.1: Faust architectures with OSC support.

As we can see the OSCmodule makes use of three different UDP ports:

• 5510 is the listening port number: control messages should be addressed to this
port.

• 5511 is the output port number: control messages sent by the application and
answers to query messages are sent to this port.

• 5512 is the error port number: used for asynchronous error notifications.

TheseOSCparameters canbe changed from the command lineusing oneof the following
options:

• -port number set the port number used by the application to receive messages.

• -outport number set the port number used by the application to transmit
messages.

• -errport number set the port number used by the application to transmit error
messages.

6.2. AUTOMATIC PORT ALLOCATION 59

• -desthost host set the destination host for the messages sent by the applica-
tion.

• -xmit 0|1|2 turn transmission OFF, ALL, or ALIAS (default OFF). When
transmission is OFF, input elements can be controlled using their addresses or
aliases (if present). When transmission is ALL, input elements can be controlled
using their addresses or aliases (if present), user’s actions and output elements
(bargraph) are transmitted as OSCmessages as well as aliases (if present). When
transmission is ALIAS, input elements can only be controlled using their aliases,
user’s actions and output elements (bargraph) are transmitted as aliases only.

• -xmitfilter path allows to filter output messages. Note that ’path’ can be a
regular expression (like "/freeverb/Reverb1/*").

For example:
./noise -xmit 1 -desthost 192.168.1.104 -outport

6000

will run noise with transmission mode ON, using 192.168.1.104 on port 6000 as destina-
tion.

6.2 Automatic port allocation

In order to address each application individually, only one application can be listening
on a single port at one time. Therefore when the default incoming port 5510 is already
opened by some other application, an application will automatically try increasing port
numbers until it finds an available port. Let’s say that we start two applications noise
and mixer on the same machine, here is what we get:

$./noise &
...
Faust OSC version 0.93 application ’noise’ is

running on UDP ports 5510, 5511, 5512
$./mixer
...
Faust OSC version 0.93 application ’mixer’ is

running on UDP ports 5513, 5511, 5512

The mixer application fails to open the default incoming port 5510 because it is already
opened by noise. Therefore it tries to find an available port starting from 5513 and
open it. Please note that the two outcoming ports 5511 and 5512 are shared by all running
applications.

60 CHAPTER 6. OSC SUPPORT

6.3 Discovering OSC applications

The commands oscsend Send OpenSound Control message via UDP. and oscdump
oscsend hostname
port address types

values: send
OpenSound Control

message via UDP. types
is a string, the letters
indicates the type of
the following values:

i=integer, f=float,
s=string,...

oscdump port : receive
OpenSound Control

messages via UDP and
dump to standard

output

from the liblo package provide a convenient mean to experiment with OSC control. For
the experiment let’s use two additional terminals. The first one will be used to send OSC
messages to the noise application using oscsend. The second terminal will be used to
monitor the messages sent by the application using oscdump. We will indicate by T1$
the command types on terminal T1 and by T2: the messages received on terminal T2.
To monitor on terminal T2 the OSCmessages received on UDP port 5511 we will use
oscdump:

T2$ oscdump 5511

Once set we can use the hellomessage to scan UDP ports for FAUST applications. For
example:

T1$ oscsend localhost 5510 "/*" s hello

gives us the root message address, the network and the UDP ports used by the noise
application:

T2: /noise siii "192.168.1.102" 5510 5511 5512

6.4 Discovering the OSC interface of an application

Once we have an application we can discover its OSC interface (the set of OSC messages
we can use to control it) by sending the getmessage to the root:

T1$ oscsend localhost 5510 /noise s get

As an answer of the osc messages understood by the application, a full description is
available on terminal T2:

T2: /noise sF "xmit" #F
T2: /noise ss "desthost" "127.0.0.1"
T2: /noise si "outport" 5511
T2: /noise si "errport" 5512
T2: /noise/level fff 0.000000 0.000000 1.000000

The root of the osc interface is /noise. Transmission is OFF, xmit is set to false. The
destination host for sending messages is "127.0.0.1", the output port is 5511 and the
error port is 5512. The application has only one user interface element: /noise/level
with current value 0.0, minimal value 0.0 and maximal value 1.0.

6.5. WIDGET’S OSC ADDRESS 61

6.5 Widget’s OSC address

Each widget of an application has a unique OSC address obtained by concatenating the
labels of it’s surrounding groups with its own label. Here is as an example mix4.dsp, a

There are potential
conflicts between
widget’s labels and the
OSC address space. An
OSC symbolic name is
an ASCII string
consisting of a
restricted set of
printable characters.
Therefore to ensure
compatibility spaces
are replaced by
underscores and some
other characters
(asterisk, comma,
forward, question
mark, open bracket,
close bracket, open
curly brace, close curly
brace) are replaced by
hyphens.

very simplified monophonic audio mixer with 4 inputs and one output. For each input
we have a mute button and a level slider:

input(v) = vgroup("input %v", *(1- checkbox("mute"
)) : *(vslider("level", 0, 0, 1, 0.01)));

process = hgroup("mixer", par(i, 4, input(i)) :>
_);

If we query this application:
T1$ oscsend localhost 5510 "/*" s get

We get a full description of its OSC interface on terminal T2:
T2: /mixer sF "xmit" #F
T2: /mixer ss "desthost" "127.0.0.1"
T2: /mixer si "outport" 5511
T2: /mixer si "errport" 5512
T2: /mixer/input_0/level fff 0.0000 0.0000 1.0000
T2: /mixer/input_0/mute fff 0.0000 0.0000 1.0000
T2: /mixer/input_1/level fff 0.0000 0.0000 1.0000
T2: /mixer/input_1/mute fff 0.0000 0.0000 1.0000
T2: /mixer/input_2/level fff 0.0000 0.0000 1.0000
T2: /mixer/input_2/mute fff 0.0000 0.0000 1.0000
T2: /mixer/input_3/level fff 0.0000 0.0000 1.0000
T2: /mixer/input_3/mute fff 0.0000 0.0000 1.0000

As we can see each widget has a unique OSC address obtained by concatenating the
top level group label "mixer", with the "input" group label and the widget label. Please
note that in this operation whites spaces are replaced by underscores and metadata are
removed.
All addresses must have a common root. This is the case in our example because there is
a unique horizontal group "mixer" containing all widgets. If a common root is missing
as in the following code:

input(v) = vgroup("input %v", *(1- checkbox("mute"
)) : *(vslider("level", 0, 0, 1, 0.01)));

process = par(i, 4, input(i)) :> _;

then a default vertical group is automatically create by the Faust compiler using the name
of the file mix4 as label:

62 CHAPTER 6. OSC SUPPORT

T2: /mix4 sF "xmit" #F
T2: /mix4 ss "desthost" "127.0.0.1"
T2: /mix4 si "outport" 5511
T2: /mix4 si "errport" 5512
T2: /mix4/input_0/level fff 0.0000 0.0000 1.0000
T2: /mix4/input_0/mute fff 0.0000 0.0000 1.0000
T2: /mix4/input_1/level fff 0.0000 0.0000 1.0000
T2: /mix4/input_1/mute fff 0.0000 0.0000 1.0000
T2: /mix4/input_2/level fff 0.0000 0.0000 1.0000
T2: /mix4/input_2/mute fff 0.0000 0.0000 1.0000
T2: /mix4/input_3/level fff 0.0000 0.0000 1.0000
T2: /mix4/input_3/mute fff 0.0000 0.0000 1.0000

6.6 Controlling the application via OSC

We can control any user interface element of the application by sending one of the
previously discovered messages. For example to set the noise level of the application to
0.2we send:

T1$ oscsend localhost 5510 /noise/level f 0.2

If we now query /noise/levelwe get, as expected, the value 0.2:

T1$ oscsend localhost 5510 /noise/level s get
T2: /noise/level fff 0.2000 0.0000 1.0000

6.7 Turning transmission ON

The xmit message at the root level is used to control the realtime transmission of OSC
messages corresponding to user interface’s actions. For examples:

T1$ oscsend localhost 5510 /noise si xmit 1

turns transmission in ALL mode. Now if we move the level slider we get a bunch of
messages:

T2: /noise/level f 0.024000
T2: /noise/level f 0.032000
T2: /noise/level f 0.105000
T2: /noise/level f 0.250000
T2: /noise/level f 0.258000

6.8. FILTERING OSC MESSAGES 63

T2: /noise/level f 0.185000
T2: /noise/level f 0.145000
T2: /noise/level f 0.121000
T2: /noise/level f 0.105000
T2: /noise/level f 0.008000
T2: /noise/level f 0.000000

This feature can be typically used for automation to record and replay actions on the
user interface, or to remote control from one application to another. It can be turned
OFF any time using:

T1$ oscsend localhost 5510 /noise si xmit 0

Use the ALIAS (xmit = 2) mode if you need restricted access to your program: when
ALIAS is mode is used, only aliases of input elements (sliders, buttons...) can be used to
control them, and output elements (bargraph) will only emit on their aliases.

6.8 Filtering OSCmessages

When the transmission of OSCmessages is ON, all the user interface elements are sent
through the OSC connection.

T2: /harpe/level f 0.024000
T2: /harpe/hand f 0.1
T2: /harpe/level f 0.024000
T2: /harpe/hand f 0.25
T2: /harpe/level f 0.024000
T2: /harpe/hand f 0.44
T2: /noise/level f 0.145000
T2: /harpe/hand f 0.78
T2: /noise/level f 0.145000
T2: /harpe/hand f 0.99

We can choose to filter the unwanted parameters (or group of parameters). For example:

T1$ oscsend localhost 5510 /harpe si xmit 1
xmitfilter /harpe/level

As a result, we will receive:

T2: /harpe/hand f 0.1
T2: /harpe/hand f 0.25
T2: /harpe/hand f 0.44
T2: /harpe/hand f 0.78

64 CHAPTER 6. OSC SUPPORT

To reset the filter, send:

T1$ oscsend localhost 5510 /harpe si xmit 1
xmitfilter

6.9 Using OSC aliases

Aliases are a convenient mechanism to control a Faust application from a preexisting set
of OSCmessages.

Let’s saywewant to control our noise examplewith touchOSConAndroid. The first step
is to configure TouchOSC host to 192.168.1.102 (the host running our noise application)
and outgoing port to 5510.

Then we can use oscdump 5510 (after quitting the noise application in order to free port
5510) to visualize the OSCmessages sent by TouchOSC. Let’s use for that the left slider
of simple layout. Here is what we get:

T2: /1/ fader1 f 0.000000
T2: /1/ fader1 f 0.004975
T2: /1/ fader1 f 0.004975
T2: /1/ fader1 f 0.008125
T2: /1/ fader1 f 0.017473
T2: /1/ fader1 f 0.032499
T2: /1/ fader1 f 0.051032
T2: ...
T2: /1/ fader1 f 0.993289
T2: /1/ fader1 f 1.000000

We can associate this OSC message to the noise level slider by inserting the metadata
[osc:/1/fader1 0 1] into the slider’s label:

Several osc aliases can
be inserted into a single
label allowing the same
widget to be controlled

by several OSC
messages.

process = library("music.lib").noise * hslider("
level[osc :/1/ fader1 0 1]" ,0,0,1,0.01);

Because here the range of /1/fader1 is 0 to 1 like the level slider we can remove the range
mapping information and write simply :

process = library("music.lib").noise * hslider("
level[osc :/1/ fader1]", 0, 0, 1, 0.01);

TouchOSC can also send accelerometer data by enabling Settings/Options/Accelerome-
ter. Using again oscdump 5510 we can visualize the messages send by TouchOSC:

6.9. USING OSC ALIASES 65

T2: ...
T2: /accxyz fff -0.147842 0.019752 9.694721
T2: /accxyz fff -0.157419 0.016161 9.686341
T2: /accxyz fff -0.167594 0.012570 9.683948
T2: ...

As we can see TouchOSC send the x, y and z accelerometers in a single message, as a
triplet of values ranging approximatively from −9.81 to 9.81. In order to select the
appropriate accelerometer we need to concatenate to /accxyz a suffix /0, /1 or /2. For
example /accxyz/0 will correspond to x, /accxyz/1 to y, etc. We also need to define a
mapping because the ranges are different:

process = library("music.lib").noise * hslider("
level[osc:/ accxyz /0 0 9.81]" ,0,0,1,0.01);

alias description
[osc:/1/rotary1 0 1] top left rotary knob
[osc:/1/rotary2 0 1] middle left rotary knob
[osc:/1/rotary3 0 1] bottom left rotary knob
[osc:/1/push1 0 1] bottom left push button
[osc:/1/push2 0 1] bottom center left push button
[osc:/1/toggle1 0 1] top center left toggle button
[osc:/1/toggle2 0 1] middle center left toggle button
[osc:/1/fader1 0 1] center left vertical fader
[osc:/1/toggle3 0 1] top center right toggle button
[osc:/1/toggle4 0 1] middle center right toggle button
[osc:/1/fader2 0 1] center right vertical toggle button
[osc:/1/rotary4 0 1] top right rotary knob
[osc:/1/rotary5 0 1] middle right rotary knob
[osc:/1/rotary6 0 1] bottom right rotary knob
[osc:/1/push3 0 1] bottom center right push button
[osc:/1/push4 0 1] bottom right push button
[osc:/1/fader3 0 1] bottom horizontal fader
[osc:/accxyz/0 -10 10] x accelerometer
[osc:/accxyz/1 -10 10] y accelerometer
[osc:/accxyz/2 -10 10] z accelerometer

Table 6.2: Examples of OSCmessage aliases for TouchOSC (layout Mix2).

66 CHAPTER 6. OSC SUPPORT

6.10 OSC cheat sheet

Default ports

5510 default listening port
5511 default transmission port
5512 default error port
5513... alternative listening ports

Command line options

-port n set the port number used by the application to receive messages
-outport n set the port number used by the application to transmit messages
-errport n set the port number used by the application to transmit error messages
-desthost h set the destination host for the messages sent by the application
-xmit 0|1|2 turn transmission OFF, ALL or ALIAS (default OFF)

-xmitfilter s filter the Faust paths at emission time

Discovery messages

oscsend host port "/*" s hello discover if any OSC application is listening on port p
oscsend host port "/*" s get query OSC interface of application listening on port p

Control messages

oscsend host port "/*" si xmit 0|1|2 set transmission mode
oscsend host port widget s get get widget’s value
oscsend host port widget f v set widget’s value

Alias
"...[osc: address lo hi]..." alias with lo→min, hi→maxmapping
"...[osc: address]..." alias withmin,max clipping

Chapter 7

HTTP support

Similarly to OSC, several Faust architectures also provide HTTP support. This allows
Faust applications to be remotely controlled from anyWeb browser using specific URLs.
Moreover OSC and HTTPD can be freely combined.

While OSC support is installed by default when Faust is build, this is not the case for
HTTP. That’s because it depends on GNU libmicrohttpd library which is usually not
installed by default on the system. An additional make httpd step is therefore required
when compiling and installing Faust:

make httpd
make
sudo make install

Note that make httpdwill fail if libmicrohttpd is not available on the system.

The HTTP support can be activated using the -httpd option when building the audio
application with the appropriate faust2xxx command. The following table (table 7.1)
lists Faust’s architectures which provide HTTP support.

7.1 A simple example

To illustrate howHTTP support works let’s reuse our previous mix4.dsp example, a
very simplified monophonic audio mixer with 4 inputs and one output. For each input
we have a mute button and a level slider:

input(v) = vgroup("input %v", *(1- checkbox("mute"))
: *(vslider("level", 0, 0, 1, 0.01)));

process = hgroup("mixer", par(i, 4, input(i)) :> _);

67

68 CHAPTER 7. HTTP SUPPORT

Audio system Environment HTTP support

Linux
Alsa GTK, Qt, Console yes
Jack GTK, Qt, Console yes

Netjack GTK, Qt, Console yes
PortAudio GTK, Qt yes

Mac OS X
CoreAudio Qt yes

Jack Qt, Console yes
Netjack Qt, Console yes

PortAudio Qt yes

Windows
Jack Qt, Console yes

PortAudio Qt yes

Table 7.1: Faust architectures with HTTP support.

We are going to compile this example as a standalone Jack QT application with HTTP
support using the command:

faust2jaqt -httpd mix4.dsp

Th effect of the -httpd is to embed a small Web server into the application, which
purpose is to serve an HTML page representing its user interface. This page makes use
of JavaScript and SVG and is quite similar to the native QT interface.

When we start the application from the command line:

./mix4

we get various information on the standard output, including:

Faust httpd server version 0.72 is running on TCP
port 5510

As we can see the embeddedWeb server is running by default on TCP port 5510. The
entry point is http://localhost:5510. It can be open from any recent browser and it
produces the page reproduced figure 7.1.

http://localhost:5510

7.2. JSON DESCRIPTION OF THE USER INTERFACE 69

Figure 7.1: User interface of mix4.dsp in aWeb browser

7.2 JSON description of the user interface

The communication between the application and theWeb browser is based on several
underlying URLs. The first one is http://localhost:5510/JSON that return a json
descriptionof the user interface of the application. This jsondescription is used internally
by the JavaScript code to build the graphical user interface. Here is (part of) the json
returned by mix4:

{
"name": "mix4",
"address": "YannAir.local",
"port": "5511",
"ui": [

{
"type": "hgroup",
"label": "mixer",
"items": [

{
"type": "vgroup",
"label": "input_0",
"items": [

{
"type": "vslider",
"label": "level",
"address": "/mixer/input_0/level",
"init": "0", "min": "0", "max": "1",

http://localhost:5510/JSON

70 CHAPTER 7. HTTP SUPPORT

"step": "0.01"
},
{

"type": "checkbox",
"label": "mute",
"address": "/mixer/input_0/mute",
"init": "0", "min": "0", "max": "0",
"step": "0"

}
]

},

...

]
}

]
}

7.3 Quering the state of the application

Each widget has a unique "address" field that can be used to query its value. In our
example here the level of the input 0 has the address /mixer/input_0/level. The
address can be used to forge an URL to get the value of the widget: http://localhost:
5510/mixer/input_0/level, resulting in:

/mixer/input_0/level 0.00000

Multiple widgets can be query at once by using an address higher in the hierarchy.
For example to get the values of the level and the mute state of input 0 we use http:
//localhost:5510/mixer/input_0, resulting in:

/mixer/input_0/level 0.00000
/mixer/input_0/mute 0.00000

To get the all the values at once we simply use http://localhost:5510/mixer, resulting in:

/mixer/input_0/level 0.00000
/mixer/input_0/mute 0.00000
/mixer/input_1/level 0.00000
/mixer/input_1/mute 0.00000
/mixer/input_2/level 0.00000

http://localhost:5510/mixer/input_0/level
http://localhost:5510/mixer/input_0/level
http://localhost:5510/mixer/input_0
http://localhost:5510/mixer/input_0
http://localhost:5510/mixer

7.4. CHANGING THE VALUE OF AWIDGET 71

/mixer/input_2/mute 0.00000
/mixer/input_3/level 0.00000
/mixer/input_3/mute 0.00000

7.4 Changing the value of a widget

Figure 7.2: Muting input 1 by forging the appropriate URL

Let’s say that we want to mute input 1 of our mixer. We can use for that purpose the
URL http://localhost:5510/mixer/input_1/mute?value=1 obtained by concatenating
?value=1 at the end of the widget URL.

Allwidgets canbe controlled similarly. For examplehttp://localhost:5510/mixer/input_
3/level?value=0.7will sets the input 3 level to 0.7.

7.5 Proxy control access to the Web server

A control application may want to access and control the running DSP using its Web
server, but without using the delivered HTML page in a browser. Since the complete
json can be retrieved, control applications can purely be developed in C/C++, then build
a proxy version of the use interface, and set and get parameters using HTTP requests.

This mode can be started dynamically using the -server URL parameter. Assuming an
application with HTTP support is running remotely on the given URL, the control
application will fetch its json description, use it to dynamically build the user interface,
and allow to access the remote parameters.

http://localhost:5510/mixer/input_1/mute?value=1
?value=1
http://localhost:5510/mixer/input_3/level?value=0.7
http://localhost:5510/mixer/input_3/level?value=0.7

72 CHAPTER 7. HTTP SUPPORT

7.6 HTTP cheat sheet

Here is a summary of the various URLs used to interact with the application’s Web
server.

Default ports

5510 default TCP port used by the application’s Web server
5511... alternative TCP ports

Command line options

-port n set the TCP port number used by the application’s Web server
-server U RL start a proxy control application accessing the remote application running on the given URL

URLs

http://host:port the base URL to be used in proxy control access mode
http://host:port/JSON get a json description of the user interface
http://host:port/address get the value of a widget or a group of widgets
http://host:port/address?value=v set the value of a widget to v

JSON

Top level

The json describes the name, host and port of the application and a hierarchy of user
interface items:

{
"name": <name >,
"address": <host >,
"port": <port >,
"ui": [<item >]

}

An <item> is either a group (of items) or a widget.

7.6. HTTP CHEAT SHEET 73

Groups

A group is essentially a list of items with a specific layout:

{
"type": <type >,
"label": <label >,
"items": [<item >, <item >,...]

}

The <type> defines the layout. It can be either "vgroup", "hgroup" or "tgroup"

Widgets

{
"type": <type >,
"label": <label >,
"address": <address >,
"meta": [{ "key": "value"},...],
"init": <num >,
"min": <num >,
"max": <num >,
"step": <num >

},

Widgets are the basic items of the user interface. They can be of different <type>
: "button", "checkbox", "nentry", "vslider", "hslider", "vbargraph" or "
hbargraph".

74 CHAPTER 7. HTTP SUPPORT

Chapter 8

MIDI support

Similarly to OSC, several Faust architectures also provideMIDI support. This allows
Faust applications to be controlled from anyMIDI device (or to control MIDI devices).
MIDI is also the preferable way to control Polyphonic instruments.

8.1 MIDI messages description in the dsp source code

MIDI control messages are described as metadata in UI elements. They are decoded by
a special architectureMidiUI class that will parse incoming MIDI messages and update
the appropriate control parameters, or send MIDI messages when the UI elements
(sliders, buttons...) are moved.

8.2 Description of the possible standardMIDI messages

A special [midi:xxx yyy...]metadata needs to be added in the UI element descrip-
tion. The more usual MIDI messages can be used as described here :
- [midi:ctrl num] in a slider of bargraph will map the UI element value to (0, 127)
range. When used with a button or checkbox, 1 will be mapped to 127, 0 will be mapped
to 0,
- [midi:keyon pitch] in a slider of bargraph will map the UI element value to note-
on velocity in the (0, 127) range. When used with a button or checkbox, 1 will be mapped
to 127, 0 will be mapped to 0,
- [midi:keyoff pitch] in a slider of bargraph will map the UI element value to note-
off velocity in the (0, 127) range. When used with a button or checkbox, 1 will bemapped
to 127, 0 will be mapped to 0,

75

76 CHAPTER 8. MIDI SUPPORT

- [midi:keypress key] in a slider of bargraph will map the UI element value to
keypress value in the (0, 127) range. When used with a button or checkbox, 1 will be
mapped to 127, 0 will be mapped to 0,

-[midi:pgm num] in a slider of bargraphwillmap theUI element value to theprogchange
value, so progchangemessage with the same num value will be sent. When used with
a button or checkbox, 1 will send the progchangemessage with num value, 0 will send
nothing,

- [midi:chanpress num] in a slider of bargraph will map the UI element value to the
chanpress value, so chanpressmessage with the same num value will be sent. When used
with a button or checkbox, 1 will send the chanpressmessage with num value, 0 will send
nothing,

- [midi:pitchwheel] in a slider of bargraphwill map theUI element value to (0,16383)
range. Whenusedwith a button or checkbox, 1will bemapped to 16383, 0will bemapped
to 0.

8.3 A simple examples

An example where a volume slider is controlled withMIDI ctrlchange 7 messages :

// ---
// Volume MIDI control in dB
// ---

import("music.lib");

smooth(c) = *(1-c) : +~*(c);
gain = vslider("Volume [midi:ctrl 7]", 0, -70, +4,

0.1) : db2linear : smooth (0.999);
process = *(gain);

A complete testing example namedmidi_tester.dsp is available in the Faust distribution
examples folder.

TheMIDI support can be activated using the -midi option when building the audio
application with the appropriate faust2xxx command. The following table (table 8.1)
lists Faust’s architectures which provide MIDI support.

8.4. MIDI SYNCHRONIZATION 77

Figure 8.1: MIDI messages testing example

8.4 MIDI synchronization

MIDI clock based synchronization can be used to slave a given Faust program. The
following three messages need to be used:
- [midi:start] in a button or checkbox will trigger a value of 1 when a start MIDI
message is received
- [midi:stop] in a button or checkbox will trigger a value of 0 when a stop MIDI
message is received
- [midi:clock] in a button or checkbox will trigger a stream of 1 and 0 each time a
clockMIDI message is received, thus delivering a square command signal.
A typical Faust program will then use the MIDI clock stream to possibly compute
the BPM information, or for any synchronization need it may have. Here is a simple
example of a sinus generated which a frequency controlled by theMIDI clock stream,
and starting/stopping when receiving the MIDI start/stop messages :

import("music.lib");

// square signal (1/0), changing state at each
received clock

clocker = checkbox("MIDI clock[midi:clock]");

78 CHAPTER 8. MIDI SUPPORT

Audio system Environment HTTP support

Linux
Alsa Qt yes
Jack Qt yes

Mac OS X
CoreAudio Qt yes

Jack Qt yes

Table 8.1: Faust architectures with HTTP support.

// ON/OFF button controlled with MIDI start/stop
messages

play = checkbox("ON/OFF [midi:start] [midi:stop]");

// detect front
front(x) = (x-x’) != 0.0;

// count number of peaks during one second
freq(x) = (x-x@SR) : + ~ _;

process = osc(8* freq(front(clocker))) * play;

Chapter 9

Controlling the code generation

Several options of the Faust compiler allow to control the generated C++ code. By
default the computations are done sample by sample in a single loop. But the compiler
can also generate vector and parallel code.

9.1 Vector Code generation

ModernC++ compilers are able to do autovectorization, that is to use SIMD instructions
to speedup the code. These instructions can typically operate in parallel on short vectors
of 4 simple precision floating point numbers thus leading to a theoretical speedup of
×4. Autovectorization of C/C++ programs is a difficult task. Current compilers are
very sensitive to the way the code is arranged. In particular too complex loops can
prevent autovectorization. The goal of the vector code generation is to rearrange the
C++ code in a way that facilitates the autovectorization job of the C++ compiler. Instead
of generating a single sample computation loop, it splits the computation into several
simpler loops that communicates by vectors.
The vector code generation is activated by passing the --vectorize (or -vec) option
to the Faust compiler. Two additional options are available: --vec-size <n> controls
the size of the vector (by default 32 samples) and --loop-variant 0/1 gives some
additional control on the loops.
To illustrate the difference between scalar code and vector code, let’s take the computation
of the RMS (RootMean Square) value of a signal. Here is the Faust code that computes
the Root Mean Square of a sliding window of 1000 samples:

// Root Mean Square of n consecutive samples
RMS(n) = square : mean(n) : sqrt ;

79

80 CHAPTER 9. CONTROLLING THE CODE GENERATION

// Square of a signal
square(x) = x * x ;

// Mean of n consecutive samples of a signal
// (uses fixpoint to avoid the accumulation of
// rounding errors)
mean(n) = float2fix : integrate(n) :

fix2float : /(n);

// Sliding sum of n consecutive samples
integrate(n,x) = x - x@n : +~_ ;

// Convertion between float and fix point
float2fix(x) = int(x*(1<<20));
fix2float(x) = float(x)/(1<<20);

// Root Mean Square of 1000 consecutive samples
process = RMS (1000) ;

The compute() method generated in scalar mode is the following:

virtual void compute (int count ,
float** input ,
float** output)

{
float* input0 = input [0];
float* output0 = output [0];
for (int i=0; i<count; i++) {

float fTemp0 = input0[i];
int iTemp1 = int (1048576* fTemp0*fTemp0);
iVec0[IOTA &1023] = iTemp1;
iRec0 [0] = ((iVec0[IOTA &1023] + iRec0 [1])

- iVec0[(IOTA -1000) &1023]);
output0[i] = sqrtf (9.536744e-10f *

float(iRec0 [0]));
// post processing
iRec0 [1] = iRec0 [0];
IOTA = IOTA +1;

}
}

The -vec option leads to the following reorganization of the code:

9.1. VECTOR CODE GENERATION 81

virtual void compute (int fullcount ,
float** input ,
float** output)

{
int iRec0_tmp [32+4];
int* iRec0 = &iRec0_tmp [4];
for (int index =0; index <fullcount; index +=32)
{

int count = min (32, fullcount -index);
float* input0 = &input [0][index];
float* output0 = &output [0][index];
for (int i=0; i<4; i++)

iRec0_tmp[i]= iRec0_perm[i];
// SECTION : 1
for (int i=0; i<count; i++) {

iYec0[(iYec0_idx+i)&2047] =
int (1048576* input0[i]* input0[i]);

}
// SECTION : 2
for (int i=0; i<count; i++) {

iRec0[i] = ((iYec0[i] + iRec0[i-1]) -
iYec0[(iYec0_idx+i -1000) &2047]);

}
// SECTION : 3
for (int i=0; i<count; i++) {

output0[i] = sqrtf ((9.536744e-10f *
float(iRec0[i])));

}
// SECTION : 4
iYec0_idx = (iYec0_idx+count)&2047;
for (int i=0; i<4; i++)

iRec0_perm[i]= iRec0_tmp[count+i];
}

}

While the second version of the code is more complex, it turns out to be much easier to
vectorize efficiently by the C++ compiler. Using Intel icc 11.0, with the exact same com-
pilation options: -O3 -xHost -ftz -fno-alias -fp-model fast=2, the scalar
version leads to a throughput performance of 129.144 MB/s, while the vector version
achieves 359.548MB/s, a speedup of x2.8 !
The vector code generation is built on top of the scalar code generation (see figure

82 CHAPTER 9. CONTROLLING THE CODE GENERATION

scalar code generator

vector code generator
(loop separation)

parallel code generator
(OpenMP directives)

Figure 9.1: Faust’s stack of code generators

9.1). Every time an expression needs to be compiled, the compiler checks if it requires a
separate loop or not. It applies some simple rules for that. Expressions that are shared
(and are complex enough) are good candidates to be compiled in a separate loop, as well
as recursive expressions and expressions used in delay lines.
The result is a directed graph in which each node is a computation loop (see Figure
9.2). This graph is stored in the klass object and a topological sort is applied to it before
printing the code.

9.2 Parallel Code generation

Theparallel code generation is activatedbypassing either the--openMP (or-omp) option
or the --scheduler (or -sch) option. It implies the -vec options as the parallel code
generation is built on top of the vector code generation.

9.2.1 The OpenMP code generator

The --openMP (or -omp) option given to the Faust compiler will insert appropriate
OpenMP directives in the C++ code. OpenMP (http://wwww.openmp.org) is a well
established API that is used to explicitly define direct multi-threaded, shared memory
parallelism. It is based on a fork-join model of parallelism (see figure 9.3). Parallel
regions are delimited by #pragma omp parallel constructs. At the entrance of a

9.2. PARALLEL CODE GENERATION 83

L1

L4

L7

L8

L6

L2

L9

L3

L5

Figure 9.2: The result of the -vec option is a directed acyclic graph (DAG) of small
computation loops

parallel region a team of parallel threads is activated. The code within a parallel region is
executed by each thread of the parallel team until the end of the region.

#pragma omp parallel
{

// the code here is executed simultaneously by
// every thread of the parallel team
...

}

In order not to have every thread doing redundantly the exact same work, OpemMP
provides specific work-sharing directives. For example #pragma omp sections allows
to break the work into separate, discrete sections, each section being executed by one
thread:

#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section

84 CHAPTER 9. CONTROLLING THE CODE GENERATION

#
p
rag

m
a

 om
p p

arallel

m
aster thread

fork

fork

join

join

#p
rag

m
a

 om
p para

lle
l

Figure 9.3: OpenMP is based on a fork-join model

{
// job 1

}
#pragma omp section
{

// job 2
}
...

}

...
}

9.2.2 Adding OpenMP directives

As said before the parallel code generation is built on top of the vector code generation.
The graph of loops produced by the vector code generator is topologically sorted in

9.2. PARALLEL CODE GENERATION 85

order to detect the loops that can be computed in parallel. The first set S0 (loops L1, L2
and L3 in the DAG of Figure 9.2) contains the loops that don’t depend on any other
loops, the set S1 contains the loops that only depend on loops of S0, (that is loops L4
and L5), etc..
As all the loops of a given set Sn can be computed in parallel, the compiler will generate
a sections construct with a section for each loop.

#pragma omp sections
{

#pragma omp section
for (...) {

// Loop 1
}
#pragma omp section
for (...) {

// Loop 2
}
...

}

If a given set contains only one loop, then the compiler checks to see if the loop can be
parallelized (no recursive dependencies) or not. If it can be parallelized, it generates:

#pragma omp for
for (...) {
// Loop code

}

otherwise it generates a single construct so that only one thread will execute the loop:

#pragma omp single
for (...) {
// Loop code

}

9.2.3 Example of parallel OpenMP code

To illustrate how Faust uses the OpenMP directives, here is a very simple example,
two 1-pole filters in parallel connected to an adder (see figure 9.4 the corresponding
block-diagram):

filter(c) = *(1-c) : + ~ *(c);
process = filter (0.9), filter (0.9) : +;

86 CHAPTER 9. CONTROLLING THE CODE GENERATION

1

0.9

-
*

+

0.9
*

filter(0.9)

1

0.9

-
*

+

0.9
*

filter(0.9)
+

process

Figure 9.4: two filters in parallel connected to an adder

The corresponding compute() method obtained using the -omp option is the following:

virtual void compute (int fullcount ,
float** input ,
float** output)

{
float fRec0_tmp [32+4];
float fRec1_tmp [32+4];
float* fRec0 = &fRec0_tmp [4];
float* fRec1 = &fRec1_tmp [4];
#pragma omp parallel firstprivate(fRec0 ,fRec1)
{

for (int index = 0; index < fullcount;
index += 32)

{
int count = min (32, fullcount -index);
float* input0 = &input [0][index];
float* input1 = &input [1][index];
float* output0 = &output [0][index];
#pragma omp single
{

for (int i=0; i<4; i++)
fRec0_tmp[i]= fRec0_perm[i];

for (int i=0; i<4; i++)
fRec1_tmp[i]= fRec1_perm[i];

}

9.2. PARALLEL CODE GENERATION 87

// SECTION : 1
#pragma omp sections
{

#pragma omp section
for (int i=0; i<count; i++) {

fRec0[i] = ((0.1f * input1[i])
+ (0.9f * fRec0[i-1]));

}
#pragma omp section
for (int i=0; i<count; i++) {

fRec1[i] = ((0.1f * input0[i])
+ (0.9f * fRec1[i-1]));

}
}
// SECTION : 2
#pragma omp for
for (int i=0; i<count; i++) {

output0[i] = (fRec1[i] + fRec0[i]);
}
// SECTION : 3
#pragma omp single
{

for (int i=0; i<4; i++)
fRec0_perm[i]= fRec0_tmp[count+i];

for (int i=0; i<4; i++)
fRec1_perm[i]= fRec1_tmp[count+i];

}
}

}
}

This code requires some comments:

1. The parallel construct #pragma omp parallel is the fundamental construct
that starts parallel execution. The number of parallel threads is generally the
number of CPU cores but it can be controlled in several ways.

2. Variables external to theparallel region are sharedbydefault. Thepragmafirstprivate
(fRec0,fRec1) indicates that each thread should have its private copy of fRec0
and fRec1. The reason is that accessing shared variables requires an indirection
and is quite inefficient compared to private copies.

88 CHAPTER 9. CONTROLLING THE CODE GENERATION

3. The top level loop for (int index = 0;...)... is executed by all threads
simultaneously. The subsequent work-sharing directives inside the loop will
indicate how the work must be shared between the threads.

4. Please note that an implied barrier exists at the end of each work-sharing region.
All threads must have executed the barrier before any of them can continue.

5. Thework-sharing directive#pragma omp single indicates that this first section
will be executed by only one thread (any of them).

6. The work-sharing directive #pragma omp sections indicates that each cor-
responding #pragma omp section, here our two filters, will be executed in
parallel.

7. The loop construct #pragma omp for specifies that the iterations of the associ-
ated loop will be executed in parallel. The iterations of the loop are distributed
across the parallel threads. For example, if we have two threads, the first one can
compute indices between 0 and count/2 and the other one between count/2 and
count.

8. Finally #pragma omp single in section 3 indicates that this last section will be
executed by only one thread (any of them).

9.2.4 The scheduler code generator

With the --scheduler (or -sch) option given to the Faust compiler, the computation
graph is cut into separated computation loops (called "tasks"), and a "Work Stealing
Scheduler" is used to activate and execute them following their dependencies. A pool
of worked threads is created and each thread uses it’s own local WSQ (Work Stealing
Queue) of tasks. AWSQ is a special queue with a Push operation, a "private" LIFO Pop
operation and a "public" FIFO Pop operation.

Starting from a ready task, each thread follows the dependencies, possibly pushing ready
sub-tasks into it’s own local WSQ. When no more tasks can be activated on a given
computation path, the thread pops a task from it’s local WSQ. If the WSQ is empty,
then the thread is allowed to "steal" tasks from other threads WSQ.

The local LIFO Pop operation allows better cache locality and the FIFO steal Pop "larger
chuck" of work to be done. The reason for this is that many work stealing workloads
are divide-and-conquer in nature, stealing one of the oldest task implicitly also steals a
(potentially) large subtree of computations that will unfold once that piece of work is
stolen and run.

9.2. PARALLEL CODE GENERATION 89

Compared to the OpenMP model (-omp) the new model is worse for simple Faust
programs and usually starts to behave comparable or sometimes better for "complex
enough" Faust programs. In any case, since OpenMP does not behave so well with GCC
compilers (only quite recent versions like GCC 4.4 start to show some improvements),
and is unusable on OSX in real-time contexts, this new scheduler option has it’s own
value. We plan to improve it adding a "pipelining" idea in the future.

9.2.5 Example of parallel scheduler code

To illustrate how Faust generates the scheduler code, here is a very simple example,
two 1-pole filters in parallel connected to an adder (see figure 9.4 the corresponding
block-diagram):

filter(c) = *(1-c) : + ~ *(c);
process = filter (0.9), filter (0.9) : +;

When -sch option is used, the content of the additional architecture/scheduler.h file is in-
serted in the generated code. It contains code to deal withWSQ and threadmanagement.
The compute() and computeThread()methods are the following:

virtual void compute (int fullcount ,
float** input ,
float** output)

{
GetRealTime ();
this ->input = input;
this ->output = output;
StartMeasure ();
for (fIndex = 0; fIndex < fullcount; fIndex +=

32) {
fFullCount = min (32, fullcount -fIndex);
TaskQueue ::Init();
// Initialize end task
fGraph.InitTask (1,1);
// Only initialize tasks with inputs
fGraph.InitTask (4,2);
fIsFinished = false;
fThreadPool.SignalAll(fDynamicNumThreads - 1)

;
computeThread (0);
while (! fThreadPool.IsFinished ()) {}

90 CHAPTER 9. CONTROLLING THE CODE GENERATION

}
StopMeasure(fStaticNumThreads ,

fDynamicNumThreads);
}
void computeThread (int cur_thread) {

float* fRec0 = &fRec0_tmp [4];
float* fRec1 = &fRec1_tmp [4];
// Init graph state
{

TaskQueue taskqueue;
int tasknum = -1;
int count = fFullCount;
// Init input and output
FAUSTFLOAT* input0 = &input [0][fIndex];
FAUSTFLOAT* input1 = &input [1][fIndex];
FAUSTFLOAT* output0 = &output [0][fIndex];
int task_list_size = 2;
int task_list [2] = {2,3};
taskqueue.InitTaskList(task_list_size ,

task_list , fDynamicNumThreads , cur_thread ,
tasknum);

while (! fIsFinished) {
switch (tasknum) {

case WORK_STEALING_INDEX: {
tasknum = TaskQueue :: GetNextTask(

cur_thread);
break;

}
case LAST_TASK_INDEX: {

fIsFinished = true;
break;

}
// SECTION : 1
case 2: {

// LOOP 0x101111680
// pre processing
for (int i=0; i<4; i++) fRec0_tmp

[i]= fRec0_perm[i];
// exec code
for (int i=0; i<count; i++) {

fRec0[i] = ((1.000000e-01f *

9.2. PARALLEL CODE GENERATION 91

(float)input1[i]) + (0.9f *
fRec0[i-1]));

}
// post processing
for (int i=0; i<4; i++)

fRec0_perm[i]= fRec0_tmp[count+i
];

fGraph.ActivateOneOutputTask(
taskqueue , 4, tasknum);

break;
}
case 3: {

// LOOP 0x1011125e0
// pre processing
for (int i=0; i<4; i++) fRec1_tmp

[i]= fRec1_perm[i];
// exec code
for (int i=0; i<count; i++) {

fRec1[i] = ((1.000000e-01f *
(float)input0[i]) + (0.9f *
fRec1[i-1]));

}
// post processing
for (int i=0; i<4; i++)

fRec1_perm[i]= fRec1_tmp[count+i
];

fGraph.ActivateOneOutputTask(
taskqueue , 4, tasknum);

break;
}
case 4: {

// LOOP 0x101111580
// exec code
for (int i=0; i<count; i++) {

output0[i] = (FAUSTFLOAT)(
fRec1[i] + fRec0[i]);

}

tasknum = LAST_TASK_INDEX;

92 CHAPTER 9. CONTROLLING THE CODE GENERATION

break;
}

}
}

}
}

Chapter 10

Mathematical Documentation

The Faust compiler provides amechanism to produce a self-describing documentation of
themathematical semantic of a Faust program, essentially as a pdf file. The corresponding
options are -mdoc (short) or --mathdoc (long).

10.1 Goals of the mathdoc

There are three main goals, or uses, of this mathematical documentation:

1. to preserve signal processors, independently from any computer language but
only under a mathematical form;

2. to bring some help for debugging tasks, by showing the formulas as they are really
computed after the compilation stage;

3. to give a new teaching support, as a bridge between code and formulas for signal
processing.

10.2 Installation requirements

• faust, of course!

• svg2pdf (from the Cairo 2D graphics library), to convert block-diagrams, as
LATEX doesn’t eat Svg directly yet...

• breqn, a LATEX package to handle automatic breaking of long equations,

• pdflatex, to compile the LATEX output file.

93

94 CHAPTER 10. MATHEMATICAL DOCUMENTATION

10.3 Generating the mathdoc

The easiest way to generate the complete mathematical documentation is to call the
faust2mathdoc script on a Faust file, as the -mdoc option leave the documentation
production unfinished. For example:

faust2mathdoc noise.dsp

10.3.1 Invoking the -mdoc option

Calling directly faust -mdoc does only the first part of the work, generating:

• a top-level directory, suffixed with "-mdoc",

• 5 subdirectories (cpp/, pdf/, src/, svg/, tex/),

• a LATEX file containing the formulas,

• Svg files for block-diagrams.

At this stage:

• cpp/ remains empty,

• pdf/ remains empty,

• src/ contains all Faust sources used (even libraries),

• svg/ contains Svg block-diagram files,

• tex/ contains the generated LATEX file.

10.3.2 Invoking faust2mathdoc

The faust2mathdoc script calls faust --mathdoc first, then it finishes the work:

• moving the output C++ file into cpp/,

• converting all Svg files into pdf files (you must have svg2pdf installed, from the
Cairo 2D graphics library),

• launching pdflatex on the LATEX file (you must have both pdflatex and the
breqn package installed),

• moving the resulting pdf file into pdf/.

10.4. AUTOMATIC DOCUMENTATION 95

10.3.3 Online examples

To get an idea of the results of this mathematical documentation, which captures the
mathematical semantic of Faust programs, you can look at two pdf files online:

• http://faust.grame.fr/pdf/karplus.pdf (automatic documentation),

• http://faust.grame.fr/pdf/noise.pdf (manual documentation).

You can also generate allmdoc pdfs at once, simply invoking the make mathdoc com-
mand inside the examples/ directory:

• for each %.dsp file, a complete %-mdoc directory will be generated,

• a single allmathpdfs/ directory will gather all the generated pdf files.

10.4 Automatic documentation

By default, when no <mdoc> tag can be found in the input Faust file, the -mdoc option
automatically generates a LATEX file with four sections:

1. ”Equations of process”, gathering all formulas needed for process,

2. ”Block-diagram schema of process”, showing the top-level block-diagram of
process,

3. ”Notice of this documentation”, summing up generation and conventions infor-
mation,

4. ”Complete listing of the input code”, listing all needed input files (including
libraries).

10.5 Manual documentation

You can specify yourself the documentation instead of using the automatic mode, with
five xml-like tags. That permits you to modify the presentation and to add your own
comments, not only on process, but also about any expression you’d like to. Note that
as soon as you declare an <mdoc> tag inside your Faust file, the default structure of the
automatic mode is ignored, and all the LATEX stuff becomes up to you!

http://faust.grame.fr/pdf/karplus.pdf
http://faust.grame.fr/pdf/noise.pdf

96 CHAPTER 10. MATHEMATICAL DOCUMENTATION

10.5.1 Six tags

Here are the six specific tags:

• <mdoc></mdoc>, to open a documentation field in the Faust code,

– <equation></equation>, to get equations of a Faust expression,

– <diagram></diagram>, to get the top-level block-diagram of a Faust ex-
pression,

– <metadata></metadata>, to reference Faust metadatas (cf. declarations),
calling the corresponding keyword,

– <notice />, to insert the "adaptive” notice all formulas actually printed,

– <listing [attributes] />, to insert the listing of Faust files called.

The <listing /> tag can have up to three boolean attributes (set to "true" by de-
fault):

• mdoctags for <mdoc> tags;

• dependencies for other files dependencies;

• distributed for the distribution of interleaved Faust code between <mdoc>
sections.

10.5.2 The mdoc top-level tags

The <mdoc></mdoc> tags are the top-level delimiters for Faust mathematical documen-
tation sections. This means that the four other documentation tags can’t be used outside
these pairs (see section 3.2.3).

In addition of the four inner tags, <mdoc></mdoc> tags accept free LATEX text, including
its standardmacros (like\section, \emph, etc.). This allows tomanage the presentation
of resulting tex file directly from within the input Faust file.

The complete list of the LATEX packages included by Faust can be found in the file
architecture/latexheader.tex.

10.5. MANUAL DOCUMENTATION 97

10.5.3 An example of manual mathdoc

<mdoc >
\title{<metadata >name </metadata >}
\author{<metadata >author </metadata >}
\date{\ today}
\maketitle

\begin{tabular }{ll}
\hline
\textbf{name} & <metadata >name </metadata > \\
\textbf{version} & <metadata >version </metadata > \\
\textbf{author} & <metadata >author </metadata > \\
\textbf{license} & <metadata >license </metadata > \\
\textbf{copyright} & <metadata >copyright </metadata > \\
\hline

\end{tabular}
\bigskip
</mdoc >
//

// Noise generator and demo file for the Faust math
documentation

//

declare name "Noise";
declare version "1.1";
declare author "Grame";
declare author "Yghe";
declare license "BSD";
declare copyright "(c)GRAME 2009";

<mdoc >
\section{Presentation of the "noise.dsp" Faust program}
This program describes a white noise generator with an

interactive volume , using a random function.

\subsection{The random function}
</mdoc >

random = +(12345) ~*(1103515245);

<mdoc >
The \texttt{random} function describes a generator of random

numbers , which equation follows. You should notice hereby
the use of an integer arithmetic on 32 bits , relying on

98 CHAPTER 10. MATHEMATICAL DOCUMENTATION

integer wrapping for big numbers.
<equation >random </equation >

\subsection{The noise function}
</mdoc >

noise = random /2147483647.0;

<mdoc >
The white noise then corresponds to:
<equation >noise </equation >

\subsection{Just add a user interface element to play volume !}
</mdoc >

process = noise * vslider("Volume[style:knob]", 0, 0, 1, 0.1);

<mdoc >
Endly , the sound level of this program is controlled by a user

slider , which gives the following equation:
<equation >process </equation >

\section{Block -diagram schema of process}
This process is illustrated on figure 1.
<diagram >process </diagram >

\section{Notice of this documentation}
You might be careful of certain information and naming

conventions used in this documentation:
<notice />

\section{Listing of the input code}
The following listing shows the input Faust code , parsed to

compile this mathematical documentation.
<listing mdoctags =" false" dependencies ="false" distributed ="

true" />
</mdoc >

The following page which gathers the four resulting pages of noise.pdf in small size.
might give you an idea of the produced documentation.

10.5.4 The -stripmdoc option

As you can see on the resulting file noisemetadata.pdf on its pages 3 and 4, the listing
of the input code (section 4) contains all the mathdoc text (here colored in grey). As it
may be useless in certain cases (see Goals, section 10.1), we provide an option to strip
mathdoc contents directly at compilation stage: -stripmdoc (short) or --strip-mdoc
-tags (long).

10.6. LOCALIZATION OF MATHDOC FILES 99

10.6 Localization of mathdoc files

By default, texts used by the documentator are in English, but you can specify another
language (French, German and Italian for the moment), using the -mdlang (or --
mathdoc-lang) option with a two-letters argument (en, fr, it, etc.).
The faust2mathdoc script also supports this option, plus a third short form with -l:

faust2mathdoc -l fr myfaustfile.dsp

If you would like to contribute to the localization effort, feel free to translate the math-
doc texts from any of the mathdoctexts-*.txt files, that are in the architecture
directory (mathdoctexts-fr.txt, mathdoctexts-it.txt, etc.). As these files are
dynamically loaded, just adding a new file with an appropriate name should work.

N
oise

G
ram

e,
Y
gh

e

M
arch

9,
2010

n
a
m
e

N
o
ise

v
e
rsio

n
1.1

a
u
th

o
r

G
ram

e,
Y

g
h
e

lic
e
n
se

B
S
D

c
o
p
y
rig

h
t

(c)G
R

A
M

E
20

0
9

/
/
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

/
/

N
o
i
s
e

g
e
n
e
r
a
t
o
r

a
n
d

d
e
m
o

f
i
l
e

f
o
r

t
h
e

F
a
u
s
t

m
a
t
h

d
o
c
u
m
e
n
t
a
t
i
o
n

/
/
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

d
e
c
l
a
r
e

n
a
m
e

"
N
o
i
s
e
"
;

d
e
c
l
a
r
e

v
e
r
s
i
o
n

"
1
.
1
"
;

d
e
c
l
a
r
e

a
u
t
h
o
r

"
G
r
a
m
e
"
;

d
e
c
l
a
r
e

a
u
t
h
o
r

"
Y
g
h
e
"
;

d
e
c
l
a
r
e

l
i
c
e
n
s
e

"
B
S
D
"
;

d
e
c
l
a
r
e

c
o
p
y
r
i
g
h
t

"
(
c
)
G
R
A
M
E

2
0
0
9
"
;

1
P
re
se
n
ta
tio

n
o
f
th

e
”
n
o
ise

.d
sp

”
F
a
u
st

p
ro

g
ra

m

T
h
is

p
ro

gra
m

d
escrib

es
a

w
h
ite

n
o
ise

g
en

erato
r

w
ith

a
n

in
tera

ctive
volu

m
e,

u
sin

g
a

ran
d
om

fu
n
ctio

n
.

1
.1

T
h
e
ra

n
d
o
m

fu
n
ctio

n

r
a
n
d
o
m

=
+
(
i
n
t
(
1
2
3
4
5
)
)
~
*
(
i
n
t
(
1
1
0
3
5
1
5
2
4
5
)
)
;

T
h
e
r
a
n
d
o
m

fu
n
ctio

n
d
escrib

es
a

g
en

era
tor

o
f

ran
d
o
m

n
u
m

b
ers,

w
h
ich

eq
u
ation

fo
llow

s.
Y

o
u

sh
o
u
ld

n
o
tice

h
ereb

y
th

e
u
se

o
f

a
n

in
teg

er
arith

m
etic

on
32

b
its,

rely
in

g
o
n

in
teg

er
w

rap
p
in

g
fo

r
b
ig

n
u
m

b
ers.

1
.

O
u
tp

u
t

sign
a
l
y

su
ch

th
a
ty
(t)

=
r
1 (t)

2
.

In
p
u
t

sig
n
al

(n
o
n
e)

1

3.
In

term
ed

iate
sign

al
r
1

su
ch

th
at

r
1 (t)

=
12345⊕

1103515245�
r
1 (t−

1)

1
.2

T
h
e
n
o
ise

fu
n
ctio

n

n
o
i
s
e

=
(
i
n
t
(
r
a
n
d
o
m
)
)
/
(
i
n
t
(
r
a
n
d
o
m
+
1
)
)
;

T
h
e

w
h
ite

n
oise

th
en

corresp
on

d
s

to:
1.

O
u
tp

u
t

sign
al

y
su

ch
th

aty
(t)

=
s
1 (t)

2.
In

p
u
t

sign
al

(n
on

e)

3.
In

term
ed

iate
sign

al
s
1

su
ch

th
at

s
1 (t)

=
in

t
(r

1 (t))�
in

t
(1⊕

r
1 (t))

1
.3

J
u
st

a
d
d
a
u
se
r
in
te
rfa

ce
e
le
m
e
n
t
to

p
la
y
v
o
lu
m
e
!

p
r
o
c
e
s
s

=
n
o
i
s
e

*
v
s
l
i
d
e
r
(
"
V
o
l
u
m
e
[
s
t
y
l
e
:
k
n
o
b
]
"
,

0
,

0
,

1
,

0
.
1
)
;

E
n
d
ly,

th
e

sou
n
d

level
of

th
is

p
rogram

is
con

trolled
b
y

a
u
ser

slid
er,

w
h
ich

giv
es

th
e

fo
llow

in
g

eq
u
ation

:
1.

O
u
tp

u
t

sign
al

y
su

ch
th

at

y
(t)

=
u
s
1 (t)·s

1 (t)

2.
In

p
u
t

sign
al

(n
on

e)

3.
U

ser-in
terface

in
p
u
t

sign
al

u
s
1

su
ch

th
at

”V
olu

m
e”

u
s
1 (t)∈

[0,1
]

(d
efau

lt
valu

e
=

0)

2
B
lo
ck

-d
ia
g
ra

m
sch

e
m
a
o
f
p
ro

ce
ss

T
h
is

p
ro

cess
is

illu
strated

on
fi
gu

re
1.

2

12345
int

+

1103515245
int

*

random

int

12345
int

+

1103515245
int

*

random

1

+
int

/

noise

vslider(V
olum

e[style:kn
ob], 0, 0, 1, 0.1)

*

process

F
ig

u
re

1:
B

lo
ck

d
ia

g
ram

of
p
r
o
c
e
s
s

3
N
o
tice

o
f
th

is
d
o
cu

m
e
n
ta
tio

n

Y
o
u

m
igh

t
b

e
ca

refu
l

o
f

certa
in

in
form

a
tio

n
a
n
d

n
a
m

in
g

co
n
ven

tion
s

u
sed

in
th

is
d
o
cu

m
en

tation
:

•
T

h
is

d
o
cu

m
en

t
w

as
gen

era
ted

u
sin

g
F

a
u
st

versio
n

0
.9

.13
on

M
a
rch

09,
20

1
0.

•
T

h
e

va
lu

e
o
f

a
F

au
st

p
ro

g
ra

m
is

th
e

resu
lt

o
f

ap
p
ly

in
g

th
e

sig
n
a
l

tran
s-

form
er

d
en

o
ted

b
y

th
e

ex
p
ression

to
w

h
ich

th
e
p
r
o
c
e
s
s

id
en

tifi
er

is
b

ou
n
d

to
in

p
u
t

sign
a
ls,

ru
n
n
in

g
at

th
e
f
S

sam
p
lin

g
freq

u
en

cy.

•
F

a
u
st

(F
u
n
ctio

n
a
l
A
u
d
io

S
trea

m
)

is
a

fu
n
ctio

n
al

p
ro

gra
m

m
in

g
la

n
gu

ag
e

d
esig

n
ed

fo
r

sy
n
ch

ro
n
ou

s
real-tim

e
sig

n
al

p
ro

cessin
g

a
n
d

sy
n
th

esis
a
p
p
li-

ca
tio

n
s.

A
F

a
u
st

p
rog

ra
m

is
a

set
o
f

b
in

d
in

g
s

o
f

id
en

tifi
ers

to
ex

p
ression

s
th

a
t

d
en

ote
sign

a
l

tra
n
sfo

rm
ers.

A
sign

a
l
s

in
S

is
a

fu
n
ctio

n
m

ap
p
in

g
1

tim
es

t∈
Z

to
valu

es
s(t)

∈
R

,
w

h
ile

a
sign

a
l

tra
n
sfo

rm
er

is
a

fu
n
ctio

n

1
F
a
u
st

a
ssu

m
es

th
a
t∀

s
∈

S
,∀

t∈
Z
,s(t)

=
0
w
h
en

t
<

0
.

3

from
S
n

to
S
m

,
w

h
ere

n
,m
∈

N
.

S
ee

th
e

F
au

st
m

an
u
al

for
ad

d
ition

al
in

form
ation

(h
ttp

://fau
st.gram

e.fr).

•
E

very
m

ath
em

atical
form

u
la

d
erived

from
a

F
au

st
ex

p
ression

is
assu

m
ed

,
in

th
is

d
o
cu

m
en

t,
to

h
av

in
g

b
een

n
orm

alized
(in

an
im

p
lem

en
tation

-d
ep

en
-

d
en

t
m

an
n
er)

b
y

th
e

F
au

st
com

p
iler.

•
A

b
lo

ck
d
iagram

is
a

grap
h
ical

rep
resen

tation
of

th
e

F
au

st
b
in

d
in

g
of

an
id

en
tifi

er
I

to
an

ex
p
ression

E
;

each
grap

h
is

p
u
t

in
a

b
ox

lab
eled

b
y

I.
S
u
b

ex
p
ression

s
of

E
are

recu
rsively

d
isp

layed
as

lon
g

as
th

e
w

h
ole

p
ictu

re
fi
ts

in
on

e
p
age.

•
∀
x
∈
R

,

in
t(x

)
=

bxc

if
x
>

0
dxe

if
x
<

0
0

if
x

=
0

.

•
T

h
is

d
o
cu

m
en

t
u
ses

th
e

follow
in

g
in

teger
op

eration
s:

o
pera

tio
n

n
a
m
e

sem
a
n
tics

i⊕
j

in
teger

ad
d
ition

n
orm

alize(i
+

j),
in

Z
i�

j
in

teger
m

u
ltip

lication
n
orm

alize(i·j),
in

Z
i�

j
in

teger
d
iv

ision
n
orm

alize(in
t(i/j)),

in
Q

In
teger

op
eration

s
in

F
au

st
are

in
sp

ired
b
y

th
e

sem
an

tics
of

op
eration

s
on

th
e

n
-b

it
tw

o’s
com

p
lem

en
t

rep
resen

tation
of

in
teger

n
u
m

b
ers;

th
ey

are
in

tern
al

com
p

osition
law

s
on

th
e

su
b
set

[−
2
n−

1,2
n−

1−
1

]
ofZ

,
w

ith
n

=
32.

F
or

an
y

in
teger

b
in

ary
op

eration
×

on
Z

,
th

e
⊗

op
eration

is
d
efi

n
ed

as:
i⊗

j
=

n
orm

alize(i×
j),

w
ith

n
orm

alize(i)
=

i−
N
·sign

(i)· ⌊|i|
+

N
/2

+
(sign

(i)−
1)/2

N

⌋
,

w
h
ere

N
=

2
n

an
d

sign
(i)

=
0

if
i

=
0

an
d
i/|i|

oth
erw

ise.
U

n
ary

in
teger

op
eration

s
are

d
efi

n
ed

likew
ise.

•
T

h
e
n
o
i
s
e
m
e
t
a
d
a
t
a
-
m
d
o
c
/

d
irectory

m
ay

also
in

clu
d
e

th
e

follow
in

g
su

b
-

d
irectories:

–
c
p
p
/

for
F

au
st

com
p
iled

co
d
e;

–
p
d
f
/

w
h
ich

con
tain

s
th

is
d
o
cu

m
en

t;

–
s
r
c
/

for
all

F
au

st
sou

rces
u
sed

(ev
en

lib
raries);

–
s
v
g
/

for
b
lo

ck
d
iagram

s,
en

co
d
ed

u
sin

g
th

e
S
calab

le
V

ector
G

rap
h
ics

form
at

(h
ttp

://w
w
w
.w
3.org/G

rap
h
ics/S

V
G
/
);

–
t
e
x
/

for
th

e
L AT

E
X

sou
rce

of
th

is
d
o
cu

m
en

t.

4

4
L
istin

g
o
f
th

e
in
p
u
t
co

d
e

T
h
e

follow
in

g
listin

g
sh

ow
s

th
e

in
p
u
t

F
au

st
co

d
e,

p
a
rsed

to
co

m
p
ile

th
is

m
ath

-
em

a
tical

d
o
cu

m
en

tatio
n
.L

istin
g

1
:
n
o
i
s
e
m
e
t
a
d
a
t
a
.
d
s
p

�
�

1
/
/
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
/
/

N
o
i
s
e

g
e
n
e
r
a
t
o
r

a
n
d

d
e
m
o

f
i
l
e

f
o
r

t
h
e

F
a
u
s
t

m
a
t
h

d
o
c
u
m
e
n
t
a
t
i
o
n

3
/
/
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

45
d
e
c
l
a
r
e

n
a
m
e

"
N
o
i
s
e
"
;

6
d
e
c
l
a
r
e

v
e
r
s
i
o
n

"
1
.
1
"
;

7
d
e
c
l
a
r
e

a
u
t
h
o
r

"
G
r
a
m
e
"
;

8
d
e
c
l
a
r
e

a
u
t
h
o
r

"
Y
g
h
e
"
;

9
d
e
c
l
a
r
e

l
i
c
e
n
s
e

"
B
S
D
"
;

1
0

d
e
c
l
a
r
e

c
o
p
y
r
i
g
h
t

"
(
c
)
G
R
A
M
E

2
0
0
9
"
;

1
1

1
2

1
3

r
a
n
d
o
m

=
+
(
i
n
t
(
1
2
3
4
5
)
)
~
*
(
i
n
t
(
1
1
0
3
5
1
5
2
4
5
)
)
;

1
4

1
5

1
6

n
o
i
s
e

=
(
i
n
t
(
r
a
n
d
o
m
)
)
/
(
i
n
t
(
r
a
n
d
o
m
+
1
)
)
;

1
7

1
8

1
9

p
r
o
c
e
s
s

=
n
o
i
s
e

*
v
s
l
i
d
e
r
(
"
V
o
l
u
m
e
[
s
t
y
l
e
:
k
n
o
b
]
"
,

0
,

0
,

1
,

0
.
1
)
;

�
�

5

10.7. SUMMARY OF THEMATHDOC GENERATION STEPS 103

10.7 Summary of the mathdoc generation steps

1. First, to get the full mathematical documentation done on your faust file, call
faust2mathdoc myfaustfile.dsp.

2. Then, open the pdf file myfaustfile-mdoc/pdf/myfaustfile.pdf.

3. That’s all !

104 CHAPTER 10. MATHEMATICAL DOCUMENTATION

Chapter 11

Acknowledgments

Many persons are contributing to the Faust project, by providing code for the compiler,
architecture files, libraries, examples, documentation, scripts, bug reports, ideas, etc. We
would like in particular to thank:

- Fons Adriaensen

- Karim Barkati

- Jérôme Barthélemy

- Tim Blechmann

- Tiziano Bole

- Alain Bonardi

- Thomas Charbonnel

- Raffaele Ciavarella

- Julien Colafrancesco

- Damien Cramet

- Étienne Gaudrin

- Pierre Guillot

- Albert Gräf

- Pierre Jouvelot

105

106 CHAPTER 11. ACKNOWLEDGMENTS

- Stefan Kersten

- Victor Lazzarini

- Matthieu Leberre

- Mathieu Leroi

- Fernando Lopez-Lezcano

- Kjetil Matheussen

- HermannMeyer

- RomainMichon

- RémyMuller

- Eliott Paris

- Reza Payami

- Laurent Pottier

- Sampo Savolainen

- Nicolas Scaringella

- Anne Sedes

- Priyanka Shekar

- Stephen Sinclair

- Travis Skare

- Julius Smith

- Michael Wilson

as well as our colleagues at GRAME:

- Sarah Denoux

- Olivier Guillerminet

- Christophe Lebreton

107

- Mike Solomon

We would like also to thank for their financial support:

- the FrenchMinistry of Culture

- the Rhône-Alpes Region

- the City of Lyon

- the French National Research Agency (Anr)

	Introduction
	Design Principles
	Signal Processor Semantic

	Compiling and installing Faust
	Organization of the distribution
	Compilation
	Installation
	Compilation of the examples

	Faust syntax
	Faust program
	Statements
	Declarations
	Imports
	Documentation

	Definitions
	Simple Definitions
	Function Definitions
	Definitions with pattern matching

	Expressions
	Diagram Expressions
	Numerical Expressions
	Time expressions
	Environment expressions
	Foreign expressions
	Applications and Abstractions

	Primitives
	Numbers
	Waveforms
	C-equivalent primitives
	math.h-equivalent primitives
	Delay, Table, Selector primitives
	User Interface Elements

	Invoking the Faust compiler
	Compilation options

	Architecture files
	Audio architecture modules
	UI architecture modules
	Active widgets
	Passive widgets
	Widgets layout
	Metadata

	OSC support
	A simple example
	Automatic port allocation
	Discovering OSC applications
	Discovering the OSC interface of an application
	Widget's OSC address
	Controlling the application via OSC
	Turning transmission ON
	Filtering OSC messages
	Using OSC aliases
	OSC cheat sheet

	HTTP support
	A simple example
	JSON description of the user interface
	Quering the state of the application
	Changing the value of a widget
	Proxy control access to the Web server
	HTTP cheat sheet

	MIDI support
	MIDI messages description in the dsp source code
	Description of the possible standard MIDI messages
	A simple examples
	MIDI synchronization

	Controlling the code generation
	Vector Code generation
	Parallel Code generation
	The OpenMP code generator
	Adding OpenMP directives
	Example of parallel OpenMP code
	The scheduler code generator
	Example of parallel scheduler code

	Mathematical Documentation
	Goals of the mathdoc
	Installation requirements
	Generating the mathdoc
	Invoking the -mdoc option
	Invoking faust2mathdoc
	Online examples

	Automatic documentation
	Manual documentation
	Six tags
	The mdoc top-level tags
	An example of manual mathdoc
	The -stripmdoc option

	Localization of mathdoc files
	Summary of the mathdoc generation steps

	Acknowledgments

