
Dragonbox: A New Floating-Point
Binary-to-Decimal Conversion Algorithm

Junekey Jeon
The Department of Mathematics

University of California, San Diego
USA

j6jeon@ucsd.edu

Abstract
We present a new algorithm for efficiently converting a bi-
nary floating-point number into the shortest and correctly
rounded decimal representation. The algorithm is based on
Schubfach algorithm [1] introduced in around 2017-2018,
and is also inspired from Grisu [2] and Grisu-Exact [3]. In
addition to the core idea of Schubfach, Dragonbox utilizes
some Grisu-like ideas to minimize the number of expen-
sive 128-bit× 64-bit multiplications, at the cost of having
more branches and divisions-by-constants. According to our
benchmarks, Dragonbox performs better than Ryū, Grisu-
Exact, and Schubfach for both IEEE-754 binary32 and bi-
nary64 formats.

0. Disclaimer
This paper is not a completely formal writing, and is not
intended for publications into peer-reviewed conferences or
journals (because I’m not a fan of sacrificing clarity to fit in
an artifical page limit). Hence, the paper might contain some
alleged claims and/or lack of references.

1. Introduction
Due to recent popularity of JavaScript and JSON, interest
on fast and correct algorithm for converting between binary
and decimal representations of floating-point numbers has
been continuously increasing. As a consequence, many new
algorithms have been proposed recently, in spite of the long
history of the subject.

[Copyright notice will appear here once ’preprint’ option is removed.]

We will assume all floating-point numbers are in either
IEEE-754 binary32 or binary64 formats, as these are the
most common formats used today.12 We will also focus on
the binary-to-decimal conversion in this paper and will not
discuss how to do decimal-to-binary conversion. Contrary to
one might think, in fact decimal-to-binary conversion and
binary-to-decimal conversion are largely asymmetric, be-
cause of the asymmetric nature of input and output. In gen-
eral, for the input side, one needs to deal with wide variety of
possible input data, but the form of output is usually defini-
tive. On the other hand, for the output side, the input data
has a strict format but one needs to choose between various
possibilities of outputs. Floating-point I/O is not an excep-
tion. When it comes to decimal-to-binary conversion, which
corresponds to the input side, the input data can be usually
arbitrarily long so we have to somehow deal with that, but
any input data can, if not malformed, usually represent a
unique floating-point number. On the other hand, in binary-
to-decimal conversion, which corresponds to the output side,
the input is a single binary floating-point number but the out-
put can be all decimal numbers which any correct parser will
read as the original binary floating-point number. To resolve
this ambiguity, Steele and White proposed the following cri-
teria in [4]:3

1. Information preservation: a correct decimal-to-binary
converter must return the original binary floating-point
number,

2. Minimum-length output: the output decimal significand
should be as short as possible, and

3. Correct rounding: among all possible shortest outputs,
the one that is closest to the true value of the given
floating-point number should be chosen.

1 Details of these formats will be reviewed in Section 2
2 It should be not so difficult to generalize Dragonbox to similar formats,
such as IEEE-754 binary16 or binary128.
3 To be precise, the criteria given by Steele and White were in terms of the
character string generated from the decimal representation. However, we
can write those criteria in terms of the decimal representation itself as well.

1 2022/2/24

Notable examples of recently proposed binary-to-decimal
conversion algorithms include but not limited to Grisu [2],
Errol [5], Ryū [6], and Grisu-Exact [3]. Among these, Errol,
Ryū, and Grisu-Exact satisfy all of the above criteria. Grisu
does not satisfy all of the criteria, but Grisu3, which can
detect its failure to satisfy the criteria, with the fallback into
Dragon4 [4], proposed by Steele and White and satisfies all
the criteria, is still popular.

Schubfach [1] is another example of those algorithms, de-
veloped in around 2017-2018, but it seems that, compared to
Ryū, it did not get much attention from the public probably
because at that time there was no document explaining de-
tails of the algorithm. Nevertheless, the underlying idea of
Schubfach is theoretically very appealing and its implemen-
tation [7] also seems to outperform that of the other algo-
rithms.

Although Schubfach is already a very tight algorithm,
there can be ways to improve its performance further. One
possible way might be to eliminate the necessity to perform
three 128-bit× 64-bit multiplications all the time. The core
idea of Dragonbox is to achieve this by applying some Grisu-
like ideas to Schubfach.

2. IEEE-754 Specifications4

Before diving into the details of Dragonbox, let us review
IEEE-754 and fix some related notations. For a real number
w, by (binary) floating-point representation we mean the
representation

w = (−1)σw ·Fw · 2Ew

where σw = 0, 1, 0 ≤ Fw < 2, and Ew is an integer. We
say the above representation is normal if 1 ≤ Fw < 2. Of
course, there is no normal floating-point representation of 0,
while any other real number has a unique normal floating-
point representation. If the representation is not normal, we
say it is subnormal.

IEEE-754 specifications consist of the following rules
that define a mapping from the set of fixed-length bit patterns
bq−1bn−2 · · · b0 for some q into the real line augmented
with some special values:

1. The most-significant bit bq−1 is the sign σw.

2. The least-significant p-bits bp−1 · · · b0 are for storing the
significand Fw, while the remaining (q − p− 1)-bits are
for storing the exponent Ew. We call p the precision of
the representation.5

3. If q− p− 1 exponent bits are not all-zero nor all-one, the
representation is normal. In this case, we compute Fw as

Fw = 1 + 2−p ·
p−1∑
k=0

bk · 2k

4 This section is mostly copied from [3].
5 Usually, it is actually p+1 that is called the precision of the format in other
literatures. However, we call p the precision in this paper for simplicity.

and Ew as

Ew = −(2q−p−2 − 1) +

q−p−2∑
k=0

bp+k · 2k.

The constant term 2q−p−2 − 1 is called the bias, and we
denote this value as Emax := 2q−p−2 − 1.

4. If q− p− 1 exponent bits are all-zero, the representation
is subnormal. In this case, we compute Fw as

Fw = 2−p ·
p−1∑
k=0

bk · 2k

and let Ew = −(2q−p−2− 2). Let us denote this value of
Ew as Emin := −(2q−p−2 − 2).

5. If q−p−1 exponent bits are all-one, the pattern represents
either ±∞ when all of p significand bits are zero, or
NaN’s (Not-a-Number) otherwise.

When (q, p) = (32, 23), the resulting encoding format is
called binary32, and when (q, p) = (64, 52), the resulting
encoding format is called binary64.

For simplicity, let us only consider bit patterns corre-
sponding to positive real numbers from now on. Zeros, in-
finities, and NaN’s should be treated specially, and for neg-
ative numbers, we can simply ignore the sign until the fi-
nal output string is generated. Hence, for example, we do
not think of all-zero nor all-one patterns, and especially ex-
ponent bits are never all-one. Also, we always assume that
the sign bit is 0. With these assumptions, the mapping de-
fined above is one-to-one: each bit pattern corresponds to a
unique real number, and no different bit patterns correspond
to a same real number.

From now on, by saying w = Fw · 2Ew a floating-point
number we implicitly assumes that

(1) w is a positive number representable within an IEEE-754
binary format with some q and p, and

(2) Fw and Ew are those obtained from the rules above.

In particular, the representation should be normal (1 ≤
Fw < 2) if Ew 6= Emin, and it can be subnormal (0 ≤
Fw < 1) only when Ew = Emin. If the representation is
normal, we call w a normal number, and otherwise, we call
w a subnormal number.

For a floating-point number w = Fw · 2Ew , we define
w− as the greatest floating-point number smaller than w.
When w is the minimum possible positive floating-number
representable within the specified encoding format, that is,
w = 2−p · 2Emin , then we define w− = 0. Similarly, we de-
fine w+ as the smallest floating-point number greater than
w. Again, if w is the largest possible finite number repre-
sentable within the format, that is, w = (2 − 2−p)2Emax ,
then we define w+ := 2Emax+1.

2 2022/2/24

In general, it can be shown that

w− =

{
(Fw − 2−p−1)2Ew if Fw = 1 and Ew 6= Emin

(Fw − 2−p)2Ew otherwise

and
w+ = (Fw + 2−p)2Ew .

We will also use the notations

m−w :=
w− + w

2
=

(Fw − 2−p−2)2Ew if Fw = 1 and

Ew 6= Emin

(Fw − 2−p−1)2Ew otherwise
,

m+
w :=

w + w+

2
= (Fw + 2−p−1)2Ew

to denote the midpoints of the intervals [w−, w], [w,w+],
respectively.

2.1 Rounding Modes
Floating-point calculations are inherently imprecise as the
available precision is limited. Hence, it is necessary to round
calculational results to make them fit into the precision limit.
Specifying how any rounding should be performed means to
define for each real number a corresponding floating-point
number in a consistent way. IEEE-754 currently defines five
rounding modes. We can describe those rounding modes by
specifying the inverse image in the real line of each floating-
point number w:

1. Round to nearest, ties to even: If the LSB (Least Signifi-
cant Bit) of the significand bits of w is 0, then the inverse
image is the closed interval [m−w ,m

+
w]. Otherwise, it is

the open interval (m−w ,m
+
w). This is the default rounding

mode in most of the platforms. In fact, IEEE-754 man-
dates it to be the default mode for binary encodings.

2. Round to nearest, ties away from zero: The inverse im-
age of w is the half-open interval [m−w ,m

+
w). This mode

is introduced in the 2008 revision of the IEEE-754 stan-
dard. Some platforms and languages, such as the recent
standards of the C and C++ languages, do not have the
corresponding way of representing this rounding mode.

3. Round toward 0: The inverse image of w is the half-open
interval [w,w+).

4. Round toward +∞: The inverse image of w is the half-
open intervals (w−, w] if w is positive, and [w,w+) if w
is negative.6

5. Round toward −∞: The inverse image of w is the half-
open intervals [w,w+) if w is positive, and (w−, w] is w
is negative.

6 We supposed to deal only with positive numbers, so w here is actually a
positive number. The phrases “if w is positive” or “if w is negative” simply
mean that the original input is positive or negative, respectively.

Though not included in the IEEE-754 standard, we can think
of the following additional rounding modes with their obvi-
ous meanings:

• Round to nearest, ties to odd

• Round to nearest, ties toward zero

• Round to nearest, ties toward +∞
• Round to nearest, ties toward −∞
• Round away from 0

Note that if I is the interval given as the inverse image
of w according to a given rounding mode, then a correct
decimal-to-binary converter must output w from any num-
bers in I . Therefore, in order to produce a shortest possible
decimal representation of w, we need to search for a num-
ber inside I that has the least number of decimal significand
digits.

2.2 Notations
From now on, we will assume that a floating-point number
w and a specific rounding mode is given so the interval I is
defined accordingly. Note that for all cases I is an interval
contained in the positive real axis and it avoids 0. We will
denote the left and the right endpoints of I as wL and wR,
respectively. For example, when one of the round-to-nearest
rounding mode is specified, wL = m−w and wR = m+

w . We
will also denote the length of I as ∆ := wR−wL. Note that
there are only three possible values of ∆:

1. ∆ = 2Ew−p−1, if wL = w−, wR = w, Fw = 1, and
Ew 6= Emin,

2. ∆ = 3 · 2Ew−p−2 if wL = m−w , wR = m+
w , Fw = 1, and

Ew 6= Emin, and

3. ∆ = 2Ew−p for all other cases.

We also denote

e := Ew − p, fc := Fw2p

so that fc is an integer and

w = fc · 2e,

w− =

{(
fc − 1

2

)
· 2e if Fw = 1 and Ew 6= Emin

(fc − 1) · 2e otherwise
,

w+ = (fc + 1) · 2e,

m−w =

{(
fc − 1

4

)
· 2e if Fw = 1 and Ew 6= Emin(

fc − 1
2

)
· 2e otherwise

,

m+
w =

(
fc +

1

2

)
· 2e.

With this notation, ∆ is one of 2e−1, 3 · 2e−2, or 2e.

3. Review of Schubfach
In this section, we will briefly review how Schubfach works.
Most of the results are from [1], but we changed the nota-

3 2022/2/24

tions and formulations, and also rewrote the proofs to help
understanding the rest of our paper.

The beauty of Schubfach is that, not like Ryū or Grisu-
Exact, it does not perform an iterative search to find the
shortest decimal representation. Rather, Schubfach finds it
with just one trial using the following simple fact:7

Proposition 3.1.
Let k0 := −blog10 ∆c. Then

1.
∣∣I ∩ 10−k0+1Z

∣∣ ≤ 1 and
2.
∣∣I ∩ 10−k0Z

∣∣ ≥ 1.8

Here, | · | denotes the cardinality of the set and for any a ∈ R
and A ⊆ R, aA denotes the set {av : v ∈ A}.

Figure 1. If I is shorter than the unit, then it contains at
most one lattice point

Figure 2. If I is longer than the unit, then it contains at least
one lattice point

Proof. By definition of k0, we have

−k0 ≤ log10 ∆ < −k0 + 1,

or equivalently,

10−k0 ≤ ∆ < 10−k0+1. (1)

If
∣∣I ∩ 10−k0+1Z

∣∣ > 1, then it means there are at least
two distinct points in I whose distance from each other is
10−k0+1. Hence, the length of I should be at least 10−k0+1,
or equivalently,

∆ ≥ 10−k0+1,

which is a contradiction. This shows the first claim.
On the other hand, pick any point v ∈ I , then we know⌊

10k0v
⌋
≤ 10k0v <

⌊
10k0v

⌋
+ 1.

7 One might regard this proposition as a form of the pigeonhole principle.
In fact, the name Schubfach is coming from the German name of the
pigeonhole principle, Schubfachprinzip, meaning “drawer principle”.
8 In fact, we show in the proof that for any v ∈ I , at least one of

⌊
10k0v

⌋
and

⌊
10k0v

⌋
+ 1 should be in 10k0I .

We claim that at least one of
⌊
10k0v

⌋
and

⌊
10k0v

⌋
+ 1 is in

10k0I . Suppose not, then the left endpoint of 10k0I should
lie inside

[⌊
10k0v

⌋
, 10k0v

]
and the right endpoint of 10k0I

should lie inside
[
10k0v,

⌊
10k0v

⌋
+ 1
]
. This implies that the

length of 10k0I is at most 1, but since 10−k0 ≤ ∆, it follows
that ∆ = 10−k0 and 10k0I =

(⌊
10k0v

⌋
,
⌊
10k0v

⌋
+ 1
)
.

Note that ∆ = 10−k0 is only possible for very rare cases;
indeed, since 5 does not appear as a prime factor of ∆ (as
a rational number), the equality ∆ = 10−k0 can hold only
when k0 = 0. Hence, we have ∆ = 1, which can hold only
when e = 1 or e = 0 because ∆ is one of 2e−1, 3 · 2e−2,
or 2e, depending on how I is given.9 However, this implies
that w = fc · 2e is an integer, but since w ∈ I , we get that
I ∩ Z 6= ∅. This is absurd, because I is an open interval
between two consecutive integers.

It should be noted that the shortest decimal numbers in
I are the elements of the intersection I ∩ 10−kZ where k
is the smallest integer making the intersection nonempty.
Although this sounds somewhat obvious, let us formally
prove it. First, we define the number of decimal significand
digits of a positive real number v as

⌊
log10(10kv)

⌋
+1 where

k is the smallest integer such that 10kv ∈ Z. For example,

• If v = 1.23, then k = 2 and
⌊
log10(10kv)

⌋
+ 1 = 3,

• If v = 0.01234, then k = 5 and
⌊
log10(10kv)

⌋
+ 1 = 5,

and
• If v = 1200, then k = −2 and

⌊
log10(10kv)

⌋
+ 1 = 2.

Proposition 3.2.
The set I ∩ 10−kZ, where k is the smallest integer making
the intersection nonempty, is precisely the set of elements in
I with the smallest number of decimal significand digits..

Proof. By the assumption on k, we know that I ∩ 10−kZ
is not empty while I ∩ 10−k+1Z is empty. Equivalently,
10kI ∩ Z is not empty while 10k−1I ∩ Z is empty. Since
I is an interval, 10kI ∩ Z = {m,m+ 1, · · · ,M − 1,M}
for some integers m,M ∈ Z. Since 10k−1I ∩ Z is empty,
there is no multiple of 10 among m, · · · ,M . Hence, we get
blog10mc = blog10Mc; otherwise, we have

log10m < blog10mc+ 1

≤ blog10Mc ≤ log10M,

thus
m < 10blog10mc+1 ≤M,

which contradicts to that there is no multiple of 10 among
m, · · · ,M . Note that for any v in the set

I ∩ 10−kZ =
{

10−km, · · · , 10−kM
}
,

k is the smallest integer such that 10kv is an integer, thus all
such v have blog10mc+ 1 decimal significand digits.

9 In fact, since I is an open interval, the first case is impossible, so we have
e = 0.

4 2022/2/24

Now, let us show that blog10mc + 1 is the minimum
possible number of decimal significand digits. We first claim
that

blog10(m− 1)c = blog10mc

if m 6= 1. Indeed, if not, then we have

log10(m− 1) < blog10(m− 1)c+ 1

≤ blog10mc ≤ log10m,

thus
m− 1 < 10blog10(m−1)c+1 ≤ m.

Since 10blog10(m−1)c+1 is an integer, we must have m =
10blog10(m−1)c+1, which contradicts to that m is not a mul-
tiple of 10. This shows the claim.

Next, note that for any v ∈ I such that there exists l ∈ Z
with 10lv ∈ Z, we have l ≥ k because of how we chose k. If
l = k, then 10lv is one of m, · · · ,M , so we may assume
l > k. Note also that we may assume m 6= 1, because
if m = 1 then the number of decimal significand digits of
elements in I ∩ 10−kZ is 1, which is of course the smallest
possible number of decimal significand digits. Now, since
we have ⌊

log10(10lv)
⌋

=
⌊
log10(10kv)

⌋
+ (l − k)

≥
⌊
log10(10kv)

⌋
+ 1,

it suffices to show that
⌊
log10(10kv)

⌋
≥ blog10mc. This

inequality actually follows directly from our previous claim
blog10(m− 1)c = blog10mc; indeed, as 10−k(m − 1) is
not an element of I , we should have v > 10−k(m − 1), or
equivalently, 10kv > m− 1, which implies⌊

log10(10kv)
⌋
≥ blog10(m− 1)c = blog10mc .

Since we have the following chain property

I ∩ 10−k+1Z ⊆ I ∩ 10−kZ

for all k ∈ Z, we get the following:

Corollary 3.3.
Let k0 := −blog10 ∆c. Then:

1. If I ∩ 10−k0+1Z is not empty, then the unique element in
it has the smallest number of decimal significand digits
in I .

2. Otherwise, elements in I ∩ 10−k0Z have the smallest
number of decimal significand digits.

Proof. Suppose first that I ∩ 10−k0+1Z is not empty. Let
l ∈ Z be the smallest integer such that I ∩ 10−lZ is not
empty, then by the chain property, we know

∅ 6= I ∩ 10−lZ ⊆ I ∩ 10−k0+1Z,

but since I∩10−k0+1Z can have at most 1 element by Propo-
sition 3.1, it follows that the unique element of I∩10−k0+1Z
is the unique element of I ∩ 10−lZ. Hence, that unique el-
ement has the smallest number of decimal significand digits
in I by Proposition 3.2.

Next, suppose that I ∩ 10−k0+1Z = ∅. Then again by
the chain property, k0 must be the smallest integer such
that I ∩ 10−k0Z is not empty, so the result follows from
Proposition 3.2.

Note that, since we always have w ∈ I , so given that
I ∩ 10−kZ is nonempty for some k ∈ Z, then at least
one of

⌊
10kw

⌋
10−k and

(⌊
10kw

⌋
+ 1
)

10−k must be in
I ∩ 10−kZ. More precisely, pick any v ∈ I ∩ 10−kZ, then
if v ≤ w, then

⌊
10kw

⌋
10−k is in I ∩ 10−kZ since

⌊
10kw

⌋
is the largest integer smaller than or equal to 10kw, so it
should lie in between 10kv and 10kw. Similarly, if v > w,
then

(⌊
10kw

⌋
+ 1
)

10−k is in I ∩ 10−kZ since
⌊
10kw

⌋
+ 1

is the smallest integer strictly greater than 10kw, so it should
lie in between 10kw and 10kv. This leads us to the following
strategy of finding the shortest decimal representation of w
assuming round-to-nearest, which is the basic skeleton of
Schubfach:

Algorithm 3.4 (Skeleton of Schubfach).

1. Compute k0 := −blog10 ∆c.
2. Compute

⌊
10k0−1w

⌋
and

⌊
10k0−1w

⌋
+ 1. If one of them

(and only one of them) belongs to 10k0−1I , then call that
number s. In this case, 10−k0+1s is the unique number in
I with the smallest number of decimal significand digits.
However, s might contain trailing decimal zeros; that is,
it might be a multiple of a power of 10 as I ∩ 10−lZ
might be nonempty for some l < k0 − 1. Thus, let d be
the greatest integer such that 10d divides s, then s

10d
×

10d−k0+1 is the unique shortest decimal representation
of w.

3. Otherwise, we compute
⌊
10k0w

⌋
and

⌊
10k0w

⌋
+1. Then

at least one of them must be in 10k0I , and if only one
of them is inside I , call that number s. In this case,
10−k0s is the number closest to w in I with the smallest
number of decimal significand digits. Since we assumed
that I ∩ 10−k0+1Z is empty, s is never divisible by 10
so there is no trailing decimal zeros and s× 10−k0 is the
correctly rounded shortest decimal representation of w.

4. If both
⌊
10k0w

⌋
and

⌊
10k0w

⌋
+ 1 are inside 10k0I ,

choose the one that is closer to 10k0w. When the dis-
tances from 10k0w to those numbers are the same, break
the tie according to a given rule.10 Call the chosen num-
ber s, then again s cannot have any trailing decimal zeros
and s × 10−k0 is the correctly rounded shortest decimal
representation of w.

10 The most common rule is to choose the even one, but we can consider
other rules as well.

5 2022/2/24

Based on the above strategy, the details of Schubfach
include the following:

• How to efficiently compute blog10 ∆c?
• How to efficiently compute

⌊
10k0−1w

⌋
,
⌊
10k0−1w

⌋
+ 1,⌊

10k0w
⌋

and
⌊
10k0w

⌋
+ 1?

• How to efficiently compare these numbers to the end-
points of 10k0−1I or 10k0I?

Similar to Ryū and Grisu-Exact, Schubfach uses a table of
precomputed binary digits of powers of 10 in order to ac-
complish the second item. In addition to that, it uses an in-
genious rounding trick which makes the third item trivial.11

More precisely, after computing k0, Schubfach computes
approximations of 10k0wL and 10k0wR along with that of
10k0w, with the aforementioned rounding rule applied, and
the construction of the rounding rule ensures that we can just
compare with the computed approximations of 10k0wL and
10k0wR in order to deduce if a given number is in the inter-
val or not.

However, even with the precomputed cache, computing
the approximate multiplications wL× 10k0 , wR× 10k0 , and
w × 10k0 , is not cheap, because it requires several 64-bit
multiplications, which, for typical modern x86 machines, are
a lot slower than many other instructions. (We will review
how these approximate multiplications can be done in Sec-
tion 5.1.5.) The core idea of Dragonbox is, thus, on how we
can avoid some of these multiplications.

4. Computation of bnxc and Related Tricks
In this section, we will state and prove some statements re-
garding the computation of bnxc for a positive real number
x and an integer n, and also other related things. The cor-
rectness analysis of Dragonbox is crucially dependent on re-
sults from this section, but since this section has little to do
with the actual implementation, readers who are only inter-
ested in the implementation of the algorithm might skip it
entirely and go directly to Section 5. However, the results in
this section can be interesting in their own because they are
very closely related to (and generalize and unify some of)
many previously known optimization techniques for integer
division pioneered by Granlund and Montgomery [8]. Also,
the author believes that these results might be very handy to
those who are interested in developing new algorithms re-
lated to not only floating-point formatting/parsing but also
integer formatting/parsing and division.

11 To be honest, I did not look at this rounding trick carefully, and do not
fully understand how it works. Dragonbox does not rely on this trick, so it
should be irrelevant for the rest of the paper. However, it might be that we
can still possibly apply the trick also to Dragonbox so that we can make it
even faster.

4.1 Computation of bnxc
In this subsection, we will obtain a necessary and sufficient
condition for ensuring

bnxc = bnξc

for all n in a prescribed range where x and ξ are given
positive real numbers. In practice, x will be a number given
by the problem, so that the left-hand side bnxc is what
we want to compute, while we choose an appropriate ξ
depending on x and the range of n (but not on individual n’s)
making the computation of the right-hand side bnξc cheap.

For example, we may want to choose ξ = m
2k

for some
positive integers k and m. In this case, the computation of
bnξc is simply one integer multiplication followed by one
right-shift. In fact, ξ = m

2k
is virtually the only possibility

that we might care in practice, but allowing ξ to be any
positive real number is convenient for the purpose of proving
some other results.

A key concept we will make use of is the following.

Definition 4.1.
Given a real number x ∈ R, we say a rational number p

q
12

is a best rational approximation of x from below, if p
q ≤ x

and for any rational number ab ≤ x with b ≤ q, we have

a

b
≤ p

q
≤ x.

Similarly, we say p
q is a best rational approximation of x

from above if p
q ≥ x and for any rational number a

b ≥ x
with b ≤ q, we have

a

b
≥ p

q
≥ x.

For example, given x = 1
3 , 0 is a best rational approx-

imation from below and 1
2 is a best rational approximation

from above. As another example, given x = 5
17 , 1

4 is a best
rational approximation from below and 1

3 is a best rational
approximation from above. Note that in this case 1

4 is not
a best rational approximation if we consider both directions
of approach at the same time, because 1

3 is a better rational
approximation.

Whenever p
q is a best rational approximation of x from

below, we must have p = bqxc, since if p > bqxc then
p
q ≤ x is violated, and if p < bqxc then p+1

q is a strictly
better approximation of x that is still below x. Similarly, if
p
q is a best rational approximation of x from above, then we
must have p = dqxe.

The concept of best rational approximations from be-
low/above directly leads us to the following proposition,
which is a generalization of the classical result of Granlund-
Montgomery [8] (Theorem 4.2), and also a generalization of
a result by Warren [9] and Lemire et al. [10] (Theorem 1):

12 Whenever we say “a rational number p
q

”, we always assume that p
q

is in
its reduced form, that is, q ∈ Z>0 and p ∈ Z with gcd(p, q) = 1.

6 2022/2/24

Theorem 4.2.
Let x be a positive real number and nmax a positive integer.
Then for a positive real number ξ, we have the followings.

1. If x = p
q is a rational number with q ≤ nmax, then we

have
bnxc = bnξc

for all n = 1, · · · , nmax if and only if

x ≤ ξ < x+
1

vq

holds, where v is the greatest integer such that vp ≡
−1 (mod q) and v ≤ nmax.

2. If x is either an irrational number or a rational number
with the denominator strictly greater than nmax, then we
have

bnxc = bnξc

for all n = 1, · · · , nmax if and only if

p∗
q∗
≤ ξ < p∗

q∗

holds, where p∗
q∗
, p

∗

q∗ are the best rational approximations
of x from below and above, respectively, with the largest
denominators q∗, q∗ ≤ nmax.

Proof. Note that
bnxc = bnξc

is equivalent to

bnxc
n
≤ ξ < bnxc+ 1

n
,

so having bnxc = bnξc for all n = 1, · · · , nmax is
equivalent to

max
n=1, ··· ,nmax

bnxc
n
≤ ξ < min

n=1, ··· ,nmax

bnxc+ 1

n
. (2)

Clearly, the left-hand side is precisely p∗
q∗

, because if not,

then pick the smallest n achieving the maximum, then bnxcn
must be a best rational approximation of x from below,
thus we get n ≤ q∗, contradicting to that p∗

q∗
is a best

rational approximation from below. Of course, if x = p
q with

q ≤ nmax, then clearly p∗
q∗

= p∗

q∗ = x, so this proves the left-
half of both 1 and 2.

When x is irrational or is rational whose denominator is
strictly bigger than nmax, then the right-hand side of (2) is
equal to p∗

q∗ by the same reason, which shows the right-half
of 2.

Now it remains to show that, assuming that x = p
q with

q ≤ nmax,

min
n=1, ··· ,nmax

bnxc+ 1

n
=
p

q
+

1

vq

where v is the greatest integer such that vp ≡ −1 (mod q)
and v ≤ nmax. First, note that such v must exist because in
the range 1, · · · , q − 1 there must be a modular inverse of
−p, say b so that bp ≡ −1 (mod q) holds, which means that
v is given by v = b+

⌊
nmax−b

q

⌋
q.

Next, observe that, let r = np−
⌊
np
q

⌋
q be the remainder

of np divided by q, then

bnxc+ 1

n
=

(np− r)/q + 1

n
=
p

q
+
q − r
nq

,

so it suffices to show that n = v is a minimizer of q−rn .
Suppose not, so that for some n ≤ nmax we have

q − r
n

<
1

v
,

or equivalently,
n > v(q − r).

Clearly, to have this inequality r must be strictly smaller than
q − 1, because v is obviously the minimizer of q−r

n among
n’s such that r = q − 1.

Note that vp(q− r) ≡ −(q− r) ≡ r ≡ np (mod q), and
since p and q are coprime, we have n ≡ v(q − r) (mod q).
Therefore, there exists a positive integer e such that

n = v(q − r) + eq.

However, this implies

nmax ≥ n = v(q − r) + eq ≥ v + q

which is absurd because v + q is strictly bigger than v and
still satisfies (v + q)p ≡ −1 (mod q).

With an almost same proof, we can prove the following
as well:

Theorem 4.3.
With the settings of Theorem 4.2, we have the followings.

1. If x = p
q is a rational number with q ≤ nmax, then we

have
dnxe = dnξe

for all n = 1, · · · , nmax if and only if

x− 1

vq
< ξ ≤ x

holds, where v is the greatest integer such that vp ≡
−1 (mod q) and v ≤ nmax.

2. If x is either an irrational number or a rational number
with the denominator strictly greater than nmax, then we
have

dnxe = dnξe
for all n = 1, · · · , nmax if and only if

p∗
q∗

< ξ ≤ p∗

q∗

7 2022/2/24

holds, where p∗
q∗
, p

∗

q∗ are the best rational approximations
of x from below and above, respectively, with the largest
denominators q∗, q∗ ≤ nmax.

Proof. Omit.

Note that finding an admissible ξ boils down to finding
p∗
q∗

and p∗

q∗ , or v. In fact, finding v can be also formulated in
terms of finding a best rational approximation from above.
Indeed, for the modular inverse b ∈ {1, · · · , q − 1} of −p
with respect to q, bbp/qc+1

b is the best rational approxima-
tion of p

q from above among all rational numbers with the
denominator strictly less than q. To see why, proceed just
like we did for the second half of the first part of the above
theorem, then one can see that if dtp/qet = btp/qc+1

t for some
t ≤ q−1 were a strictly better approximation than bbp/qc+1

b ,
then we should have t ≥ b+q which contradicts to t ≤ q−1.
Then we get v by computing

v = b+

⌊
nmax − b

q

⌋
q.

What makes Theorem 4.2 and Theorem 4.3 so useful
in practice, especially the second parts of them, is that
there indeed exists a very efficient algorithm of finding the
best rational approximations from below and above (Algo-
rithm C.9), which is based on the concept of continued frac-
tions. Although the theory of continued fractions seems to
be an extremely useful tool for all of these things and related
topics, we tried to minimize its exposure in the main part of
this paper to lessen the divergence from the main algorithm
that will be described in Section 5. Instead, relevant back-
grounds from the theory of continued fractions are collected
in Appendix C.

It is worth mentioning that when x is rational, the re-
ferred algorithm of finding best rational approximations is
essentially equivalent to the Euclid algorithm applied to the
numerator and the denominator of x. In fact, it turns out
that even the improved min-max Euclid algorithm from [3],
which is an improved and corrected version of a key theo-
rem from [6], follows directly from the theory of continued
fractions. See the remark after Algorithm C.13 for further
explanation.

4.2 Correspondence of ordering of the fractional parts
In this subsection, we will prove a lemma comparing the
ordering of the fractional parts nx − bnxc with that of
nξ − bnξc, given that ξ is a good enough approximation of
x in the sense of Theorem 4.2. Roughly speaking, the corre-
spondence (nx−bnxc)↔ (nξ−bnξc) indeed preserves the
order, modulo the fact that different n’s with the same value
of nx− bnxc might have different values of nξ− bnξc, and
vice versa. The precise statement is the following.

Theorem 4.4.
Let x, ξ be positive real numbers and nmax be a positive

integer such that
bnxc = bnξc

holds for all n = 1, · · · , nmax. Then we have the followings.

1. If x = p
q is a rational number with q ≤ nmax, then for

any n1, n2 = 1, · · · , nmax,

n1x− bn1xc < n2x− bn2xc

or

n1x− bn1xc = n2x− bn2xc and n1 < n2

implies
n1ξ − bn1ξc ≤ n2ξ − bn2ξc ,

with possibly the equality only when ξ = x.
2. If x is either an irrational number or a rational number

with the denominator strictly greater than nmax, then for
any n1, n2 = 1, · · · , nmax,

n1x− bn1xc < n2x− bn2xc

implies
n1ξ − bn1ξc ≤ n2ξ − bn2ξc ,

with possibly the equality only when n1 < n2 and ξ = p∗
q∗

is the best rational approximation of x from below with
the largest denominator q∗ ≤ nmax.

Note that when x is either irrational or rational with the
denominator strictly greater than nmax, then the mapping
n 7→ nx − bnxc is one-to-one. Indeed, if n1x − bn1xc =
n2x− bn2xc holds with n1 6= n2, then

x =
bn2xc − bn1xc

n2 − n1
,

which is absurd.
Therefore, the theorem establishes the equivalence of two

orderings on {1, · · · , nmax} induced from the embeddings

n 7→ (nx− bnxc , n) and

n 7→ (nξ − bnξc , n)

into [0, 1)×{1, · · · , nmax} endowed with the lexicographic
ordering.

Proof. 1. We want to show the inequality

(n1 − n2)ξ ≤ bn1ξc − bn2ξc = bn1xc − bn2xc ,

which can be rewritten as

(n1 − n2)(ξ − x) ≤ (n2x− bn2xc)− (n1x− bn1xc).

Since x = p
q and q ≤ nmax, Theorem 4.2 implies

x ≤ ξ < x+
1

vq

8 2022/2/24

where v is the largest integer such that vp ≡ −1 (mod q)
and v ≤ nmax. In particular, the inequality we want to
show is trivial if n1 < n2 or x = ξ, so assume n1 > n2
and x 6= ξ, then we have

(n1 − n2)(ξ − x) <
n1 − n2
vq

.

Let r1, r2 be the remainders of n1p divided by q and n2p
divided by q, respectively, then it suffices to show

(n2x− bn2xc)− (n1x− bn1xc)

=
r2 − r1
q

≥ n1 − n2
vq

,

or equivalently,

n1 − n2 ≤ v(r2 − r1),

assuming r2 > r1. Suppose not, so assume n1 − n2 >
v(r2 − r1). Note that

v(r2 − r1)p ≡ r1 − r2 ≡ (n1 − n2)p (mod q),

and since p and q are coprime, we get v(r2 − r1) ≡
n1 − n2 (mod q), thus there exists a positive integer e
such that

n1 − n2 = v(r2 − r1) + eq.

Since r2 > r1, this implies

nmax ≥ n1 = v(r2 − r1) + eq + n2 > v + q

which contradicts to the definition of v. Therefore, we get
the desired inequality.
The equality can hold only when

(n1 − n2)(ξ − x) =
n1 − n2
vq

,

which can happen only when ξ = x as n1 6= n2.
2. Let p∗

q∗
be the best rational approximation of x from

below with the largest denominator q∗ ≤ nmax. Then
for any n = 1, · · · , nmax, we know

bnxc
n
≤ p∗
q∗

< x,

thus
bnxc ≤ np∗

q∗
< nx,

which implies
⌊
np∗
q∗

⌋
= bnxc = bnξc. Note that from

n1x− bn1xc < n2x− bn2xc, we get

n1

(
x− p∗

q∗

)
+
n1p∗
q∗
−
⌊
n1p∗
q∗

⌋
< n2

(
x− p∗

q∗

)
+
n2p∗
q∗
−
⌊
n2p∗
q∗

⌋
.

We claim that

n1p∗
q∗
−
⌊
n1p∗
q∗

⌋
≤ n2p∗

q∗
−
⌊
n2p∗
q∗

⌋
.

This actually follows directly from the first part of the
theorem, because if this is not the case, then the first part
applied to x← p∗

q∗
and ξ ← x implies

n1x− bn1xc ≥ n2x− bn2xc ,

directly contradicting to the assumption.
Now, if

n1p∗
q∗
−
⌊
n1p∗
q∗

⌋
<
n2p∗
q∗
−
⌊
n2p∗
q∗

⌋
holds, then again we can apply the first part with x← p∗

q∗
and ξ ← ξ to conclude

n1ξ − bn1ξc < n2ξ − bn2ξc ;

note that the equality cannot hold in this case. Therefore,
we only need to consider the case

n1p∗
q∗
−
⌊
n1p∗
q∗

⌋
=
n2p∗
q∗
−
⌊
n2p∗
q∗

⌋
.

Clearly, in this case we should have n1 < n2, thus we
can again apply the first part to conclude

n1ξ − bn1ξc ≤ n2ξ − bn2ξc ,

with possibly the equality when ξ = p∗
q∗

.

An almost same proof shows the following:

Theorem 4.5.
Let x, ξ be positive real numbers and nmax be a positive
integer such that

dnxe = dnξe

holds for all n = 1, · · · , nmax. Then we have the followings.

1. If x = p
q is a rational number with q ≤ nmax, then for

any n1, n2 = 1, · · · , nmax,

dn1xe − n1x < dn2xe − n2x

or

dn1xe − n1x = dn2xe − n2x and n1 < n2

implies
dn1ξe − n1ξ ≤ dn2ξe − n2ξ,

with possibly the equality only when ξ = x.

9 2022/2/24

2. If x is either an irrational number or a rational number
with the denominator strictly greater than nmax, then for
any n1, n2 = 1, · · · , nmax,

dn1xe − n1x < dn2xe − n2x

implies
dn1ξe − n1ξ ≤ dn2ξe − n2ξ,

with possibly the equality only when n1 < n2 and ξ = p∗

q∗

is the best rational approximation of x from above with
the largest denominator q∗ ≤ nmax.

Proof. Omit.

4.3 Checking if nx is an integer
As a byproduct of the computationo of bnxc, we can check
if nx is an integer or not. This is a useful ingredients for our
main algorithm that will be described in Section 5.

Specifically, what we want to do in this section is to find
a criterion on positive integers m, k, and h such that nx is
an integer if and only if

(nm mod 2k) < h,

where we choose m and k in a way so that bnxc =
⌊
nm
2k

⌋
holds. Hence, the quotient and the remainder of nm divided
by 2k can be respectively utilized for the computation of
bnxc and the integer check of nx.

Theorem 4.6.
Let x, ξ be positive real numbers and nmax be a positive
integer such that

bnxc = bnξc
holds for all n = 1, · · · , nmax. Then, for a positive real
number η, we have the followings.

1. If x = p
q is a rational number with 2 ≤ q ≤ nmax, then

we have

{n ∈ {1, · · · , nmax} : nx ∈ Z}
= {n ∈ {1, · · · , nmax} : nξ − bnξc < η}

if and only if⌊
nmax

q

⌋
q(ξ − x) < η ≤ u(ξ − x) +

1

q

holds, where u is the smallest positive integer such that
up ≡ 1 (mod q).

2. If x is either an irrational number or a rational number
with the denominator strictly greater than nmax, then we
have

{n ∈ {1, · · · , nmax} : nx ∈ Z} = ∅
= {n ∈ {1, · · · , nmax} : nξ − bnξc < η}

if and only if
η ≤ q∗ξ − p∗

holds, where p∗
q∗

is the best rational approximations of x
from below with the largest denominator q∗ ≤ nmax.

Proof. 1. By the condition on q, the set

{n ∈ {1, · · · , nmax} : nx ∈ Z}

and its complement are both nonempty. Hence by Theo-
rem 4.4, for given k = 1, · · · , nmax, kx is an integer if
and only if

kξ − bkξc < min
n;nx/∈Z

(nξ − bnξc)

and kx is not an integer if and only if

kξ − bkξc > max
n;nx∈Z

(nξ − bnξc)

thus we have

{n ∈ {1, · · · , nmax} : nx ∈ Z} = ∅
= {n ∈ {1, · · · , nmax} : nξ − bnξc < η}

if and only if

max
n;nx∈Z

(nξ − bnξc) < η ≤ min
n;nx/∈Z

(nξ − bnξc).

Note that the left-hand side is nothing but

max
n;nx∈Z

(nξ − bnxc) = max
n;nx∈Z

n(ξ − x)

=

⌊
nmax

q

⌋
q(ξ − x).

For the right-hand side, Theorem 4.4 shows that

min
n;nx/∈Z

(nξ − bnξc)

= min
n;np≡1 (mod q)

(nξ − bnxc)

= min
n;np≡1 (mod q)

(
nξ − np− 1

q

)
= min
n;np≡1 (mod q)

n(ξ − x) +
1

q

= u(ξ − x) +
1

q
.

Therefore, we get the desired equivalence.
2. In this case, there is no n ∈ {1, · · · , nmax} such that nx

is an integer. Therefore, we have

{n ∈ {1, · · · , nmax} : nx ∈ Z} = ∅
= {n ∈ {1, · · · , nmax} : nξ − bnξc < η}

if and only if

η ≤ min
n=1, ··· ,nmax

(nξ − bnξc).

By Theorem 4.4, the minimum is achieved when n mini-
mizes nx − bnxc, which happens when n = q∗ because
of Corollary C.12, so the condition is

η ≤ q∗ξ − bq∗xc = q∗ξ − p∗,

as claimed.

10 2022/2/24

Remark 1. We can rewrite the conditions in terms of ξ
rather than η:

1. When x = p
q is a rational number with 2 ≤ q ≤ nmax,

x+
qη − 1

uq
≤ ξ < x+

η

bnmax/qc q
.

In this case, a useful sufficient condition for having the
left-hand side is η ≤ 1

q .

2. When x is either an irrational number or a rational num-
ber with the denominator strictly greater than nmax,

p∗ + η

q∗
≤ ξ.

In this case, a useful sufficient condition for having this
inequality is

η ≤ q∗x− p∗ and x ≤ ξ.

Remark 2. When x = 1
q , practically the most useful

choice for η is η = ξ. This specific case is addressed by
Lemire et al. in [10] (Proposition 1).13 To see why this is a
valid choice, note that the condition given by Theorem 4.6
on η can be written as⌊

nmax

q

⌋
q

(
ξ − 1

q

)
< η ≤

(
ξ − 1

q

)
+

1

q
= ξ

since u = 1. Then with η = ξ, the left-hand side is satisfied
if and only if(⌊

nmax

q

⌋
q − 1

)
ξ <

⌊
nmax

q

⌋
,

if and only if

ξ <
bnmax/qc

bnmax/qc q − 1
.

By the condition on ξ that bnxc = bnξc holds, Theorem 4.2
gives us

ξ <
1

q

(
1 +

1

v

)
where v =

⌊
nmax+1

q

⌋
q−1. Thus, the choice η = ξ is always

valid if
1

q

(
1 +

1

v

)
≤ bnmax/qc
bnmax/qc q − 1

.

We can rewrite the above inequality as(⌊
nmax

q

⌋
q − 1

)
(v + 1) ≤

⌊
nmax

q

⌋
qv,

13 In fact, aside from the technicality that we allow ξ and η to be irrational
(which is a quite useless generalization in this context), Proposition 1 in
[10] is weaker than the specialization η = ξ of Theorem 4.6, as it only
gives a sufficient condition which is not necessarily a necessary condition.
For example, when x = 1

7
and nmax = 12, the choice ξ = η = 13

84
is

allowed by Theorem 4.6 but is rejected by Proposition 1 of [10].

which is equivalent to⌊
nmax

q

⌋
q ≤ v + 1 =

⌊
nmax + 1

q

⌋
q,

which is indeed always true. Therefore, whenever

1

q
≤ ξ < 1

q
+

1

q(b(nmax + 1)/qc q − 1)
,

or equivalently, whenever

1

q
≤ ξ < b(nmax + 1)/qc

b(nmax + 1)/qc q − 1
,

we have that n is divisible by q if and only if

nξ − bnξc < ξ

for all n = 1, · · · , nmax.

Remark 3. It also follows that the divisibility test algo-
rithm suggested in Section 9 of [8], which is based on the
modular inverse of the divisor with respect to 2k, is also a
special case of Theorem 4.6.

To be precise, [8] shows that for an odd divisor q < 2k,
any integer n = 1, · · · , 2k − 1 is divisible by q if and only
if

(nm mod 2k) ≤
⌊

2k − 1

q

⌋
,

where m is the modular inverse of q with respect to 2k. To
derive this result from our theorem, take nmax := 2k −
1, η :=

(⌊
2k

q

⌋
+ 1
)

2−k, and x := p
q where p is the

nonnegative integer satisfying such that qm = 2kp + 1.
Clearly, then p and q must be coprime. Finally, take ξ :=
m
2k

. With this choice of the parameters, we claim that the
condition of the first part of our theorem is satisfied.

First, we need to check that the condition for Theorem
4.2 is satisfied. This is quite clear; note that

ξ =
m

2k
=

2kp+ 1

2kq
= x+

1

2kq
,

and obviously we should have 1
2kq

< 1
vq where v is the

greatest integer satisfying vp ≡ 1 (mod q) and v ≤ nmax,
since nmax < 2k.

Next, we need to check the inequality⌊
nmax

q

⌋
q(ξ − x) < η ≤ u(ξ − x) +

1

q
,

where u is the smallest positive integer satisfying up ≡
1 (mod q). The left-hand side is quite obvious, since⌊

nmax

q

⌋
q(ξ − x) =

1

2k

⌊
2k − 1

q

⌋
< η,

11 2022/2/24

and for the right-hand side, note that if we let r be the
remainder of 2k divided by q, then

−rp ≡ −2kp ≡ 1− qm ≡ 1 (mod q),

thus u must be in fact precisely q − r. Then,

u(ξ − x) +
1

q
=
q − r
2kq

+
1

q
=

1

2k

(
2k − r
q

+ 1

)
= η,

so we indeed get the inequality. Therefore, our theorem tells
us that for any n = 1, · · · ,

⌊
2k−1
q

⌋
, nx = np

q is an integer
(or equivalently, q divides n) if and only if

(nm mod 2k) < 2kη =

⌊
2k

q

⌋
+ 1.

The apparent difference
⌊
2k

q

⌋
versus

⌊
2k−1
q

⌋
is not genuine,

because they must be same anyway since 2k divided by q
should have a nonzero remainder.

4.4 Computation of bnx− yc
In this subsection, we prove a result which gives a criteria
for having the equality

bnx− yc = bnξ − ζc .

Theorem 4.7.
Let x, ξ be positive real numbers and nmax be a positive
integer such that

bnxc = bnξc

holds for all n = 1, · · · , nmax, and let p∗
q∗
, p

∗

q∗ be the
best rational approximations of x from below and above,
respectively, with the largest denominators q∗, q∗ ≤ nmax.
Given y ∈ [0, 1], define

L := {n ∈ {1, · · · , nmax} : nx− bnxc < y} ,
R := {n ∈ {1, · · · , nmax} : nx− bnxc ≥ y} .

Then for a real number ζ, we have the followings.

1. When L = ∅,

bnx− yc = bnξ − ζc

holds for all n = 1, · · · , nmax if and only if

(q∗ξ − bq∗ξc)− 1 < ζ ≤ q∗ξ − bq∗ξc .

2. When R = ∅,

bnx− yc = bnξ − ζc

holds for all n = 1, · · · , nmax if and only if

µξ − bµξc < ζ ≤ (q∗ξ − bq∗ξc) + 1,

where µ is defined as follows.

(1) If x = p
q is a rational number with q ≤ nmax, then

µ is the greatest integer such that µ ≤ nmax and
µp ≡ −1 (mod q).

(2) If x is either an irrational number or a rational num-
ber with the denominator strictly greater than nmax,
then µ = q∗.

3. When L and R are both nonempty,

bnx− yc = bnξ − ζc

holds for all n = 1, · · · , nmax if and only if

µξ − bµξc < ζ ≤ νξ − bνξc ,

where µ and ν are defined as follows.
(1) If x = p

q is a rational number with q ≤ nmax, then
µ is the greatest integer such that µ ≤ nmax and
µp ≡ dqye−1 (mod q), and ν is the smallest positive
integer such that νp ≡ dqye (mod q).

(2) If x is either an irrational number or a rational num-
ber with the denominator strictly greater than nmax,
then µ is the greatest positive integer such that µ ≤
nmax,

µp∗ ≡ dq∗ye − l (mod q∗) and

µ <
q∗y + l − dq∗ye

q∗x− p∗
,

where l is the smallest positive integer allowing such
µ to exist. Similarly, ν is the smallest positive integer
such that ν ≤ nmax,

νp∗ ≡ dq∗ye − l (mod q∗) and

ν ≥ q∗y + l − dq∗ye
q∗x− p∗

,

where l is the greatest nonnegative integer allowing
such ν to exist.

Proof. Note that

bnx− yc =

{
bnxc if nx− bnxc ≥ y,
bnxc − 1 if nx− bnxc < y,

so we have the equality

bnx− yc = bnξ − ζc

for all n = 1, · · · , nmax if and only if

L = L′ :=

{n ∈ {1, · · · , nmax} : ζ − 1 ≤ nξ − bnξc < ζ}

and

R = R′ :=

{n ∈ {1, · · · , nmax} : ζ ≤ nξ − bnξc < ζ + 1} .

12 2022/2/24

Now, as L∪R = {1, · · · , nmax} and L′ ∩R′ = ∅, we have
L = L′ and R = R′ if and only if we have L ⊆ L′ and
R ⊆ R′. Note that L ⊆ L′ holds if and only if either L = ∅
or

max
n∈L

(nξ − bnξc) < ζ ≤ min
n∈L

(nξ − bnξc) + 1,

and R ⊆ R′ holds if and only if either R = ∅ or

max
n∈R

(nξ − bnξc)− 1 < ζ ≤ min
n∈R

(nξ − bnξc).

1. When L = ∅, we only need to verify

max
n=1, ··· ,nmax

(nξ − bnξc) = q∗ξ − bq∗ξc

and

min
n=1, ··· ,nmax

(nξ − bnξc) = q∗ξ − bq∗ξc .

The second one follows directly from Theorem 4.4 and
Corollary C.12. For the first one, note thatL = ∅ enforces
nx to be never an integer, thus nx − bnxc = 1 −
(dnxe−nx) always holds. Thus, maximizing nx−bnxc
is equivalent to minimizing dnxe − nx, so we can apply
Theorem 4.4 and Corollary C.12 to get the conclusion.

2. When R = ∅, we only need to verify

max
n=1, ··· ,nmax

(nξ − bnξc) = µξ − bµξc

and

min
n=1, ··· ,nmax

(nξ − bnξc) = q∗ξ − bq∗ξc .

Again, the second one is a trivial consequence of The-
orem 4.4 and Corollary C.12, thus we consider the first
one. By Theorem 4.4, it is enough to show that µ is the
greatest element in {1, · · · , nmax} maximizing µx −
bµxc. When x = p

q with q ≤ nmax, this is clear. When
x is irrational or is rational with the denominator strictly
bigger than nmax, then nx is never an integer, so it is
enough to find the minimizer of dnxe − nx, which is q∗.

3. Now, suppose L and R are both not empty. Then it suf-
fices to show that

µξ − bµξc = max
n∈L

(nξ − bnξc)

and
νξ − bνξc = min

n∈R
(nξ − bnξc).

By Theorem 4.4, it suffices to show that µ is the greatest
maximizer of nx− bnxc for n ∈ L and ν is the smallest
minimizer of nx− bnxc for n ∈ R.
When x = p

q with q ≤ nmax, since n ∈ R if and only if
(np mod q) ≥ dqye, we can apply Theorem 4.4 to get
the desired conclusion.

Next, assume x is either irrational or rational with the de-
nominator strictly greater than nmax. In this case, we can
apply Theorem 4.4 to see that the greatest maximizer of
nx− bnxc for n ∈ L is precisely the greatest maximizer
of np∗q∗ −

⌊
np∗
q∗

⌋
for n ∈ L. Since

np∗
q∗
−
⌊
np∗
q∗

⌋
= (nx− bnxc)− n

(
x− p∗

q∗

)
< nx− bnxc ,

the maximum possible value of np∗
q∗
−
⌊
np∗
q∗

⌋
for n ∈ L

is at most dq∗ye − 1. In general, for n ∈ {1, · · · , nmax}
with np ≡ dq∗ye − l (mod q∗) for some positive integer
l ≤ dq∗ye, we have n ∈ L if and only if

n <
q∗y + l − dq∗ye

q∗x− p∗
,

thus we get the desired description of µ. We can similarly
show that ν is the smallest minimizer of nx − bnxc for
n ∈ R.

In the same way, we can also show the following.

Theorem 4.8.
Let x, ξ be positive real numbers and nmax be a positive
integer such that

dnxe = dnξe

holds for all n = 1, · · · , nmax, and let p∗
q∗
, p

∗

q∗ be the
best rational approximations of x from below and above,
respectively, with the largest denominators q∗, q∗ ≤ nmax.
Given y ∈ [0, 1], define

L := {n ∈ {1, · · · , nmax} : dnxe − nx ≥ y} ,
R := {n ∈ {1, · · · , nmax} : dnxe − nx < y} .

Then for a real number ζ, we have the followings.

1. When L = ∅,

dnx+ ye = dnξ + ζe

holds for all n = 1, · · · , nmax if and only if

(dµξe − µξ)− 1 < ζ ≤ dq∗ξe − q∗ξ,

where µ is defined as follows.
(1) If x = p

q is a rational number with q ≤ nmax, then
µ is the greatest integer such that µ ≤ nmax and
µp ≡ 1 (mod q).

(2) If x is either an irrational number or a rational num-
ber with the denominator strictly greater than nmax,
then µ = q∗.

13 2022/2/24

2. When R = ∅,

dnx+ ye = dnξ + ζe

holds for all n = 1, · · · , nmax if and only if

(dq∗ξe − q∗ξ)− 1 < ζ ≤ dq∗ξe − q∗ξ.

3. When L and R are both nonempty,

dnx+ ye = dnξ + ζe

holds for all n = 1, · · · , nmax if and only if

dµξe − µξ < ζ ≤ dνξe − νξ

where µ and ν are defined as follows.
(1) If x = p

q is a rational number with q ≤ nmax, then
µ is the greatest integer such that µ ≤ nmax and
µp ≡ q − dqye + 1 (mod q), and ν is the smallest
positive integer such that νp ≡ q − dqye (mod q).

(2) If x is either an irrational number or a rational num-
ber with the denominator strictly greater than nmax,
then µ is the greatest positive integer such that µ ≤
nmax,

µp∗ ≡ q∗ − dq∗ye+ l (mod q∗) and

µ <
q∗y + l − dq∗ye

p∗ − q∗x
,

where l is the smallest positive integer allowing such
µ to exist. Similarly, ν is the smallest positive integer
such that ν ≤ nmax,

νp∗ ≡ q∗ − dq∗ye+ l (mod q∗) and

ν ≥ q∗y + l − dq∗ye
p∗ − q∗x

,

where l is the greatest nonnegative integer allowing
such ν to exist.

Proof. Omit.

5. Dragonbox
Now, let us describe our main algorithm, Dragonbox. For
this section, we will assume a round-to-nearest rounding
rule, because that is the the most relevant and at the same
time the most difficult case. Algorithms for other rounding
rules can be developed in similar ways, and they will be
covered in Appendix A and Appendix B.

5.1 Normal interval case
We will describe Dragonbox for the case when Fw 6= 1 or
Ew = Emin (we call this normal interval case), so that
∆ = 2e. The case Fw = 1 and Ew 6= Emin (we call this
shorter interval case) will be covered in Section 5.2.

5.1.1 Overview
In contrast to Schubfach, consider the following exponent
instead of k0 := −blog10 ∆c:

k := k0 + κ = −blog10 ∆c+ κ = κ− be log10 2c

where κ is a positive integer constant in a certain range that
we will discuss in Section 5.1.3. Given e, the computation of
k can be done with one integer multiplication and one arith-
metic right-shift. Details will be explained in Section 6.1.

Similarly to [3], let us use the following notations:

x := 10kwL,

y := 10kw,

z := 10kwR,

δ := z − x = 10k∆,

and for a ∈ R, we denote a(i) := bac, a(f) := a−bac. Note
that ∆ < 10−k0+1 implies δ < 10κ+1.

As observed by the authors of Ryū and Schubfach, we can
compute the integer parts of quantities like these only using
limited-precision integer arithmetic and a precomputed table
of fixed number of bits from 5k’s, and this observation is at
the very heart of many of recent floating-point conversion
algorithms, in both decimal-to-binary and binary-to-decimal
directions. The basis of why this is possible is already all
explained in Section 4. We will give more details on how
to apply those results to our specific case to enable efficient
computation of the integer parts of x, y, z, and δ, in Sec-
tion 5.1.2–5.1.6.

However, we should keep in mind that the core idea of
Dragonbox is on how to avoid actually doing these compu-
tations, because they are still relatively heavy computations.
The way Dragonbox achieves this goal is to use a Grisu-like
idea based on the following simple fact:

Proposition 5.1.
Let s, r be the unique integers satisfying

z(i) = 10κ+1s+ r, 0 ≤ r < 10κ+1.

Then, I ∩ 10−k0+1Z is nonempty if and only if

s ∈ 10k0−1I,

if and only if:

1. r + z(f) ≤ δ, when I = [wL, wR],
2. r + z(f) < δ, when I = (wL, wR].
3. r+z(f) ≤ δ and r 6= 0 or z(f) 6= 0, when I = [wL, wR),

and
4. r+z(f) < δ and r 6= 0 or z(f) 6= 0, when I = (wL, wR).

Proof. We first show that I ∩ 10−k0+1Z is nonempty if and
only if s ∈ 10k0−1I . Clearly, 10−k0+1s is always an element
of 10−k0+1Z, so if it belongs to I , then I ∩ 10−k0+1Z is
nonempty.

14 2022/2/24

Conversely, suppose I ∩10−k0+1Z is nonempty. Let v be
any element of it. Then, v ≤ wR, so

10k−κ−1v ≤ z

10κ+1
,

but since 10k−κ−1v = 10k0−1v ∈ Z, it follows that

10k−κ−1v ≤
⌊ z

10κ+1

⌋
= s.

Figure 3. The unique lattice point in I should be the floor
of the right endpoint, since I is longer than the unit

Now, since 10k0−1v and s are both integers, if we suppose

10k0−1v 6= s,

then
10k0−1v + 1 ≤ s

follows, which implies

10−k0+1s ≥ v + 10−k0+1 > v + ∆ ≥ wL + ∆ = wR

by definition of k0. This is absurd, because

10−k0+1s = 10−k · 10κ+1s ≤ 10−k · z = wR.

Hence, we deduce s = 10k0−1v ∈ 10k0−1I , concluding the
first “if and only if”.

To show the second “if and only if”, let us recall that
10−k0+1s = 10−k · 10κ+1s is at most wR. Hence, when
wR ∈ I , 10−k0+1s is in I if and only if its distance from wL
is less than or equal to ∆, or strictly less than ∆, depending
on whether or not if wL is in I , which are precisely the
claims 1 and 2.

On the other hand, if wR /∈ I , then we need to rule out
the case wR = 10−k0+1s in addition, which is precisely the
case when r = 0 and z(f) = 0, thus we have the last two
claims as well.

Note that r + z(f) ≤ δ if and only if

1. r < δ(i), or

2. r = δ(i) and z(f) ≤ δ(f),

and we have a similar equivalence for r+z(f) < δ. As in [3],
we can efficiently perform these comparisons. In particular,
since

x(i) + x(f) = (z(i) − δ(i)) + (z(f) − δ(f)),

and −1 < z(f) − δ(f) < 1, we conclude

x(i) =

{
z(i) − δ(i) if z(f) ≥ δ(f),
z(i) − δ(i) − 1 if z(f) < δ(f),

so we just need to compare the parity of x(i) and z(i)−δ(i) to
conclude if the inequality z(f) ≥ δ(f) holds or not. Details
of how to compute the parity of x(i) is explained in Section
5.1.6.

Note that we need to compare the fractional parts only
when we know r = δ(i); in this case, note that

z(i) − δ(i) = 10κ+1s

is always an even number. Thus, we have z(f) < δ(f) if and
only if x(i) is an odd number. When x(i) is an even number,
then we have either z(f) = δ(f) or z(f) > δ(f). Depending
on whether or not wL is contained in I , we may need to
distinguish these two cases. To do that, we check if x is an
integer, since z(f) = δ(f) if and only if x(f) = 0 if and only
if x is an integer. Details of how to check if x is an integer is
explained in Section 5.1.6.

Let us now more precisely describe how to inspect if
I ∩ 10−k0+1Z is empty:

Algorithm 5.2 (Skeleton of Dragonbox, part 1).

1. Compute k = −blog10 ∆c + κ. Since κ is just a fixed
constant, it boils down to calculating blog10 ∆c; see Sec-
tion 6.1 for details.

2. Compute z(i); see Section 5.1.5 for details.
3. Compute s, r by dividing z(i) by 10κ+1. Given that κ is a

known constant, this can be done efficiently without actu-
ally issuing the notoriously slow integer division instruc-
tion, as described in [8]. Compilers these days usually
automatically perform this optimization pretty well, but
we can sometimes do better than them because of some
additional constraints they are usually not aware of. See
Section 5.1.7 for details.

4. Compute δ(i); see Section 5.1.4 for details.
5. Check if the inequality r > δ(i) holds. If that is the case,

then we conclude that I ∩ 10−k0+1Z is empty.
6. Otherwise, check if the inequality r < δ(i) holds. If that

is the case, we need to check if r = z(f) = 0 in addition
when wR /∈ I . We can inspect the equality z(f) = 0 by
checking if z is an integer; see Section 5.1.5 for details.

• If wR /∈ I and r = z(f) = 0, then we conclude that
I ∩ 10−k0+1Z is empty.

• Otherwise, we conclude that 10−k+κ+1s is the unique
element in I ∩ 10−k0+1Z.

7. Otherwise, we have r = δ(i). Then, compute the parity
of x(i).

• If x(i) is an odd number, then we have z(f) < δ(f), so
we conclude that 10−k+κ+1s is the unique element in
I ∩ 10−k0+1Z.

15 2022/2/24

• If x(i) is an even number and wL /∈ I , then we
conclude that I ∩ 10−k0+1Z is empty.

• If x(i) is an even number and wL ∈ I , then check if x
is an integer. If that is the case, then we conclude that
10−k+κ+1s is the unique element in I ∩ 10−k0+1Z.
Otherwise, we conclude that I ∩ 10−k0+1Z is empty.

8. When we have concluded that 10−k+κ+1s is the unique
element in I ∩ 10−k0+1Z, then since s might contain
trailing decimal zeros, find the greatest integer d such that
10d divides s. Then we conclude that

s

10d
× 10−k+κ+1+d

is the answer we are looking for.

Note that in order to compare z(f) and δ(f), we need to
compute the parity of x(i) which involves multiplications we
want to avoid. Hence, we want to minimize the chance of
having r = δ(i), so we want to choose κ as large as possible.
However, choosing too big κ will prevent z(i) and δ(i) to
fit inside a machine word, so there are in fact not so many
choices for κ we can have. See Section 5.1.3 for details.

It is worth mentioning that, since we know

z =

(
fc +

1

2

)
· 2e · 10k

≤
(

2p+1 − 1

2

)
· 2e · 10−be log10 2c+κ

=

(
2p+1 − 1

2

)
· 2e · 10d−e log10 2e+κ

< 2p+1 · 2e · 10−e log10 2+κ+1

= 10κ+1 · 2p+1,

(3)

the integer s must be at most 2p+1 − 1. In particular, for
binary32, s ≤ 224 − 1 is of at most 8 digits, so the number
of possible trailing zeros is at most 7, and similarly, for bi-
nary64, s ≤ 253− 1 is of at most 16 digits, so the number of
possible trailing zeros is at most 15.

Next, let us discuss what we do if I ∩10−k0+1Z turns out
to be empty. Our procedure in this case is a bit different from
the Schubfach’s way. Recall that Corollary 3.3 tells us that
in this case,

I ∩ 10−k0Z = 10−k
(
10kI ∩ 10κZ

)
is not empty and its elements are precisely the elements with
the smallest number of significand digits.

We will now compute

y(ru) :=

⌊
y

10κ
+

1

2

⌋
10κ and

y(rd) :=

⌈
y

10κ
− 1

2

⌉
10κ,

which are the elements in 10κZ that are closest to y ∈ 10kI ,
using a method similar to that described in [3]. In [3], it is
shown that both of y(ru) and y(rd) should be in 10kI as we
have assumed Fw 6= 1 or Ew = Emin. For completeness we
reproduce that argument here.

Proposition 5.3.
With the assumption Fw 6= 1 or Ew = Emin,

y(ru) :=

⌊
y

10κ
+

1

2

⌋
10κ and

y(rd) :=

⌈
y

10κ
− 1

2

⌉
10κ

are always inside 10kI .

Proof. First, note that y(ru) and y(rd) should be one of a :=⌊
y

10κ

⌋
10κ and b :=

(⌊
y

10κ

⌋
+ 1
)

10κ. More precisely,

1. y(ru) = y(rd) = a if
(
y

10κ

)(f)
< 1

2 ,

2. y(ru) = b and y(rd) = a if
(
y

10κ

)(f)
= 1

2 ,

3. y(ru) = y(rd) = b if
(
y

10κ

)(f)
> 1

2 .

Note that a
10κ =

⌊
10k0w

⌋
. As shown in the proof of

Proposition 3.1, w ∈ I implies that at least one of a
10κ ∈

10k0I or b
10κ ∈ 10k0I holds, thus we have at least one of

a ∈ 10kI or b ∈ 10kI .
Suppose first that a /∈ 10kI , so b ∈ 10kI . We claim

that in this case the fractional part of y
10κ should be strictly

greater than 1
2 , so y(ru) = y(rd) = b ∈ 10kI . Since Fw 6= 1

or Ew = Emin, y must be at the exact center of 10kI , so
a /∈ 10kI and b ∈ 10kI together imply that b − y ≤ y − a.
In other words, the fractional part of y

10κ should be at least
1
2 . Now it suffices to show that the fractional part cannot be

equal to 1
2 . Suppose on the contrary that

(
y

10κ

)(f)
= 1

2 . Then
b− y = y − a, but since a /∈ 10kI , b ∈ 10kI , and y is at the
center of 10kI , it follows that 10kI = (a, b]. This implies

10κZ 3 b = z = (2fc + 1) · 2e−1 · 10k

= 2e+k−1 · 5k · (2fc + 1),

and since 2fc + 1 is an odd integer, we must have

e+ k − 1 = κ and 2fc + 1 = 5e−1.

However, by the same reason, a = x implies

e+ k − 1 = κ and 2fc − 1 = 5e−1,

which is a contradiction. This shows the claim.
Similarly, if we suppose b /∈ 10kI , then we must have(
y

10κ

)(f) ≤ 1
2 , and if we further assume

(
y

10κ

)(f)
= 1

2 , then
I = [a, b) follows which leads to a contradiction by the same
reasoning. Hence, in this case we must have y(ru) = y(rd) =
a ∈ 10kI , so we always have y(ru), y(rd) ∈ 10kI .

16 2022/2/24

As noted in the proof, we have y(ru) = y(rd) + 1 if and
only if

y

10κ
−
⌊ y

10κ

⌋
=

1

2
,

and y(ru) = y(rd) otherwise. In other words, y(ru) and y(rd)

are same except when there is a tie, so our procedure is to
first compute y(ru), detect a tie, and if a tie is detected, then
follow the given rule for breaking the tie, and if the conclu-
sion is to prefer y(rd), then decrease the computed value of
y(ru) by one. Let y(r) be the output of this procedure, then
the correctly rounded decimal representation of w with the
shortest number of digits is thus

y(r) × 10−k+κ.

To compute y(ru), note that

y(ru) =

⌊
y + (10κ/2)

10κ

⌋
=

⌊
z + (10κ/2)− (z − y)

10κ

⌋
= 10s+

⌊
r + (10κ/2)− ε(i) + (z(f) − ε(f))

10κ

⌋
where we define

ε := z − y.

Since we have assumed Fw 6= 1 orEw = Emin,w should lie
at the exact center of I . Hence in particular, ε = δ

2 , so ε(i) =⌊
δ(i)

2

⌋
. Also, since κ is a positive integer, 10κ/2 is an integer.

Recall that we already have assumed that I ∩ 10−k0+1Z is
empty; hence, by Proposition 5.1, either r ≥ δ(i) or r = 0.
Since ε < δ, for the first case we know

r +
10κ

2
− ε(i) > 0.

For the case r = 0, let us replace r by 10κ+1 and s by s− 1
so that we still have the inequality above. To be precise, let
us define

s̃ :=

{
s if r 6= 0

s− 1 if r = 0
, r̃ :=

{
r if r 6= 0

10κ+1 if r = 0
,

so that we have
z(i) = 10κ+1s̃+ r̃

and

y(ru) = 10s̃+

⌊
r̃ + (10κ/2)− ε(i) + (z(f) − ε(f))

10κ

⌋
.

Define
D := r̃ + (10κ/2)− ε(i),

then as δ < 10κ+1 we clearly have D ≥ 0 for all cases.
Next, let t, ρ be the unique integers satisfying

D = 10κt+ ρ, 0 ≤ ρ < 10κ.

Then,

y(ru) = (10s̃+ t) +

⌊
ρ+ (z(f) − ε(f))

10κ

⌋
.

Note that the residue term⌊
ρ+ (z(f) − ε(f))

10κ

⌋
is always 0 except when ρ = 0 and z(f) < ε(f), and for
that case it is equal to −1. As the probability of D being
divisibly by 10κ will be low (and it will be even lower if we
choose larger κ), we can mostly ignore the residue term and
conclude y(ru) = 10s̃+ t.

If D is unfortunately divisible by 10κ, then we need to
compare z(f) and ε(f). Similarly to the comparison of z(f)

and δ(f), this can be done by computing the parity of y(i).
Indeed, note that

y(i) + y(f) = (z(i) − ε(i)) + (z(f) − ε(f)),

and since −1 < z(f) − ε(f) < 1, we conclude

y(i) =

{
z(i) − ε(i) if z(f) ≥ ε(f),
z(i) − ε(i) − 1 if z(f) < ε(f).

Therefore, z(f) ≥ ε(f) holds if and only if the parity of y(i)

and that of z(i) − ε(i) are equal to each other. In fact, since
10κ+1 is even, the parity of z(i) and that of r is same, so we
can compare the parity of y(i) with that of D − (10κ/2). If
the parities are the same, then we conclude z(f) ≥ ε(f) so
y(ru) = 10s̃+ t, and otherwise, we conclude z(f) < ε(f) so
y(ru) = 10s̃+ t− 1. Details of how to compute the parity of
y(i) will be explained in Section 5.1.6.

Note that a tie happens exactly when ρ = z(f)−ε(f) = 0;
indeed, it happens when the fractional part of y

10κ is exactly
1/2, or equivalently,

y

10κ
+

1

2
= (10s̃+ t) +

ρ+ (z(f) − ε(f))
10κ

is an integer. Since

−1 < ρ+ (z(f) − ε(f)) < 10κ,

it follows that y
10κ + 1

2 is an integer if and only if

ρ+ (z(f) − ε(f)) = 0,

if and only if ρ = z(f) − ε(f) = 0. Or equivalently, we have
a tie if and only if D is divisible by 10κ and y = z − ε is an
integer. When that is the case, we need to choose between
y(ru) = 10s̃ + t and y(rd) = 10s̃ + t − 1 according to the
given tie-break rule. Details of how to check if y is an integer
will be explained in Section 5.1.6.

In summary, when I ∩ 10−k0+1Z turns out to be empty,
then:

17 2022/2/24

Algorithm 5.4 (Skeleton of Dragonbox, part 2).

1. Compute D = r̃ + (10κ/2)−
⌊
δ(i)/2

⌋
.

2. Compute t, ρ by dividing D by 10κ. Again, given that κ
is a known constant, this can be done efficiently using
the method described in [8]. In fact, since we do not care
about the actual value of ρ and we only need to know if
ρ is zero or not, we can do even better; see Section 5.1.8
for details.

3. If ρ 6= 0, then (10s̃ + t) × 10−k+κ is the answer we are
looking for.

4. Otherwise, compare the parity of y(i) with that of D −
(10κ/2). If they are different, then we have z(f) < ε(f),
so (10s̃+ t− 1)× 10−k+κ is the answer we are looking
for.

5. Otherwise, check if y is an integer. If that is the case,
then we have a tie; break it according to the given rule,
so that we choose one of (10s̃ + t − 1) × 10−k+κ and
(10s̃+ t)× 10−k+κ as the answer.

6. Otherwise, (10s̃ + t) × 10−k+κ is the answer we are
looking for.

Again, we want to avoid computing the parity of y(i), so
we prefer to choose κ as large as possible.

5.1.2 Precomputed lookup table for the computation
of x, y, z, and δ

For each k, define

ϕk := 10k · 2−ek ,

where ek is the unique integer such that

2Q−1 ≤ ϕk < 2Q

which means

ek = bk log2 10c −Q+ 1.

Using Theorem 4.2, we want to show that we can compute
x(i), y(i), z(i), or δ(i) by multiplying a q-bit integer to the
Q-bit integer

ϕ̃k := dϕke 14

14 Strictly speaking, we need to be aware of the possibility of having ϕ̃k =
2Q. However, this happens extremely rarely. One can figure out that the
equivalent condition for having that is

0 < dk log2 5e − k log2 5 ≤ log2
2Q

2Q − 1
.

To check if this inequality might be true for some k 6= 0, we just need
to check it for the case when dk log2 5e − k log2 5 is minimized. Hence,
when k > 0, we only need to consider the case when dk log2 5e

k
is a best

rational approximation of log2 5 from above, and similarly when k < 0,
we only need to consider the case when b−k log2 5c

−k
is a best rational

approximation of log2 5 from below. Using the algorithm of finding all
best rational approximations from below and from above, one can show
that, if we take Q = 64, the first positive k satisfying the above in-
equality is 11199596541212005343, and the first negative k satisfying
it is −9870257339578654810. Of course the corresponding numbers for
Q = 128 will be even more ridiculously large.

and then performing a right-shift. The precision Q will be
set to Q = 2q for both binary32 and binary64, but for the
sake of showing that Q = 2q is indeed sufficient, let us first
not assume this and just let Q be any positive integer bigger
than or equal to q. The Q-bit integer ϕ̃k for all k can be
stored in a precomputed lookup table that will be referred in
the runtime.

Define

β := e+ ek +Q− 1 = e+ bk log2 10c ,

then our precise goal is that if we take Q = 2q, then the
formula ⌊

n · 2e−1 · 10k
⌋

=

⌊
2βnϕ̃k

2Q

⌋
(4)

is always valid for all n = 1, · · · , nmax where we take
nmax := 2p+2. Then, we can compute z(i) as

z(i) =

⌊
2β(2fc + 1)ϕ̃k

2Q

⌋
,

since 2fc + 1 ≤ nmax always holds, and we can also
similarly compute x(i) and y(i).

Define a
b

:= 2e−1 · 10k, that is,

(a, b) =

(2e+k−1 · 5k, 1) if e+ k − 1 ≥ 0 and k ≥ 0,

(2e+k−1, 5−k) if e+ k − 1 ≥ 0 and k < 0,

(5k, 2−e−k+1) if e+ k − 1 < 0 and k ≥ 0.

(The case e + k − 1 < 0 and k < 0 is impossible by
definition of k.) Then by Theorem 4.2, a necessary and
sufficient condition for having (4) is

ϕ̃k
2Q

<
a

2βb
+

1

2βvb

when b ≤ nmax, and

ϕ̃k
2Q

<
a∗

2βb∗

when b > nmax, where v ≤ nmax is the greatest integer
such that va ≡ −1 (mod b) and a∗

b∗ is the best rational ap-
proximation of ab from above with the greatest denominator
b∗ ≤ nmax.

In addition to that, we want to know whether or not the
number n · 2e−1 · 10k is an integer. We can use Theorem
4.6 for that. Specifically, we want to let the threshold to be
η = 1

2Q−q because that makes the actual implementation
for binary32 and binary64 efficient. Then by the first remark
after Theorem 4.6, we have that n · 2e−1 · 10k is an integer if
and only if (

2βnϕ̃k mod 2Q
)
< 2q, (5)

provided that

a

2βb
+

b− 2Q−q

2Q−q+βub
≤ ϕ̃k

2Q

<
a

2βb
+

1

2Q−q+β bnmax/bc b

(6)

18 2022/2/24

when b ≤ nmax, and

2Q−qa∗ + 1

2Q−q+βb∗
≤ ϕ̃k

2Q

when b > nmax, where u is the smallest positive integer
such that ua ≡ −1 (mod b) and a∗

b∗
is the best rational ap-

proximation of ab from below with the greatest denominator
b∗ ≤ nmax.

In fact, since

ϕ̃k =
⌈
10k · 2−ek

⌉
=
⌈
2Q−β · 2e−1 · 10k

⌉
=

⌈
2Q−βa

b

⌉
,

the left-hand side of (6) is automatically satisfied if b ≤
2Q−q . Also, a sufficient condition for having the right-hand
side is

2βnmax < 2q,

because if the above inequality holds, then

2q−β

bnmax/bc b
≥ 2q−β

nmax
> 1.

By choosing an appropriate value of κ, we will make the
above inequality to always hold; see Section 5.1.3.

On the other hand, when b > nmax, similarly

2Q−qa∗ + 1

2Q−q+βb∗
≤ a

2βb

is a sufficient condition, which can be rewritten as

1

2Q−qb∗
≤ a

b
− a∗
b∗
,

or
b

ab∗ − a∗b
≤ 2Q−q. (7)

In summary, we want

ϕ̃k
2Q

<
a

2βb
+

1

2βvb
and b ≤ 2Q−q

when b ≤ nmax, and

ϕ̃k
2Q

<
a∗

2βb∗
and

b

ab∗ − a∗b
≤ 2Q−q (8)

when b > nmax, for all e ∈ [Emin − p,Emax − p].
To check if these are really the case, we wrote a program

that verifies the above inequalities; see our reference imple-
mentation [11]. Thanks to the algorithm for computing best
rational approximations, the verification program runs quite
fast.15 The result of this verification program is shown in
Figure 4.

15 In the author’s laptop with Intel(R) Core(TM) i7-7700HQ, it takes less
than 5 seconds to run with no optimization enabled, and is instantaneous
with optimization enabled.

-100 -50 0 50 100

8

16

24

32

40

48

56

64

U
pp

er
 b

ou
nd

 o
n

re
qu

ire
d

nu
m

be
r

of
 b

its

For multiplication
For integer check

-1000 -800 -600 -400 -200 0 200 400 600 800

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

U
pp

er
 b

ou
nd

 o
n

re
qu

ire
d

nu
m

be
r

of
 b

its

For multiplication
For integer check

Figure 4. Upper bounds on the minimum admissible Q for
each e (top: binary32, bottom: binary64)

Unfortunately, (8) turns out to be not always true. Specif-
ically, the condition for having (4) is satisfied, but (7) is vio-
lated for several e’s. However, the counterexamples turn out
to be very rare.

Note that in order to have (5), we must have

na

b
−
⌊na
b

⌋
<

1

2Q−q
. (9)

Indeed, since (4) holds, (5) implies

na

b
−
⌊na
b

⌋
=

(
2βnϕ̃k

2Q
−
⌊

2βnϕ̃k
2Q

⌋)
+ n

(
a

b
− 2βϕ̃k

2Q

)
≤ 2βnϕ̃k

2Q
−
⌊

2βnϕ̃k
2Q

⌋
<

1

2Q−q
.

Using the theory of continued fractions, we can develop an
algorithm for enumerating all n’s with (9); see Algorithm

19 2022/2/24

C.13. With this algorithm, one can figure out that (9) holds
only for the following cases:

• For binary32,

e = −81, k = 26, and n = 29711844,

e = −80, k = 26, and n = 14855922, and

e = −80, k = 26, and n = 29711844.
• For binary64,

e = 668, k = −199, n = 4443527624677894,

e = 668, k = −199, n = 8887055249355788,

e = 669, k = −199, n = 2221763812338947,

e = 669, k = −199, n = 4443527624677894, and

e = 670, k = −199, n = 2221763812338947.

(See [11] for the actual program.)
One can verify that indeed for these cases, (5) holds while

n · 2e−1 · 10k is not an integer.
However, except possibly for the first and the third cases

for binary32, all other cases should be never actually en-
countered in Algorithm 5.2 and Algorithm 5.4, because we
demand integer checks of n · 2e−1 · 10k only for n’s that are
at least 2p+1 − 1. (Note that 2p+1 − 1 = 2fc − 1 when
fc = 2p, which means all significand bits are zero. For bi-
nary32, we have 2p+1−1 = 16777215 and for binary64, we
have 2p+1 − 1 = 9007199254740991.)

Hence, we only need to be careful about the first and the
third cases for binary32, and there is no actual counterex-
ample for binary64. Another observation is that the n =
29711844 in those counterexamples is even. Since 2fc ± 1
is an odd number, the only possible problematic scenario is
when we need to check if y is an integer for this case, and
integer checks for x and z should just work fine. Fortunately,
with careful examination, one can see that for any rounding
modes the inputs corresponding to these possible error cases
(which are 29711844× 2−82 and 29711844× 2−81) do not
prompt the integer check for y when we follow Algorithm
5.2 and Algorithm 5.4.16 Therefore, we have no problem.

5.1.3 Choice of κ
In Section 5.1.1, we have seen why we would prefer to
choose κ as large as possible. However, in order to simplify
the integer part computations and integer checks of x, y, and
z, we demand the number 2βn from the previous section to
fit in q-bits. Hence, we want p+ 2 + β < q to hold, thus

β < q − p− 2.

Note that this in particular makes the condition for having
successful integer checks trivial for the case b ≤ nmax.

16 For 29711844 × 2−82, the algorithm marches to the second step in
Algorithm 5.4 with D = 38. As D is not divisible by 10, we do not need
to check if y is an integer. For 29711844 × 2−81, we have r = 7 and
δ(i) = 82 in the fifth step of Algorithm 5.2, so we do not need to check if
y is an integer.

Since

−e log10 2 ≤ −be log10 2c < −e log10 2 + 1,

we have

β = e+ bk log2 10c
= e+ b(κ− be log10 2c) log2 10c
∈ [bκ log2 10c , b(κ+ 1) log2 10c] ,

(10)

so a sufficient condition for β to satisfy β < q − p− 2 is

κ ≤ b(q − p− 2) log10 2c − 1.

For binary32 (p = 23, q = 32), this gives κ ≤ 1 and for
binary64 (p = 52, q = 64), this gives κ ≤ 2. Therefore, we
take κ = 1 for binary32 and κ = 2 for binary64.

5.1.4 Computation of δ(i)

Recall that

δ(i) =
⌊
2e · 10k

⌋
=
⌊
2 · 2e−1 · 10k

⌋
.

Obviously, we have 2 ≤ nmax = 2p+2, so we get

δ(i) =

⌊
2β+1ϕ̃k

2Q

⌋
=

⌊
ϕ̃k

2Q−β−1

⌋
,

which means that δ(i) is nothing but just the upper (β + 1)-
bits of the Q-bit integer ϕ̃k.

5.1.5 Computation of z(i)

To compute

z(i) =

⌊
2β(2fc + 1)ϕ̃k

2Q

⌋
,

we left-shift the q-bit integer 2fc + 1 by β-bits (where
the result is still a q-bit integer because of the choice of
κ), perform the multiplication with the Q-bit integer ϕ̃k to
obtain a (q + Q)-bit integer, and then take the upper q-
bits. Also, note that the integer condition (5) is equivalent
to that the upper (Q− q)-bits of the remaining Q-bits are all
zero. Hence, we extract the upper Q-bits from the (q + Q)-
bit result of the multiplication, and use the upper q-bits for
obtaining z(i) and the lower (Q−q)-bits for the integer check
of z.

The only nontrivial part here is how to actually compute
the upper Q-bits of the result of multiplication of a q-bit in-
teger and a Q-bit integer. We will explain the procedure in
terms of q-bit full and half multiplications. By q-bit full mul-
tiplication, we mean computing the 2q-bit result of multipli-
cation of two q-bit integers, and by q-bit half multiplication,
we mean computing only the lower q-bits of the 2q-bit result
of multiplication.

In general multiplication of integers with smaller bit-
width tend to be faster than that of integers with larger bit-
width, so we prefer multiplication of smaller-sized integers

20 2022/2/24

2𝛽𝛽 2𝑓𝑓𝑐𝑐 + 1 =

�𝜑𝜑𝑘𝑘 =

𝑧𝑧 𝑖𝑖 𝑧𝑧 is an integer
if and only if this is zero

Figure 5. Illustration of the computation of z(i) and integer
check of z

if possible. Also, modern platforms may or may not provide
a direct instruction for full multiplication, but even if they
do, it is often slower than the corresponding instruction for
half multiplication, so we prefer half multiplications over
full multiplication.

When the machine does not provide a direct instruction
for full multiplication, we can emulate it with several half
multiplications. See [12], for example.

Now, assuming that the native word size of the platform
is 64-bits, for binary32 (q = 32, Q = 64), getting the upper
64-bits from the 96-bit result of the multiplication of a 32-bit
integer and a 64-bit lookup table entry can be done with one
64-bit full multiplication: treat the given 32-bit integer as a
64-bit integer, shift it to left by 32-bits, perform 64-bit full
multiplication with the lookup table entry, and then extract
the upper 64-bits out of it.

Similarly, for binary64 (q = 64, Q = 128), getting the
upper 128-bits from the 192-bit result of the multiplication
of a 64-bit integer and a 128-bit lookup table entry can be
done with two 64-bit full multiplications and one 64-bit ad-
dition possibly with carry: perform 64-bit full multiplica-
tions of the given 64-bit integer with the upper 64-bits and
the lower 64-bits of the lookup table entry, respectively, ex-
tract the upper 64-bits from the result of the latter and add
it to the lower 64-bits of the result of the former, and if the
carry is generated, add it back to the upper 64-bits of it.

5.1.6 Computation of x(i) and y(i)

Recall that we do not need to fully compute x(i) and y(i);
rather, what we only care about is the parity of them and
whether or not x and y are integers. This makes the compu-
tation a little bit simpler than that of z(i).

We will only consider the case of x(i) since the case of
y(i) is identical. Recall we have

x(i) =

⌊
2β(2fc − 1)ϕ̃k

2Q

⌋

𝛽𝛽

2𝑓𝑓𝑐𝑐 − 1 =

�𝜑𝜑𝑘𝑘 =

Figure 6. Illustration of the computation of the parity of x(i)

as 2fc − 1 ≤ nmax. We can regard the above as taking the
upper q-bits from the (q + Q)-bit result of multiplication of
the q-bit integer 2β(2fc − 1) and the Q-bit integer ϕ̃k, but
we can also regard it as taking the upper (q + β)-bits from
the (q + Q)-bit result of multiplication of the q-bit integer
2fc − 1 and the Q-bit integer ϕ̃k. This second interpretation
is advantageous in this case because it allows us to ignore
the upmost q-bit of the result of multiplication. Hence, the
computation can be done with one q-bit full multiplication
and one q-bit half multiplication followed by an addition
without carry as illustrated in Figure 6, contrast to two q-
bit full multiplications and additions with carry handling as
in the case of z(i).

We first compute the q-bit full multiplication of 2fc − 1
and the lower half of ϕ̃k (yellow boxes in Figure 6), and
compute the q-bit half multiplication of 2fc − 1 and the
upper half of ϕ̃k (the second purple box in Figure 6). Add
the upper half from the former and the latter (the pink box in
Figure 6), then the parity of x(i) must be the β-th bit of the
result, counting from the MSB (most significant bit).

Integer check for x can be also done within this compu-
tation. Note that the integer condition (5) is equivalent to

(nϕ̃k mod 2Q−β) < 2q−β .

Hence, we conclude that x is an integer if and only if only
the lower (q − β)-bits of the pink box in Figure 6 and the
upper β-bits of the yellow box in the bottom line of Figure 6
are all zero.

In practice, computing the parity of x(i) is still a heavy
operation compared to others. Hence, it can be beneficial to
delay it until it is absolutely necessary. In Algorithm 5.2, we
need to compute the parity of x(i) when r and δ(i) turn out
to be the same. However, in fact if either the interval I does
not include the left endpoint or x is not an integer, we always
conclude I ∩ 10−k0+1Z is empty regardless of the parity of
x(i). Therefore, if the given rounding mode indicates that the
left endpoint is not in I , we can skip computing the parity of
x(i).

21 2022/2/24

On the other hand, since our general strategy for integer
checks is to leverage some intermediate results from the
computation of the integer part, doing integer checks in
advance of the parity computation might not give any merit.
However, while the full integer check can be costly, we
can still conclude that x is definitely not an integer just
by comparing the exponent e with some constants. Indeed,
recall that

x = (2fc − 1) · 2e−1 · 10k = (2fc − 1) · 2e+k−1 · 5k.

Since 2fc − 1 is an odd integer, x must not be an integer if
e+ k− 1 < 0. Using the definition of k, we can rewrite this
inequality as

e+ κ− be log10 2c ≤ 0,

which is equivalent to

e+ κ ≤ e log10 2,

which can be rewritten as

e log10 5 ≤ −κ,

or
e ≤ −κ log5 10 = −κ− κ log5 2.

Since the right-hand side is not an integer, this is equivalent
to

e < −κ− bκ log5 2c .
Hence, if the above inequality holds, then x cannot be an
integer.

On the other hand, it is likely that x is not an integer when
k < 0, but it can actually be an integer when 2fc − 1 is
a multiple of 5. Still, if k is so small so that 5−k is even
bigger than the maximum possible value of 2fc − 1, then x
must not be an integer. Hence, when −k > log5 nmax =
(p+ 2) log5 2, we can immediately conclude that x is not an
integer.17 Since it will be a little bit more efficient to use e
instead of k for checking this inequality as we anyway use e
for checking e + k − 1 < 0, let us rewrite it in terms of e.
From the definition of k, we can rewrite−k > (p+2) log5 2
as

be log10 2c − κ > (p+ 2) log5 2.

Since the left-hand side is an integer, this is equivalent to

be log10 2c ≥ b(p+ 2) log5 2c+ κ+ 1

or
e ≥ (b(p+ 2) log5 2c+ κ+ 1) log2 10.

Then since the right-hand side is never an integer, this is
equivalent to

e > b(b(p+ 2) log5 2c+ κ+ 1) log2 10c .
17 Of course, the maximum possible value of 2fc − 1 is a little bit smaller
than nmax, but it does not make any real difference.

Therefore, we conclude that x must not be an integer if
either

e < −κ− bκ log5 2c

or

e > b(b(p+ 2) log5 2c+ κ+ 1) log2 10c ,

in which case we can skip computing the parity of x(i).

5.1.7 Division by 10κ+1

Recall that modern compilers are well-aware of the tech-
nique pioneered by Granlund-Montgomery [8] of turning an
integer division by a constant into a multiplication followed
by a shift. However, there are often situations where manu-
ally doing so results in a better code, because we can lever-
age some restrictions on the range of inputs that the compiler
might not be aware of. The step in Algorithm 5.2 of obtain-
ing s, r satisfying

z(i) = 10κ+1s+ r

falls into that category.
Recall from (3) that we have

z < 10κ+1 · 2p+1

By Theorem 4.2, we always have

s =

⌊
z(i)m

2u

⌋
if u and m satisfy

2u

10κ+1
≤ m <

2u

10κ+1
+

2u

10κ+1(2p+1 · 10κ+1 − 1)
.

For binary32 (p = 23, κ = 1), the smallest u allow-
ing the magic number m to exist is 37, giving the unique
solution m = 1374389535, and for binary64 (p = 52,
κ = 2), the smallest u is 71, giving the unique solution
m = 2361183241434822607.18

It is worth noting that for binary64, what we get in the
above is strictly better than what the compiler would do
without knowing the upper bound on z(i). Indeed, if we use
the trivial upper bound 2q−1 which the compiler would use
instead of 10κ+1 · 2p+1−1, the smallest u is 74. The problem
is, not like our case, in this casemmust be of at least 65-bits,
thus it is not possible to put it inside a single 64-bit word,
which hinders the compiler to generate the optimal code.

18 In fact, we can conversely compute using Theorem 4.2 that the maximum
nmax such that

⌊
n

10κ+1

⌋
=
⌊
nm
2u

⌋
holds for all n = 1, · · · , nmax

with our choice of u and m is nmax = 4908534052 for binary32 and
nmax = 15534100272597517998 for binary64. As we can see here,
nmax for binary32 exceeds the maximum possible value of 32-bit integers.

22 2022/2/24

5.1.8 Division by 10κ

In Algorithm 5.4, there is a step of computing the division
of a number D by 10κ. A notable feature of this step is that,
along with the quotient, we do need to know whether the
dividend D is divisible by 10κ, but we actually do not care
what the remainder specifically is, which makes it a perfect
example where we can apply Theorem 4.6.

More precisely, recall the definition of D:

D := r̃ +
10κ

2
−
⌊
δ(i)

2

⌋
.

By definition of δ, we know 10κ ≤ δ < 10κ+1, so we have
D ≤ r̃ ≤ 10κ+1. Then, to have⌊

D

10κ

⌋
=

⌊
Dm

2u

⌋
for all D ∈ [0, 10κ+1], it suffices to have

2u

10κ
≤ m <

2u

10κ
+

2u

10κ(10κ+1 − 1)
=

2u · 10

10κ+1 − 1
.

Furthermore, by the second remark after Theorem 4.6, with
such m, we conclude D is divisible by 10κ if and only if

(Dm mod 2u) < m.

For both binary32 and binary64, we can do this entire
calculation within 32-bit arithmetic; for binary32, we choose
u = 16 and m = 6554, and for binary64, we choose u = 16
and m = 656, for example. Note that for popular platforms
like x86, taking the modular of a 32-bit integer with respect
to 216 often not even cost a single instruction, because we
can just take the lower-half of the bits.

5.2 Shorter interval case
So far, we have assumed that either Fw 6= 1 or Ew = Emin

holds, so that the length of the interval ∆ is always equal to
2e. In this section, we will assume Fw = 1 and Ew 6= Emin

so that ∆ = 3 · 2e−2. Note that presence of this shorter
interval case complicates a lot of things we argued in the
last section, including but not limited to computation of k
and δ(i), integer checks, and also the claim that y(ru) and
y(rd) are always in 10kI is no longer true, etc.. Thus, we
will follow a completely separate path for the shorter interval
case.

We will in fact more closely mimic the original Schub-
fach algorithm rather than what is described in Section 5.1
in this case, because of the following reasons:

1. Shorter interval cases are rare, especially extremely rare
for the binary64 format. Thus, whatever we do with them
will not affect the average performance very much.

2. The algorithm given in Section 5.1 is already more com-
plicated than the original Schubfach algorithm, and shoe-
horning the shorter interval case into it will likely pro-
duce a much more complicated one, because lots of the
assumptions we made are simply not true for that case.

3. Because we have Fw = 1, computing the approximate
multiplication by 10k is no more a heavy operation; in
particular, no actual multiplication is needed. Thus, there
is little reason to try hard to avoid it. We will give some
detailed explanation on this in Section 5.2.1.

Following Schubfach [1], we will work with k0 =
−blog10 ∆c rather than k = k0 + κ. Let us define

x := 10k0wL,

y := 10k0w,

z := 10k0wR

as before, where k is replaced by k0. First, we compute x(i)

and z(i); see Section 5.2.1 for details. Next, define

x̃(i) := min(10k0I ∩ Z), z̃(i) := max(10k0I ∩ Z).

In other words, x̃(i) is x(i) if x is an integer and is contained
in 10k0I , or x̃(i) is x(i) + 1 otherwise, and similarly, z̃(i) is
z(i) if z is not an integer or is contained in 10k0I , or z̃(i) is
z(i) − 1 otherwise.

Proposition 5.5.
I ∩ 10−k0+1Z is nonempty if and only if

x̃(i) ≤
⌊
z̃(i)

10

⌋
· 10.

If the above inequality is true, then
⌊
z̃(i)

10

⌋
· 10−k0+1 is the

unique element in I ∩ 10−k0+1Z.

Proof. By applying Proposition 5.1 with κ = 0, we conclude
that I ∩ 10−k0+1Z is nonempty if and only if

s ∈ 10k0−1I

where we define s, r to be the unique integer satisfying
z(i) = 10s+ r, 0 ≤ r < 10.19

Note that we can in fact replace z(i) by z̃(i) when we
compute s. Indeed, suppose that z is an integer and is not
contained in 10k0I , so that z̃(i) = z(i) − 1. Assume first
that s ∈ 10k0−1I . In this case, we should have r 6= 0 since
otherwise we have z(i) ∈ 10k0I . Thus, we get the same
quotient when we replace z(i) by z̃(i).

Next, assume that s /∈ 10k0−1I . Again, we are okay if
r 6= 0, so suppose that r = 0, thus

z̃(i) = z(i) − 1 = 10s− 1 = 10(s− 1) + 9.

We claim that in this case we still have
⌊
z̃(i)

10

⌋
= s − 1 /∈

10k0−1I . If not, then we have s − 1 ∈ 10k0−1I but s /∈
10k0−1I . Note that s = z

10 is the right endpoint of the

19 To be precise, we have assumed κ > 0 before stating Proposition 5.1, but
the proof of Proposition 5.1 does not depend on that assumption and it can
be applied for the case κ = 0 as well.

23 2022/2/24

interval 10k0−1I , thus we get that the length of the interval
10k0−1I is at least 1, or equivalenty,

∆ ≥ 10−k0+1,

which is absurd by the definition of k0; see (1).
Therefore,

⌊
z(i)

10

⌋
is in 10k0−1I if and only if

⌊
z̃(i)

10

⌋
is

in 10k0−1I , and if one of them is true, then we should have⌊
z(i)

10

⌋
=
⌊
z̃(i)

10

⌋
.

Now, it remains to show that
⌊
z̃(i)

10

⌋
∈ 10k0−1I if and

only if

x̃(i) ≤
⌊
z̃(i)

10

⌋
· 10.

This is in fact trivial; note that
⌊
z̃(i)

10

⌋
∈ 10k0−1I if and only

if ⌊
z̃(i)

10

⌋
· 10 ∈ 10k0I,

if and only if

x̃(i) ≤
⌊
z̃(i)

10

⌋
· 10 ≤ z̃(i)

by definition of x̃(i) and z̃(i), but the inequality⌊
z̃(i)

10

⌋
· 10 ≤ z̃(i)

is obvious. This concludes the proof.

Again,
⌊
z̃(i)

10

⌋
might contain trailing zeros, so we need to

deal with them.
Next, it remains to discuss what should we do if I ∩

10−k0+1Z turns out to be empty. In this case, we first com-
pute

y(ru) =

⌊
y +

1

2

⌋
.

Again this can be done without actually performing a multi-
plication; see Section 5.2.2 for details.

And then, detect if we have a tie, that is, there are two
elements in I∩10−k0+1Z that is closest tow. If that is indeed
the case, then follow the given rule for breaking the tie, and
if the conclusion is to prefer y(rd), then let y(r) := y(rd).
Otherwise, let y(r) := y(ru). Details of how to detect a tie is
explained in Section 5.2.4.

Note that, not like the normal interval case, y(ru) and
y(rd) are both not guaranteed to be inside 10k0I . However,
recall that it is very simple to check if an integer is in 10k0I:
we can just compare it with x̃(i) and z̃(i).

And another good news here is that y(ru) (and thus y(rd)

as well) is guaranteed to be at most z̃(i), and also whenever
y(r) is not in 10k0I , y(r)+1 is the correctly rounded decimal
representation of w with the shortest number of digits. See
Section 5.2.5 for details.

In conclusion, we can describe the algorithm for the
shorter interval case as:

Algorithm 5.6 (Skeleton of Dragonbox, part 3).

1. Compute k0 and β, where we define β as

β := e+ ek0 +Q− 1 = e+ bk0 log2 10c

as in the normal interval case, except for that k is replaced
by k0.

2. Compute x(i) and z(i); see Section 5.2.1 for details.
3. Compute x̃(i) and z̃(i). This involves how to check if x

or z are integers. Details of how to check that will be
explained in Section 5.2.3.

4. Compute
⌊
z̃(i)

10

⌋
and check if the inequality

x̃(i) ≤
⌊
z̃(i)

10

⌋
· 10

holds. If it holds, then we conclude that
⌊
z̃(i)

10

⌋
· 10−k0+1

is the unique element in I∩10−k0+1Z. In this case,
⌊
z̃(i)

10

⌋
might contain trailing decimal zeros, so find the greatest
integer d such that 10d divides

⌊
z̃(i)

10

⌋
, then(⌊

z̃(i)

10

⌋
/10d

)
× 10d−k0+1

is the answer we are looking for.
5. Otherwise, compute y(ru); see Section 5.2.2 for details.
6. Detect tie, as described in Section 5.2.4. If we have tie,

then choose between y(ru) and y(rd) = y(ru) − 1 ac-
cording to a given rule. Let y(r) be the chosen one, then
y(r) × 10k0 is the answer we are looking for.

7. Otherwise, check if y(ru) ≥ x̃(i) holds. If that is the case,
then y(ru) × 10k0 is the answer we are looking for.

8. Otherwise, (y(ru)+1)×10k0 is the answer we are looking
for.

5.2.1 Computing x(i) and z(i)

Recall that for shorter interval case, we have

wL =

(
fc −

1

4

)
· 2e,

and since Fw = 1, which means fc = 2p, we get

x(i) =
⌊
(2p+2 − 1) · 2e−2 · 10k0

⌋
=

⌊
2β−1(2p+2 − 1) ·ϕk0

2Q

⌋
=
⌊(
ϕk0 −

ϕk0
2p+2

)
· 2−(Q−p−β−1)

⌋
.

It is reasonable to expect that we can probably replace the
number

ϕk0 −
ϕk0
2p+2

by an appropriate integer so that the effect of multiplying
2−(Q−p−β−1) is just a right-shift.

24 2022/2/24

Indeed, it can be exhaustively verified that for the case of
binary32,

x(i) =

⌊(
ϕ̃k0 −

⌊
ϕ̃k0
2p+2

⌋)
· 2−(Q−p−β−1)

⌋
always holds, and for the case of binary64,

x(i) =

⌊(⌊
ϕ̃k0

2Q−q

⌋
−
⌊

ϕ̃k0
2Q−q+p+2

⌋)
· 2−(q−p−β−1)

⌋
always holds. See our reference implementation [11] for the
verification program. Note that for both cases, the whole
computation can be now done with two right-shifts and two
subtractions of integers of at most 64-bits.

Similarly, it can be exhaustively verifed that for the case
of binary32,

z(i) =

⌊(
ϕ̃k0 +

⌊
ϕ̃k0
2p+1

⌋)
· 2−(Q−p−β−1)

⌋
always holds, and for the case of binary64,

z(i) =

⌊(⌊
ϕ̃k0

2Q−q

⌋
+

⌊
ϕ̃k0

2Q−q+p+1

⌋)
· 2−(q−p−β−1)

⌋
always holds.

5.2.2 Computing y(ru)

Note that

y = fc · 2e · 10k0 = 2p+β+1−Qϕk0 ,

thus

y(ru) =

⌊
y +

1

2

⌋
=

⌊
2y + 1

2

⌋
=

⌊
2p+β+2−Qϕk0 + 1

2

⌋
=

⌊⌊
2p+β+2−Qϕk0

⌋
+ 1

2

⌋
.

Applying (10) to κ = 0, we get 0 ≤ β ≤ 3, so p+ β + 2 ≤
p + 5. Note that for both binary32 and binary64, Q = 2q is
strictly bigger than p+ 5, so 2p+β+2−Q is a negative power
of 2. Hence, we can expect to have⌊

2p+β+2−Qϕk0
⌋

=
⌊
2p+β+2−Qϕ̃k0

⌋
.

Indeed, this holds if and only if either ϕk0 = ϕ̃k0 or ϕ̃k0
is not a multiple of 2Q−p−β−2. And it turns out that this is
indeed the case; our reference implementation [11] includes
a program verifying it.

Therefore, we have

y(ru) =

⌊⌊
2p+β+2−Qϕ̃k0

⌋
+ 1

2

⌋
,

which means that y(ru) can be computed with one subtrac-
tion, one increment, and two shifts.

5.2.3 Integer Checks
It would be possible to apply Theorem 4.6 for the integer
checks of x and z, but in this case there is a simpler way.

Recall that

x =

(
fc −

1

4

)
· 2e · 10k0 = (2p+2 − 1) · 2e+k0−2 · 5k0 .

Suppose that 2p+2−1 is d1 times divisible by 5.20 Then since
2p+2 − 1 is an odd number, it follows that x is an integer if
and only if:

1. e+ k0 − 2 ≥ 0, and

2. k0 + d1 ≥ 0.

Using the definition k0 = −
⌊
log10(3 · 2e−2)

⌋
, the first con-

dition is equivalent to

e− 2 ≥
⌊
log10(3 · 2e−2)

⌋
,

which is again equivalent to

log10(3 · 2e−2) < e− 1.

Rewriting the above gives

(e− 2) log10 2 + log10 3 < (e− 2) + 1,

which is equivalent to

(e− 2) log10 5 > log10

3

10
.

Hence, it follows that e+ k0 − 2 ≥ 0 if and only if

e− 2 > log5

3

10
,

which is equivalent to e ≥ 2.
On the other hand, the second condition is equivalent to⌊

log10(3 · 2e−2)
⌋
≤ d1,

so
log10(3 · 2e−2) < d1 + 1,

which can be rewritten as

2e−2 <
10d1+1

3
.

Hence, it follows that k0 + d1 ≥ 0 if and only if

e < 2 + log2

10d1+1

3
,

or equivalently,

e ≤ 2 +

⌊
log2

10d1+1

3

⌋
.

20 Note that 2p+2 − 1 is a multiple of 5 if and only if p ≡ 2 (mod 4),
which is not the case for both binary32 (p = 23) and binary64 (p = 52),
so in fact d1 = 0 in all cases.

25 2022/2/24

Thus, x is an integer if and only if

2 ≤ e ≤ 2 +

⌊
log2

10d1+1

3

⌋
.

Similarly, since

z =

(
fc +

1

2

)
· 2e · 10k0 = (2p+1 + 1) · 2e+k0−1 · 5k0 ,

suppose that 2p+1 + 1 is d2 times divisible by 521, then z is
an integer if and only if:

1. e+ k0 − 1 ≥ 0, and

2. k0 + d2 ≥ 0.

Again, the first condition is equivalent to

log10(3 · 2e−2) < e,

and by rewriting the above we get

(e− 2) log10 2 + log10 3 < (e− 2) + 2,

which is equivalent to

(e− 2) log10 5 > log10

3

100
.

Or, equivalently,

e > log5

3

100
+ 2 = log5

75

100
= log5

3

4
,

which is equivalent to e ≥ 0.
For the second condition, since there is nothing different

from the case of x other than d1 is replaced by d2, we get
that z is an integer if and only if

0 ≤ e ≤ 2 +

⌊
log2

10d2+1

3

⌋
.

Therefore, just two comparisons are enough for determin-
ing if x or z is an integer.

5.2.4 Detecting Tie
In this section, we will show that when we search the cor-
rectly rounded integer in 10k0I ∩ Z, we have tie so we need
to choose between y(ru) and y(rd) = y(ru)− 1 if and only if

− p− 2− b(p+ 4) log5 2− log5 3c ≤ e
≤ −p− 2− b(p+ 2) log5 2c .

Note that tie occurs exactly when y + 1
2 is an integer, or

equivalently,

2y + 1 = 2p+e+1 · 10k0 + 1 = 2p+e+k0+1 · 5k0 + 1

is an even integer. Note that this happens exactly when:

21 Again d2 = 0 for both binary32 (p = 23) and binary64 (p = 52).

1. p+ e+ k0 + 1 = 0, and

2. k0 ≥ 0.

Let us first solve the first equation. The equation can be
rewritten as

p+ e+ 1 =
⌊
log10(3 · 2e−2)

⌋
,

which is equivalent to the inequality

p+ e+ 1 ≤ log10(3 · 2e−2) < p+ e+ 2.

We can rewrite this inequality as

10p+3 · 10e−2 ≤ 3 · 2e−2 < 10p+4 · 10e−2,

which is equivalent to

10p+3 · 5e−2 ≤ 3 < 10p+4 · 5e−2,

or,
3 · 10−p−4 < 5e−2 ≤ 3 · 10−p−3.

Taking log, we get

− p− 4− (p+ 4) log5 2 + log5 3 < e− 2

≤ −p− 3− (p+ 3) log5 2 + log5 3,

or equivalently,

− p− 2− ((p+ 4) log5 2− log5 3) < e

≤ −p− 1− ((p+ 3) log5 2− log5 3) .

On the other hand, the second condition k0 ≥ 0 is equivalent
to e ≤ 3 (specialize the arguments in Section 5.2.3 with
d1 = 0), which is always true if

e ≤ −p− 1− ((p+ 3) log5 2− log5 3)

whenever p ≥ 0, hence, y + 1
2 is an integer if and only if

− p− 2− b(p+ 4) log5 2− log5 3c ≤ e
≤ −p− 2− b(p+ 3) log5 2− log5 3c .

We will show in Section 5.2.5 that y(ru) is always
bounded above by z̃(i). Note that if we have y(rd) /∈ 10k0I ,
then it is wiser to consider the case not as a tie because y(rd)

is no longer a valid choice. Thus, we will now derive an
equivalent condition for having y(rd) ≥ x̃(i), which then au-
tomatically implies y(ru), y(rd) ∈ 10k0I as y(rd) ≤ y(ru) ≤
z̃(i).

Assuming we have tie so that y− 1
2 is an integer, we have

y(rd) < x̃(i) if and only if

y − 1

2
< x or y − 1

2
≤ x,

depending on the rounding rule. In fact, since y − 1
2 is

assumed to be an integer, we have p + e + k0 + 1 = 0,

26 2022/2/24

and as explained in Section 5.2.3, x is an integer only if
e+ k0 − 2 ≥ 0, which is not the case because

e+ k0 − 2 = −p− 3 < 0.

Hence, since y− 1
2 is an integer and x is not an integer, above

two inequalities have no difference, so let us work with

y − 1

2
< x

for simplicity. Using the definitions of x and y, the above
inequality can be written as

2p+e · 10k0 − 1

2
<

(
2p − 1

4

)
· 2e · 10k0 .

Rewriting the above, we get

1

4
· 2e · 10k0 <

1

2
.

Since we have assumed p+ e+ k0 + 1 = 0, we have

k0 = −p− e− 1,

so the inequality can be rewritten as

2e · 10−p−e−1 < 2,

or equivalently,

5p+e+1 > 2−p−2.

Taking log, we get

e+ p+ 1 > −(p+ 2) log5 2,

thus

e > −p− 1− (p+ 2) log5 2.

Note that the above bound

−p− 1− (p+ 2) log5 2

is strictly less than the bound

−p− 1− ((p+ 3) log5 2− log5 3).

Hence, more strict equivalent condition for having tie is

− p− 2− b(p+ 4) log5 2− log5 3c ≤ e
≤ −p− 2− b(p+ 2) log5 2c ,

and when this is the case, we do not need to worry about the
possibility of having y(rd) /∈ 10k0I .

5.2.5 Some Facts about Correct Rounding
In this section, we will show the following things:

1. We always have y(ru) ≤ z̃(i).
2. Whenever y(ru) /∈ 10k0I , the unique integer in 10k0I

that is closest to y is y(ru) + 1.

The consequence is that, we can check if y(ru) /∈ 10k0I only
by checking if y(ru) < x̃(i), and if that happens, we just need
to increase y(ru) by one.

To show the first claim, note that

y(ru) ≤ y +
1

2
= z − (z − y) +

1

2
,

and
z − y =

2δ

3
.

Recall from (1) that

10−k0 ≤ ∆ < 10−k0+1,

so δ := ∆ · 10k0 satisfies

1 ≤ δ < 10.

Hence,

y(ru) ≤ z +
1

2
− 2δ

3
≤ z +

1

2
− 2

3
= z − 1

6
.

Therefore, y(ru) must be at most z̃(i).
To show the second claim, suppose y(ru) /∈ 10k0I . Then

by the first claim, we must have y(ru) ≤ x. Then,

y(ru) + 1 ≤ x+ 1 = z + 1− δ,

and again since δ ≥ 1, we get

y(ru) + 1 ≤ z.

In fact, the inequality should be strict; otherwise, we should
have δ = 1, which is impossible since

δ = ∆ · 10k0 = 3 · 2e−2 · 10k0

and there is no way to cancel out the factor 3. On the other
hand, note that

y(ru) =

⌊
y +

1

2

⌋
> y − 1

2
,

so
y(ru) + 1 > y +

1

2
> x.

Therefore, we always have

x < y(ru) + 1 < z

if y(ru) /∈ 10k0I . Note that in this case, since we have
y(ru) ≤ x < y and y(ru) is equal to either byc or byc+ 1, it
follows that y(ru) = byc. Hence, we conclude that byc is not
in 10k0I while byc+1 = y(ru)+1 is in 10k0I , thus y(ru)+1
must be the unique integer inside 10k0I that is closest to y.
Therefore, the second claim is also proven.

27 2022/2/24

6. Efficient Log Computations
In this section, we describe how to apply results from Sec-
tion 4 into efficient computation of bn log10 2c, bn log2 10c,
and

⌊
n log10 2− log10

4
3

⌋
.

6.1 Computation of bn log10 2c
From the continued fraction expansion

log10 2 = [0; 3, 3, 9, 2, 2, 4, 6, 2, 1, 1, 3, 1, 18, 1, 6, · · ·],

we can find out that the pair
(
p∗
q∗
, p

∗

q∗

)
of the best rational

approximations from below and from above with the largest
denominators change as follows, as we vary nmax:

• · · ·
• 485 ≤ nmax < 681: p∗q∗ = 59

196 , p
∗

q∗ = 146
485 ,

• 681 ≤ nmax < 1166: p∗q∗ = 205
681 , p

∗

q∗ = 146
485 ,

• 1166 ≤ nmax < 1651: p∗q∗ = 351
1166 , p

∗

q∗ = 146
485 ,

• 1651 ≤ nmax < 2136: p∗q∗ = 497
1651 , p

∗

q∗ = 146
485 ,

• 2136 ≤ nmax < 2621: p∗q∗ = 643
2136 , p

∗

q∗ = 146
485 ,

• 2621 ≤ nmax < 4757: p∗q∗ = 643
2136 , p

∗

q∗ = 789
2621 ,

• 4757 ≤ nmax < 6893: p∗q∗ = 643
2136 , p

∗

q∗ = 1432
4757 ,

• · · ·

Recall that by Theorem 4.2 and Theorem 4.3, the formula

bnxc = −d−nxe =
⌊nm

2k

⌋
= −

⌈
−nm

2k

⌉
holds for all |n| ≤ nmax if and only if

2kp∗
q∗

< m <
2kp∗

q∗
.

(Note that even for negative n, the division by a poewr of
2 followed by the floor function corresponds to the signed
arithmetic shift.)

Since we want the multiplication nm to be done inside
a fixed-width word without overflow, we prefer m to be
as small as possible, so we want to choose k as small as
possible. Specifically, for each range of nmax, the minimum
k that allows existence of an integer m satisfying the above
inequality and the corresponding smallest m (in fact, unique
m) is as follows:

• · · ·
• 485 ≤ nmax < 681: k = 12, m = 1233,
• 681 ≤ nmax < 1166: k = 18, m = 78913,
• 1166 ≤ nmax < 1651: k = 18, m = 78913,
• 1651 ≤ nmax < 2136: k = 20, m = 315653,
• 2136 ≤ nmax < 2621: k = 20, m = 315653,

• 2621 ≤ nmax < 4757: k = 23, m = 2525223,
• 4757 ≤ nmax < 6893: k = 23, m = 2525223,
• · · ·

If we want to restrict the computation to be done entirerly
within (signed) 32-bit arithmetics, the maximum range of n
that avoids overflow for each of the choices of m above is:

• |n| ≤
⌊
231−1
m

⌋
= 1741673, for m = 1233,

• |n| ≤
⌊
231−1
m

⌋
= 27213, for m = 78913,

• |n| ≤
⌊
231−1
m

⌋
= 6803, for m = 315653, and

• |n| ≤
⌊
231−1
m

⌋
= 850, for m = 2525223.

As a conclusion, the choice of k and m that allows the
maximum range of n is k = 20 and m = 315653, which
yields the formula

bn log10 2c =

⌊
315653 ·n

220

⌋
,

which holds for all |n| ≤ 2620. Indeed, this formula pro-
duces wrong results for n = ±2621. Note that the magic
number 315653 is in fact equal to

⌈
220 · log10 2

⌉
.

This range is enough for our use-case; we need to evaluate
be log10 2c for e ∈ [Emin−p,Emax−p], so e ∈ [−149, 104]
for binary32 and e ∈ [−1074, 971] for binary64.

6.2 Computation of bn log2 10c
We do the same thing for log2 10. The continued fraction
expansion is

log2 10 = [3; 3, 9, 2, 2, 4, 6, 2, 1, 1, 3, 1, 18, 1, 6, 1, · · ·],

and the pair
(
p∗
q∗
, p

∗

q∗

)
can be found accordingly:

• · · ·
• 643 ≤ nmax < 789: p∗q∗ = 485

146 , p
∗

q∗ = 2136
643 ,

• 789 ≤ nmax < 1432: p∗q∗ = 2621
789 , p

∗

q∗ = 2136
643 ,

• 1432 ≤ nmax < 2075: p∗q∗ = 4757
1432 , p

∗

q∗ = 2136
643 ,

• 2075 ≤ nmax < 2718: p∗q∗ = 6893
2075 , p

∗

q∗ = 2136
643 ,

• 2718 ≤ nmax < 3361: p∗q∗ = 9029
2718 , p

∗

q∗ = 2136
643 ,

• 3361 ≤ nmax < 4004: p∗q∗ = 11165
3361 , p

∗

q∗ = 2136
643 ,

• 4004 ≤ nmax < 4647: p∗q∗ = 13301
4004 , p

∗

q∗ = 2136
643 ,

• · · ·
Then the minimum k that allows existence of an integer m
satisfying

2kp∗
q∗

< m <
2kp∗

q∗
,

and the smallest (in fact unique) such m for each range of
nmax is:

28 2022/2/24

• · · ·
• 643 ≤ nmax < 789: k = 17, m = 435411,
• 789 ≤ nmax < 1432: k = 19, m = 1741647,
• 1432 ≤ nmax < 2075: k = 19, m = 1741647,
• 2075 ≤ nmax < 2718: k = 19, m = 1741647,
• 2718 ≤ nmax < 3361: k = 19, m = 1741647,
• 3361 ≤ nmax < 4004: k = 19, m = 1741647,
• 4004 ≤ nmax < 4647: k = 22, m = 13933177,
• · · ·

And the maximum range of n to avoid overflow for each of
the choices of m above is:

• |n| ≤
⌊
231−1
m

⌋
= 4932, for m = 435411,

• |n| ≤
⌊
231−1
m

⌋
= 1233, for m = 1741647, and

• |n| ≤
⌊
231−1
m

⌋
= 154, for m = 13933177.

Therefore, the choice of k and m that allows the maximum
range of n is k = 19 and m = 1741647. This yields the
formula

bn log2 10c =

⌊
1741647 ·n

219

⌋
which holds for all |n| ≤ 4003, but only for |n| ≤ 1233
we do not have overflow over 32-bits. In this case, the magic
number 1741647 is equal to

⌊
219 · log2 10

⌋
.

This range is enough for our use-case; we need to evaluate
bk log2 10c for k ∈ [kmin, kmax] where

kmin := min

(
− b(Emax − p) log10 2c+ κ,

−
⌊

(Emax − p) log10 2− log10

4

3

⌋)
and

kmax := max

(
− b(Emin − p) log10 2c+ κ,

−
⌊

(Emin − p) log10 2− log10

4

3

⌋)
22,

so k ∈ [−31, 46] for binary32 and k ∈ [−292, 326] for
binary64.

6.3 Computation of
⌊
n log10 2− log10

4
3

⌋
We try to find positive integers k, m, and f such that⌊

n log10 2− log10

4

3

⌋
=

⌊
nm− f

2k

⌋
holds for all |n| ≤ nmax for large enough nmax. It is not easy
to find the choice of parameters that allows the maximum
possible value of nmax, but Theorem 4.7 and Theorem 4.8
with x ← log10 2 and y ← log10

4
3 allow us to find a good

enough choice for them.

Note that the optimizers µ and ν from the mentioned the-
orems quite sensitively depend on p∗

q∗
and p∗

q∗ , and different
values for those two give radically different values for µ and
ν. Then, the parameter ζ := f

2k
is sensitively depending on

both the resulting values of µ and ν and the choice of m and
k (because the bounds on ζ is given by the remainder of µm
and νm divided by 2k). Thus, simply choosing the minimum
possible m and k is not the best strategy.

The author is currently not aware of any elegant starategy
for finding the best choice which can be fully automated, and
also did not bother to write a program doing an exhaustive
search, but it seems that the following yields a good enough
range of n.

As the first step, fix p∗
q∗

= 497
1651 and p∗

q∗ = 146
485 , which is

valid for 1651 ≤ nmax < 2136, so let nmax = 2135. Hence,
if we can find ξ := m

2k
and ζ := f

2k
satisfying the conditions

in Theorem 4.7 and Theorem 4.8, then the formula⌊
n log10 2− log10

4

3

⌋
=

⌊
nm− f

2k

⌋
must be valid for at least all |n| ≤ 2135. Note that this
predicted range of n may not be the optimal range for the
given specific choice of k, m, and f , and the actual range
might be bigger.

We first find µ and ν given by Theorem 4.7. Note that
they do not depend on ξ as long as the identity bnxc = bnξc
holds, so we can adjust ξ later on to allow valid range
for ζ. Note that with out choice of p∗

q∗
and p∗

q∗ , we have
dq∗ye = 207 and dq∗ye = 61.

For µ, we first try l = 1. The modular inverse of p∗ = 497
with respect to q∗ = 1651 is 1166, thus we consider

n ≡ 1166 · (dq∗ye − l)
≡ 1166 · (207− 1) ≡ 801 (mod 1651).

Since
q∗y + 1− dq∗ye

q∗x− p∗
= 523.78 · · ·

is less than 801, l = 1 does not yield any possible value for
µ. Then we try l = 2, so

n ≡ 1166 · (dq∗ye − l)
≡ 1166 · (207− 2) ≡ 1286 (mod 1651).

Since
q∗y + 2− dq∗ye

q∗x− p∗
= 2436.40 · · ·

is greater than 1286, l = 2 is the right answer for µ. Since
1286 is the only positive integer that is equivalent to 1286
modular 1651 and less than 2436.40 · · · , we get µ = 1286.

For ν, we already have seen in the above that the maxi-
mum l such that there exists a solution for

np∗ ≡ dq∗ye − l (mod q∗) and

n ≥ q∗y + l − dq∗ye
q∗x− p∗

,

29 2022/2/24

exists is l = 1 (because q∗y+l−dq∗ye
q∗x−p∗ is already bigger than

nmax for l = 2), which gives ν = 801.
Next, we find µ and ν given by Theorem 4.8. The modular

inverse of p∗ = 146 with respect to q∗ = 485 is 196, so we
try l = 1 which yields

n ≡ 196 · (q∗ − dq∗ye+ l)

≡ 196 · (485− 61 + 1) ≡ 365 (mod 1651).

Note that

q∗y + 1− dq∗ye
p∗ − q∗x

= 1316.70 · · ·

is greater than 365, so we should have µ ≡ 365 (mod 1651).
The greatest possible choice of µ is then

µ = 365 + 485 = 850.

For ν, note that

q∗y + 2− dq∗ye
q∗x− p∗

= 3528.59 · · ·

is bigger than nmax, thus we need to take l ≤ 1. When l = 1,
the equation

n ≡ 365 (mod 1651),

n ≥ q∗y + 1− dq∗ye
p∗ − q∗x

= 1316.70 · · ·

has a solution, and the smallest solution is ν = 1335.
Now, let us take k = 21 and

m =

⌈
2kp∗
q∗

⌉
= 631305.

Then ξ = m
2k

satisfies bnxc = bnξc for all |n| ≤ nmax, since⌊
2kp∗

q∗

⌋
= 631307.

With these, the bound on f = 2kζ given by Theorem 4.7 is

(µm mod 2k) = 260406 < f

≤ (νm mod 2k) = 261673,

and the bound given by Theorem 4.8 is

2k − (µm mod 2k) = 261662 < f

≤ 2k − (νm mod 2k) = 262929.

Therefore, the resulting range of f is

261663 ≤ f ≤ 261673.

Therefore, we can choose whatever value of f from this
range to ensure that the formula⌊

n log10 2− log10

4

3

⌋
=

⌊
631305 ·n− f

221

⌋

is valid for all |n| ≤ nmax = 2135 which is enough for our
use, so we just choose f = 261663. Actually, a mechanical
verification shows that every choice of f in the above range
makes the above formula valid for all n ∈ [−2985, 2936].

Note that our first magic number 631305 is precisely⌊
221 log10 2

⌋
, but the second magic number 261663 is quite

different from

221 log10

4

3
= 262015.52 · · · .

In fact, the maximum range of n we can get by just naively
assigning the truncated binary expansions of log10 2 and
log10

4
3 into m and f , constrained by the possible pres-

ence of overflow over 32-bit signed arithmetic, is |n| ≤
1700, which is achieved by the choice k = 22, m =⌊
222 log10 2

⌋
= 1262611, and f =

⌊
222 log10

4
3

⌋
=

524031. Hence, our analysis based on Theorem 4.7 and The-
orem 4.8 gives a strictly better result, although |n| ≤ 1700
is already enough for our use.

7. Performance
We compared the performance of Dragonbox with the refer-
ence implementations of Ryū [13], Grisu-Exact [14], and a
C++ implementation of Schubfach [7], for the task of pro-
ducing a decimal string representation of a given floating-
point number. The source code for the benchmark is avail-
able in [11].

We did two set of benchmarks. The first set is testing
floating-point numbers with the given number of decimal
digits. (See Figure 7.) Since it is not easy to uniformly ran-
domly generate such floating-point numbers, we first uni-
formly randomly generated an integer with the given num-
ber of digits, combined it with a uniformly randomly gen-
erated exponent in the valid decimal exponent range and a
uniformly randomly generated sign, converted the result into
a string, and then converted it back to a floating-point num-
ber. If the resulting string does not fall in the valid range or
if there exists a shorter representation of the same floating-
point number, then we discarded he number and repeated the
procedure. Although this will not give us the uniform distri-
bution as the probability of collision will not be uniform, one
may nonethelessly claim that this will give a reasonable ap-
proximation. We generated 100, 000 samples per each num-
ber of digits, and measured the time elapsed for repeating
the string generation 1, 000 times for each sample.

The second set is testing uniformly randomly generated
floating-point numbers. (See Figure 8.) For this benchmark,
we generated 1, 000, 000 samples and measured the time
elapsed for repeating the task 1, 000 times for each sample.
Since 1, 000, 000 samples are too many to make a visible
plot, we randomly sampled 10, 000 among them for the plot
shown in Figure 8. The statistics attached on the plot is
drawn from all of 1, 000, 000 samples.

The benchmark data is obtained on a machine with
Intel (R) Core™ i7-7700HQ CPU @2.80GHz, and the

30 2022/2/24

1 2 3 4 5 6 7 8 9

Number of digits

10

12

14

16

18

20

22

24

26

28

30

32

T
im

e
(n

s)

Dragonbox
Ryu
Grisu-Exact
Schubfach

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of digits

20

25

30

35

40

45

50

T
im

e
(n

s)

Dragonbox
Ryu
Grisu-Exact
Schubfach

Figure 7. Performances of Dragonbox, Ryū, Grisu-Exact, and Schubfach for random floating-point numbers with given
number of digits; solid lines are averages, dashed lines are medians, and shaded regions show 30%, 50%, and 70% percentiles.
(top: binary32, bottom: binary64)

31 2022/2/24

0 230 231 3# 230 232

Bit representation

0

10

20

30

40

50

60

T
im

e
(n

s)

Dragonbox (avg: 14.14, std: 4.02, med: 13.20)
Ryu (avg: 20.83, std: 5.13, med: 19.80)
Grisu-Exact (avg: 19.04, std: 4.82, med: 18.20)
Schubfach (avg: 20.50, std: 5.59, med: 19.40)

0 262 263 3# 262 264

Bit representation

0

10

20

30

40

50

60

70

T
im

e
(n

s)

Dragonbox (avg: 21.95, std: 5.26, med: 21.20)
Ryu (avg: 30.54, std: 6.70, med: 29.40)
Grisu-Exact (avg: 29.96, std: 6.70, med: 28.40)
Schubfach (avg: 28.09, std: 6.84, med: 26.50)

Figure 8. Performances of Dragonbox, Ryū, Grisu-Exact, and Schubfach for uniform random floating-point numbers (top:
binary32, bottom: binary64)

benchmark code is compiled with Clang-cl compiler shipped
with Visual Studio 2022 17.0.4.

In our benchmarks, Dragonbox performed better than
the competitors for all number of digits and also for the
uniformly random data.

(Note: just like every other benchmark, this benchmark
is not perfectly fair. Especially, the benchmark measures the
total time consumed for generating strings rather than the
decimal significand and exponents, and all of these imple-
mentations use different algorithm for string generation. In
[7], however, one can find more fair comparison of these al-
gorithms.)

A. Right-Closed Directed Rounding Case
In this section, we describe the algorithm for the case when
the interval I is given as

I = (w−, w].

In this case, there are not so much differences between the
normal interval case and the shorter interval case, so we will
not treat them differently. One thing to note for this case is
that when we know that I ∩ 10−k0+1Z is empty, we just
need to find the greatest integer from 10k0I , which can be
done directly by just adding the quotient of r divided by 10κ

32 2022/2/24

to 10s. Besides those, there are not so much differences from
the nearest rounding case. Here is the skeleton:

Algorithm A.1 (Skeleton of Dragonbox, Right-Closed Di-
rected Rounding Case).

1. Compute k = −blog10 ∆c + κ as described in Section
6.1. But in this case, we need to be careful that ∆ = 2e−1

if Fw = 1 and E 6= Emin, and ∆ = 2e otherwise.
2. Compute z(i), as described in Section 5.1.5
3. Compute s, r by dividing z(i) by 10κ+1 with the opti-

mization described in Section 5.1.7.
4. Compute δ(i) as described in Section 5.1.4. But in this

case, again we need to take care of the presence of the
shorter interval case. The only difference is, however, that
we need to shift by one less amount of bits compared to
the normal interval case.

5. Check if the inequality r > δ(i) holds. If that is the case,
then we conclude that I ∩ 10−k0+1Z is empty.

6. Otherwise, check if the inequality r < δ(i) holds. If
that is the case, then we conclude that 10−k+κ+1s is the
unique element in I ∩ 10−k0+1Z.

7. Otherwise, we have r = δ(i). Then, compute the parity of
x(i), as described in Section 5.1.6. Again, we need to take
care of the presence of the shorter interval case, since we
have

x = (fc − 1) · 2e · 10k = (2fc − 2) · 2e−1 · 10k

for the normal interval case but we have

x =

(
fc −

1

2

)
· 2e · 10k = (2fc − 1) · 2e−1 · 10k

for the shorter interval case.
• If x(i) is an odd number, then we have z(f) < δ(f), so

we conclude that 10−k+κ+1s is the unique element in
I ∩ 10−k0+1Z.

• Otherwise, we conclude that I ∩ 10−k0+1Z is empty.
8. When we have concluded that 10−k+κ+1s is the unique

element in I ∩ 10−k0+1Z, then we might need to remove
trailing zeros from s. Find the greatest integer d such that
10d divides s. Then we conclude that

s

10d
× 10−k+κ+1+d

is the answer we are looking for.
9. When we have concluded that I ∩ 10−k0+1Z is empty,

then (10s + t) × 10−k+κ is the answer we are looking
for, where t :=

⌊
r

10κ

⌋
.

B. Left-Closed Directed Rounding Case
In this section, we describe the algorithm for the case when
the interval I is given as

I = [w,w+).

In this case, the strategy is to take the mirror image of the
algorithm explained in Section A. This is a little bit more
complex than the right-closed directed rounding case, but a
good thing is that we do not have the shorter interval case;
we always have ∆ = 2e and w+ = (fc + 1) · 2e. Here is the
skeleton:

Algorithm B.1 (Skeleton of Dragonbox, Left-Closed Di-
rected Rounding Case).

1. Compute k = −blog10 ∆c + κ as described in Sec-
tion 6.1.

2. Compute x(i), as described in Section 5.1.5. Note that we
can still apply the completely same routine to x rather
than z.

3. Check if x is an integer; define

x̃(i) =

{
x(i) if x is an integer
x(i) + 1 if x is not an integer

.

Note that x̃(i) is nothing but the ceiling of x. To check if x
is an integer, we can apply the method described in Sec-
tion 5.1.5. However, the exceptional cases for binary32
mentioned in Section 5.1.2 actually matters here, so we
need to add a branch for them. Since x cannot be an inte-
ger if e is small enough, checking if e ≤ −80 is enough.

4. Compute the unique integers s̃, r̃ satisfying

x̃(i) = 10κ+1s̃− r̃, 0 ≤ r̃ < 10κ+1.

This requires a little modification to the plain division:

s̃ =

⌊
x̃(i)

10κ+1

⌋
if 10κ+1 divides x̃(i)⌊

x̃(i)

10κ+1

⌋
+ 1 otherwise

.

(This is again nothing but the ceiling.) The optimization
described in Section 5.1.7 still applies.

5. Compute δ(i) as described in Section 5.1.4.
6. Check if the inequality r > δ(i) holds. If that is the case,

then we conclude that I ∩ 10−k0+1Z is empty.
7. Otherwise, check if the inequality r < δ(i) holds. If

that is the case, then we conclude that 10−k+κ+1s̃ is the
unique element in I ∩ 10−k0+1Z.

8. Otherwise, we have r = δ(i). Then, compute the parity
of z(i), as described in Section 5.1.6. Again, no further
modification is needed and we can just apply what is
described in Section 5.1.6 to z(i) as well.

• If z(i) is an odd number, then I ∩ 10−k0+1Z is empty.
• If z(i) is an even number, then check if z is an integer.

In this case, we do not need a special treatment for the
exceptional cases mentioned in Section 5.1.2, because
for the problematic inputs we do not have r = δ(i).
If z is an integer, then we conclude that I ∩10−k0+1Z
is empty. Otherwise, we conclude that 10−k+κ+1s̃ is
the unique element in I ∩ 10−k0+1Z.

33 2022/2/24

9. When we have concluded that 10−k+κ+1s̃ is the unique
element in I ∩ 10−k0+1Z, then we might need to remove
trailing zeros from s̃. Find the greatest integer d such that
10d divides s̃. Then we conclude that

s̃

10d
× 10−k+κ+1+d

is the answer we are looking for.
10. When we have concluded that I ∩ 10−k0+1Z is empty,

then (10s̃ − t) × 10−k+κ is the answer we are looking
for, where t :=

⌊
r̃

10κ

⌋
.

To elaborate more on the step 8, let us define

x̃(f) := x̃(i) − x,

then 0 ≤ x̃(f) < 1. Then

z(i) + z(f) = x+ δ = x̃(i) + δ(i) + (δ(f) − x̃(f)).

Now, if δ(i) = r̃, then

z(i) + z(f) = 10κ+1s̃+ (δ(f) − x̃(f)),

thus z(i) is an odd number if and only if x̃(f) > δ(f). In this
case, we have that s̃ is not in 10k0−1I , so I ∩ 10−k0+1Z is
empty.

When z(i) is an even number, then x̃(f) ≤ δ(f). In this
case, we have s̃ ∈ 10k0−1I if and only if x̃(f) > δ(f), so we
need to check if x̃(f) = δ(f), which is the case if and only if
z is an integer.

C. Continued fractions
In this section, we collect some relevant results from the the-
ory of continued fractions. Many materials here are com-
piled from several references ([15] for example). We did
not try very hard to find references for all possibly known
results, so lack of reference does not mean novelty. It can
be possible that some results here might be not very widely
known, but most of the things here are probably standard.

A continued fraction means either a finite or infinite se-
quence of the form

a0, a0 +
b1
a1
, a0 +

b1

a1 +
b2
a2

, a0 +
b1

a1 +
b2

a2 +
b3
a3

, · · · .

In this paper, we will always assume:

1. All of bi’s are equal to 1,

2. a0 is an integer, and

3. All of other ai’s are positive integers,

unless stated otherwise. With this convention, there is a
unique continued fraction determined by a finite or infinite

sequence a0, a1, a2, · · · . We formally denote

[a0; a1, a2, · · ·] := a0 +
1

a1 +
1

a2 +
1

· · ·

.

When the sequence is finite, the right-hand side evaluates to
a rational number. Even when the sequence is infinite, it can
be shown that the right-hand side, understood as the limit of
the sequence ([a0; a1, · · · , ai])∞i=0 of rational numbers, al-
ways converges to a real number (see below). Thus, the for-
mal expression [a0; a1, a2, · · ·] actually refers to a unique
real number, and we will not make any distinction between
these two.

For each i such that a0, · · · , ai are well-defined, the ith
convergent of the continued fraction is the rational number
[a0; a1, · · · , ai] obtained by cutting the sequence at the ith
term. For example, the 5th convergent of [0; 1, 2, 3, 4, · · ·]
is

0 +
1

1 +
1

2 +
1

3 +
1

4 +
1

5

=
157

225
.

We can uniquely express the ith convergent as pi
qi

, where qi
is a positive integer and pi is an integer coprime to qi. Then
we get the following very well-known result:

Lemma C.1.
For each i, we have(

pi pi−1
qi qi−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
ai 1
1 0

)
where we set p−1 := 1 and q−1 := 0.

Proof. Use induction; see [15] for details.

Looking at the formula above, it is natural to define
p−2 := 0 and q−2 := 1, then we get(

pi pi−1
qi qi−1

)
=

(
pi−1 pi−2
qi−1 qi−2

)(
ai 1
1 0

)
,

so {
pi = pi−2 + aipi−1,

qi = qi−2 + aiqi−1.

Also, since the determinant of the matrix
(
ai 1
1 0

)
is −1,

we get
piqi−1 − pi−1qi = (−1)i+1. (11)

The recurrence relation shows that qi strictly increases
exponentially. Also, (11) shows

pi
qi
− pi−1
qi−1

=
(−1)i+1

qiqi−1
,

34 2022/2/24

so we inductively get

pi
qi

= a0 +

i−1∑
j=0

(−1)j

qjqj+1
.

In particular, by the alternating series test, we conclude:

Corollary C.2.
We have

p0
q0

<
p2
q2

< · · · < p3
q3

<
p1
q1
.

Also, if the sequence (ai)i is infinite, then the sequence(
pi
qi

)∞
i=0

of convergents converges to a real number.

Conversely, for a given real number x, there is a well-
known algorithm for obtaining a continued fraction con-
verging to x. First, take the integer part a0 := bxc. Then
x − a0 ∈ [0, 1). If it is zero, then that means x is an in-
teger, and we terminate the procedure and returns the se-
quence (a0) consisting of the single term a0. If not, then
consider the reciprocal x1 := 1

x−a0 ∈ (1,∞). Take the in-
teger part a1 := bx1c, then again we have x1 − a1 ∈ [0, 1).
If it is zero, then stop and returns the sequence (a0, [a0; a1])
consisting of two terms. Otherwise, take the reciprocal and
let x2 := 1

x1−a1 ∈ (1,∞). Again, take the integer part
a2 := bx2c, and if x2 − a2 = 0, then stop and returns the
sequence (a0, [a0; a1], [a0; a1, a2]) consisting of three terms.
Otherwise, take the reciprocal x3 := 1

x2−a2 and continue.
To see why the resulting continued fractions converge to

x, it is sufficient to see p2i
q2i
≤ x and x ≤ p2i+1

q2i+1
always holds,

because of Corollary C.2. Note that by induction one can
easily see

x = [a0; a1, · · · , ai, xi+1]

always holds (here we are allowing non-integers to appear in
continued fractions), so it is enough to show that for given
positive real numbers a < b,

[a0; a1, · · · , a2i, a] < [a0; a1, · · · , a2i, b]

and

[a0; a1, · · · , a2i+1, a] > [a0; a1, · · · , a2i+1, b]

holds. These can be easily shown using induction.
Note that if this algorithm terminates in a finite step,

then that means the final term in the resulting sequence is
precisely the number x we are given with. In particular, x
must be a rational number in this case, so if x is irrational
then the algorithm produces an infinite sequence.

On the other hand, if x = p
q is rational, then what the

algorithm does is basically what the Euclid algorithm does
to p and q to eventually produce gcd(p, q) = 1. With this
correspondence, one can see that whenever x is rational
the algorithm must terminate in a finite step. Therefore,
the algorithm terminates in a finite step if and only if x is
rational.

Now, suppose we have x = [a0; a1, · · ·]. Then, we must
have

a0 ≤ x < a0 + 1

unless either a0 is the last term or a1 is the last term and
a1 = 1. Since [a0; a1, · · ·] = [a0; b1, · · ·] implies
[a1; a2, · · ·] = [b1; b2, · · ·], we get that two continued
fractions [a0; a1, · · ·] and [b0; b1, · · ·] yield the same real
number if and only if:

1. They are identical sequences, or

2. Both are finite continued fractions with the lengths differ
by 1, and assuming [a0; a1, · · ·] = [a0; a1, · · · , ai] is the
shorter one, aj = bj holds for all j < i and ai = bi + 1,
bi+1 = 1 hold.

In other words,

1. When x is irrational, the continued fraction generated by
the algorithm described above is the unique one conver-
gent to x, and

2. When x is rational, there is another one which is obtained
by replacing the last coefficient ai with [ai − 1; 1]. Note
that whenever the algorithm terminates in a finite step,
the last coefficient must be at least 2.

From now on, we will call the continued fraction [a0; a1, · · ·]
obtained from the algorithm as the continued fraction expan-
sion of x, and the ith convergent of it as the ith convergent
of x.

Given a continued fraction [a0; a1, · · ·], whenever we say
“the ith coefficient” of “the ith convergent” or anything like
that, we are always assuming implicitly that those are well-
defined. In particular, the index i will be always assumed
to be at least 0. However, sometimes it is convenient to
talk about “the −1st convergent” which is conventionally
considered as ∞. In a similar spirit, we often view “the
coefficient next to the last coefficient” as being ∞, and the
one next to it being 0, and the one next to it being∞, and so
on. Then it is natural to conceptually think that, if pi

qi
is the

last convergent, then pi+1 and qi+1 or both infinite, but if we
take the quotient than it becomes equal to pi

qi
. Then, we have

pi+2 = pi and qi+2 = qi, and then pi+3 = pi+1 = ∞ and
qi+3 = qi+1 =∞ and pi+3

qi+3
= pi

qi
, and then again pi+4 = pi

and qi+4 = qi, and so on, although precisely speaking these
all do not make sense.

C.1 Best rational approximations from below/above
We characterize best rational approximations from below/above
(Definition 4.1) defined in Section 4.

Definition C.3 (Semiconvergents).
Let piqi denote the ith convergent of a given continued frac-
tion x = [a0; a1, · · ·]. Then for given two consecutive con-
vergents pi−1

qi−1
, piqi (allowing i = 0), a rational number of the

form
pi−1 + spi
qi−1 + sqi

35 2022/2/24

for an integer s ∈ [0, ai+1] with the convention ai+1 =∞ if
ai+1 is not defined (in which case s = ai+1 is impossible),
is called a semiconvergent. When ai+1 <∞, or when s = 0
and qi−1 6= 0 (which means i 6= 0), we call pi−1+spi

qi−1+sqi
a

proper semiconvergent.23

When i is even, we call piqi an even convergent, and when
i is odd, we call it an odd convergent. Similarly, any semi-
convergent of the form

p2i + sp2i+1

q2i + sq2i+1

is called an even semiconvergent, and any semiconvergent of
the form

p2i−1 + sp2i
q2i−1 + sq2i

is called an odd semiconvergent.
The following lemma is well-known.

Lemma C.4.
Let piqi denote the ith convergent of a given continued frac-
tion x = [a0; a1, · · ·]. Then for a given two consecutive
convergents pi−1

qi−1
, piqi , as s varies from 0 to ai+1, the semi-

convergent
pi−1 + spi
qi−1 + sqi

strictly increases from pi−1

qi−1
to pi+1

qi+1
when i is odd, and it

strictly decreases from pi−1

qi−1
to pi+1

qi+1
when i is even, where

we think pi+1

qi+1
as being equal to x if pi+1

qi+1
is not defined.

Proof. Consider the function

f(s) :=
pi−1 + spi
qi−1 + sqi

of real variable s, then from the identity

piqi−1 − pi−1qi = (−1)i+1

it can be easily verified that f ′(s) > 0 when i is odd and
f ′(s) < 0 when i is even, on s > 0. Hence, the claim
follows.

In fact, s = ai+1 is the last s such that the order between
x and pi−1+spi

qi−1+sqi
is retained; that is, we have

x ≤ pi−1 + (ai+1 + 1)pi
qi−1 + (ai+1 + 1)qi

=
pi + pi+1

qi + qi+1

when i is odd, and

x ≥ pi−1 + (ai+1 + 1)pi
qi−1 + (ai+1 + 1)qi

=
pi + pi+1

qi + qi+1

when i is even. To see why, note that we are implicitly
assuming ai+1 < ∞ here, since otherwise the above is a

23 The term proper semiconvergent is not a standard terminology.

nonsense. If ai+2 =∞, then x = pi+1

qi+1
= pi−1+ai+1pi

qi−1+ai+1qi
so the

desired statement obviously holds with strict inequalities. If
ai+2 <∞, then

pi + pi+1

qi + qi+1
− pi+2

qi+2

=
(piqi+2 − pi+2qi) + (pi+1qi+2 − pi+1qi+2)

(qi + qi+1)qi+2

=
ai+2(piqi+1 − pi+1qi) + (−1)i

(qi + qi+1)qi+2

=
(−1)i(ai+2 − 1)

(qi + qi+1)qi+2
≥ 0.

Since x ≤ pi+2

qi+2
when i is odd and x ≥ pi+2

qi+2
when i is even,

we get

x ≤ pi−1 + (ai+1 + 1)pi
qi−1 + (ai+1 + 1)qi

=
pi + pi+1

qi + qi+1

when i is odd, and

x ≥ pi−1 + (ai+1 + 1)pi
qi−1 + (ai+1 + 1)qi

=
pi + pi+1

qi + qi+1

when i is even, with the equalities if and only if x = pi+2

qi+2

and ai+2 = 1.
Note that this equality condition means that x is rational

and the continued fraction [a0; a1, · · ·] ended with 1, which
can never happen if ai’s are generated from the algorithm we
described. Hence, we get:

Lemma C.5.
Let piqi denote the ith convergent of a given continued frac-
tion x = [a0; a1, · · ·]. Then

ai+1 =

⌊
qi−1x− pi−1
pi − qix

⌋
holds for each i.

Proof. Follows directly from the discussion above together
with that

p2i + sp2i+1

q2i + sq2i+1
≤ x

is equivalent to

s ≤ q2ix− p2i
p2i+1 − q2i+1x

and
p2i−1 + sp2i
q2i−1 + sq2i

≥ x

is equivalent to

s ≤ p2i−1 − q2i−1x
q2ix− p2i

.

36 2022/2/24

The following simple computational result is useful to
keep in mind:

Lemma C.6.
Let pi−1

qi−1
, piqi be two consecutive convergents of a continued

fraction [a0; a1, · · ·]. Then for any two consecutive semi-
convergents

pi−1 + spi
qi−1 + sqi

and
pi−1 + (s+ 1)pi
qi−1 + (s+ 1)qi

,

we have

pi−1 + (s+ 1)pi
qi−1 + (s+ 1)qi

− pi−1 + spi
qi−1 + sqi

=
(−1)i+1

(qi−1 + sqi)(qi−1 + (s+ 1)qi)

and

pi
qi
− pi−1 + spi
qi−1 + sqi

=
(−1)i+1

qi(qi−1 + sqi)
.

Proof. Follows directly from (11).

Now we show that proper semiconvergents are precisely
the best rational approximations from below/above.

Lemma C.7.
Let piqi denote the ith convergent of a given continued frac-
tion x = [a0; a1, · · ·]. Then for any y ∈ [bxc , x), there
uniquely exists a pair of two consecutive even semiconver-
gents p2i+sp2i+1

q2i+sq2i+1
and p2i+(s+1)p2i+1

q2i+(s+1)q2i+1
such that

p2i + sp2i+1

q2i + sq2i+1
≤ y < p2i + (s+ 1)p2i+1

q2i + (s+ 1)q2i+1
.

Similarly, for any z ∈ (x,∞), there uniquely exists a pair
of two consecutive odd semiconvergents p2i−1+sp2i

q2i−1+sq2i
and

p2i−1+(s+1)p2i
q2i−1+(s+1)q2i

such that

p2i−1 + (s+ 1)p2i
q2i−1 + (s+ 1)q2i

< z ≤ p2i−1 + sp2i
q2i−1 + sq2i

.

Proof. By Corollary C.2, y must either lie in between two
consecutive even convergents p2i

q2i
and p2i+2

q2i+2
, that is,

p2i
q2i
≤ y < p2i+2

q2i+2
,

or lie in between the last even convergent p2iq2i and x = p2i+1

q2i+1
,

that is,
p2i
q2i
≤ y < p2i+1

q2i+1
= x.

Then for either case, Lemma C.4 shows that there uniquely
exists an integer s ∈ [0, a2i+2) such that

p2i + sp2i+1

q2i + sq2i+1
≤ y < p2i + (s+ 1)p2i+1

q2i + (s+ 1)q2i+1

holds.
Similarly, with the convention p−1

q−1
= ∞, z must satisfy

either
p2i+1

q2i+1
< z ≤ p2i−1

q2i−1
or

x =
p2i
q2i

< z ≤ p2i−1
q2i−1

,

and for either case we can find a unique integer s ∈
[0, a2i+2) such that

p2i−1 + (s+ 1)p2i
q2i−1 + (s+ 1)q2i

< z ≤ p2i−1 + sp2i
q2i−1 + sq2i

.

Proposition C.8.
Let x = [a0; a1, · · ·] be the continued fraction expansion of
a given real number x. Then every even proper semiconver-
gent of x is a best rational approximation of x from below,
and every best rational approximation of x from below ex-
cept possibly x itself is an even proper semiconvergent. Simi-
larly, every odd proper semiconvergent of x is a best rational
approximation of x from above, and every best rational ap-
proximation of x from above except possibly x itself is an
odd proper semiconvergent.

Proof. Take any two consecutive even semiconvergents
p2i+sp2i+1

q2i+sq2i+1
and p2i+(s+1)p2i+1

q2i+(s+1)q2i+1
and think of any rational num-

ber pq in between; that is,

p2i + sp2i+1

q2i + sq2i+1
≤ p

q
<
p2i + (s+ 1)p2i+1

q2i + (s+ 1)q2i+1
.

Then by Lemma C.6, we have

p

q
− p2i + sp2i+1

q2i + sq2i+1

<
p2i + (s+ 1)p2i+1

q2i + (s+ 1)q2i+1
− p2i + sp2i+1

q2i + sq2i+1

=
1

(q2i + sq2i+1)(q2i + (s+ 1)q2i+1)
.

On the other hand, if pq 6=
p2i+sp2i+1

q2i+sq2i+1
, we should have

p

q
− p2i + sp2i+1

q2i + sq2i+1

=
(p2i + sp2i+1)q − p(q2i + sq2i+1)

q(q2i + sq2i+1)

≥ 1

q(q2i + sq2i+1)

as well, thus we get q > q2i+(s+1)q2i+1. Therefore, q2i+
sq2i+1 is the smallest denominator of any rational number
p
q in the interval

[
p2i+sp2i+1

q2i+sq2i+1
, p2i+(s+1)p2i+1

q2i+(s+1)q2i+1

)
, and any other

rational number should have the denominator strictly larger
than q2i + (s+ 1)q2i+1.

37 2022/2/24

We now show that p2i+sp2i+1

q2i+sq2i+1
is a best rational ap-

proximation of x from below if it is a proper semicon-
vergent. Indeed, take any rational number p

q in the inter-

val
[
p2i+sp2i+1

q2i+sq2i+1
, x
]
. Since p2i+sp2i+1

q2i+sq2i+1
is proper, p2i+2

q2i+2
is

well-defined, and this in particular means that if x is ra-
tional, then its denominator must be at least q2i+2. As
p2i+(s+1)p2i+1

q2i+(s+1)q2i+1
is a semiconvergent, we have implicitly as-

sumed that s+1 ≤ a2i+2, thus we have q2i+sq2i+1 < q2i+2.
Therefore, if pq = x, then we must have q > q2i + sq2i+1.

On the other hand, if p
q < x, then p

q should be either
strictly less than bxc or in between two consecutive semi-
convergents. The first case cannot happen as p2i+sp2i+1

q2i+sq2i+1
≥

p2i
q2i
≥ p0

q0
= bxc, and for the second case, the denomina-

tor of the smaller one of those two semiconvergents must be
at least q2i + sq2i+1, so in particular q should be at least
q2i + sq2i+1. This shows that p2i+sp2i+1

q2i+sq2i+1
is a best rational

approximation of x from below.
Now, the only case of proper semiconvergent that is not

covered by the claim above is for x itself, but for that case
x is obviously a best rational approximation of itself ‘from
below.

Next, we show that any best rational approximation p
q of

x from below that is strictly less than x must be a proper
even semiconvergent. Indeed, since p

q is strictly less than x,
we should have either p

q < bxc or there exists a unique
pair of two consecutive semiconvergents p2i+sp2i+1

q2i+sq2i+1
and

p2i+(s+1)p2i+1

q2i+(s+1)q2i+1
such that

p2i + sp2i+1

q2i + sq2i+1
≤ p

q
<
p2i + (s+ 1)p2i+1

q2i + (s+ 1)q2i+1
.

The first case is obviously impossible because bxc1 should be
a better approximation than p

q in that case, and for the second
case, we already have shown that either p

q = p2i+sp2i+1

q2i+sq2i+1

or q > q2i + (s + 1)q2i+1. Since p
q is assumed to be a

best rational approximation from below, we must have p
q =

p2i+sp2i
q2i+sq2i

. Then, it is clear that p2i+sp2i+1

q2i+sq2i+1
must be a proper

semiconvergent; otherwise, we should have a2i+2 =∞ and
s 6= 0, which means that x = p2i+1

q2i+1
and q2i + sq2i+1 is

strictly bigger than q2i+1, so p
q cannot be a best rational

approximation from below, as x itself is a strictly better
rational approximation.

The claim about best rational approximations from above
and odd semiconvergents can be shown similarly; we omit
details.

This characterization of best rational approximations
from below/above immediately leads us to the following
algorithm, for a given real number x and a positive integer
nmax, of finding the best rational approximations p∗

q∗
from

below and p∗

q∗ from above of x, with the largest denominators
q∗, q

∗ ≤ nmax:

Algorithm C.9 (Finding best rational approximations from
below and above).

1. Find the last convergent piqi of x such that qi ≤ nmax.

2. If x = pi
qi

, then return
(
p∗
q∗
, p

∗

q∗

)
=
(
pi
qi
, piqi

)
.

3. Otherwise, find the last semiconvergent pi−1+spi
qi−1+sqi

such
that qi−1 + sqi ≤ nmax.

4. If i is even, then return
(
p∗
q∗
, p

∗

q∗

)
=
(
pi
qi
, pi=1+spi
qi−1+sqi

)
.

5. If i is odd, then return
(
p∗
q∗
, p

∗

q∗

)
=
(
pi=1+spi
qi−1+sqi

, piqi

)
.

C.2 Enumerating all good enough approximations
In this section, we will derive an algorithm for enumerating
all n’s such that nx−bnxc is smaller than a certain threshold,
where x is any fixed positive real number.

Lemma C.10.
Let ab <

c
d be positive rational numbers. Then any rational

number x
y ∈

(
a
b ,

c
d

)
can be uniquely written as a form

x

y
=
qa+ pc

qb+ pd

for some coprime positive integers p, q. If bc− ad = 1, then
we have{

p = bx− ay,
q = cy − dx,

and

{
x = qa+ pc,

y = qb+ pd.

Hence, qa+pcqb+pd is in its reduced form in this case. The exact
same result is true even when we allow a

b = 0
1 = 0 or

c
d = 1

0 =∞ or both.

Proof. Consider the function

f(t) :=
a+ tc

b+ td

of real variable t, then

f ′(t) =
bc− ad

(b+ td)2
> 0,

so f is strictly increasing on the domain t > 0. Hence, if we
have

q1a+ p1c

q1b+ p1d
=
q2a+ p2c

q2b+ p2d

for some positive integers p1, q1, p2, q2, then we must have

p1
q1

=
p2
q2
.

This shows the uniquenss part. Also, it can be easily verified
that

x

y
=

(cy − dx)a+ (bx− ay)c

(cy − dx)b+ (bx− ay)d

always holds. Indeed, the numerator is equal to (bc − ad)x
while the denominator is equal to (bc − ad)y. Hence, let

38 2022/2/24

g := gcd(cy− dx, bx− ay), then we have p = (bx− ay)/g
and q = (cy − dx)/g. Then it only remains to show that
g = 1 if bc− ad = 1.

Since x, y are coprime, we can find integers z, w such that
xz − yw = 1. Then, the determinant of the matrix(

a b
c d

)(
y −z
−x w

)
=

(
ay − bx bw − az
cy − dx dw − cz

)
must be equal to bc − ad. Hence, when bc − ad = 1,
then bx − ay and cy − dx must be indeed coprime to each
other.

Corollary C.11.
Let piqi denote the ith convergent of a given continued frac-
tion [a0; a1, · · ·]. Then any rational number between two
consecutive semiconvergents pi−1+spi

qi−1+sqi
and pi−1+(s+1)pi

qi−1+(s+1)qi
is

of the form
bpi−1 + (a+ bs)pi
bqi−1 + (a+ bs)qi

for some rational number a
b ∈ [0, 1].

Proof. By replacing pi by pi − a0qi if necessary, we can
assume without loss of generality that a0 = 0. Then it im-
mediately follows from the previous lemma that any rational
number between those two semiconvergents must be of the
form

qpi−1 + ppi
qqi−1 + pqi

for some coprime nonnegative integers p, q, because such a
rational number must be in between pi−1

qi−1
and pi

qi
. Note that

(qpi−1 + ppi)(qi−1 + sqi)− (qqi−1 + pqi)(pi−1 + spi)

= (p− qs)(piqi−1 − pi−1qi) = (−1)i−1(q − ps),

and similarly the same computation with s replaced by s+ 1
gives (−1)i−1(q − p(s + 1)). Therefore, qpi−1+ppi

qqi−1+pqi
lies in

between pi−1+spi
qi−1+sqi

and pi−1+(s+1)pi
qi−1+(s+1)qi

if and only if pq ∈ [s, s+

1]. Hence, let a = p− qs and b = q, then we get the desired
result.

Corollary C.12.
Let pi

qi
denote the ith convergent of a given continued

fraction x = [a0; a1, · · ·]. Then for any rational num-
ber p

q between two consecutive semiconvergents, in either[
pi−1+spi
qi−1+sqi

, pi−1+(s+1)pi
qi−1+(s+1)qi

)
or
(
pi−1+(s+1)pi
qi−1+(s+1)qi

, pi−1+spi
qi−1+sqi

]
de-

pending on the parity of i, we always have

|qx− p| ≥ |(qi−1 + sqi)x− (pi−1 + spi)| .

The equality condition is:

1. When s+1 = ai+1 and x = pi+1

qi+1
, then the equality holds

if and only if

p

q
=
bpi−1 + (bs+ (b− 1))pi
bqi−1 + (bs+ (b− 1))qi

for a positive integer b.

2. Otherwise, the equality holds if and only if

p

q
=
pi−1 + spi
qi−1 + sqi

.

Proof. Using the lemma above, let us write

p

q
=
bpi−1 + (a+ bs)pi
bqi−1 + (a+ bs)qi

for some rational number a
b ∈ [0, 1). Then, assuming pi −

qix 6= 0, we get

|qx− p| = |b(qi−1x− pi−1)− (a+ bs)(pi − qix)|

= b |pi − qix|
∣∣∣∣qi−1x− pi−1pi − qix

−
(
s+

a

b

)∣∣∣∣ ,
and similarly

|(qi−1 + sqi)x− (pi−1 + spi)|

= |pi − qix|
∣∣∣∣qi−1x− pi−1pi − qix

− s
∣∣∣∣ .

Recall ai+1 =
⌊
qi−1x−pi−1

pi−qix

⌋
≥ s + 1. Also, note that

qi−1x−pi−1

pi−qix is always positive, so

|qx− p| − |(qi−1 + sqi)x− (pi−1 + spi)|
|pi − qix|

= (b− 1)

(
qi−1x− pi−1
pi − qix

−
(
s+

a

b

))
− a

b
.

Then since

qi−1x− pi−1
pi − qix

≥ s+ 1 ≥ s+
a+ 1

b
,

we get

|qx− p| − |(qi−1 + sqi)x− (pi−1 + spi)|
|pi − qix|

≥ b− 1

b
− a

b
≥ 0,

as desired. Also, the equality holds if and only if either
a
b = 0 or a = b− 1 and

qi−1x− pi−1
pi − qix

= s+ 1,

which means x = pi+1

qi+1
.

The case pi − qix = 0 is simpler; in this case, we have

|qx− p| = b |qi−1x− pi−1|

and

|(qi−1 + sqi)x− (pi−1 + spi)|
= |qi−1x− pi−1| ,

so we get the desired inequality and the equality condition is
b = 1.

39 2022/2/24

Using the above result, we get the following algorithm of
finding all n = 1, · · · , nmax such that nx − bnxc < ε, for
any positive real number x and ε:

Algorithm C.13 (Finding all n’s with nx− bnxc < ε).

1. When ε ≥ 1, nx − bnxc < ε always holds, so there is
nothing to do. Thus we may assume ε < 1.

2. Find the first even semiconvergent p2i+sp2i+1

q2i+sq2i+1
such that

(q2i + sq2i+1)x− (p2i + sp2i+1) < ε.

Then any nonnegative rational number pq ≤ x with qx−
p < ε must be at least p2i+sp2i+1

q2i+sq2i+1
. Hence, possibly except

for n’s such that nx is an integer, all n’s with nx −
bnxc < εmust be at least q2i+sq2i+1. If p2i+sp2i+1

q2i+sq2i+1
= x,

then go to step 7.
3. Otherwise, starting from p2i+sp2i+1

q2i+sq2i+1
, we iterate over all

even semiconvergents p2j+tp2j+1

q2j+tq2j+1
with q2j + tq2j+1 ≤

nmax.
4. Given such a semiconvergent p2j+tp2j+1

q2j+tq2j+1
, we know that

n = q2j + tq2j+1 satisfies nx− bnxc < ε. In addition to
that, compute

bmax :=

⌊
nmax

q2j + tq2j+1

⌋
.

Then iterate over all b = 1, · · · , bmax.
5. Given b = 1, · · · , bmax, compute

amax := min

(⌊
nmax − b(q2j + tq2j+1)

q2j+1

⌋
, b− 1

)
.

When b = 1, we let a = 0, and otherwise, we iterate over
a = 1, · · · , amax with gcd(a, b) = 1. In any case,

p

q
:=

bp2j + (a+ bs)p2j+1

bq2j + (a+ bs)q2j+1

is a candidate for having qx− p < ε.
6. Compute

dmax := min

(⌈
ε

qx− p

⌉
− 1,

⌊
nmax

q

⌋)
.

If dmax = 0, then qx − p ≥ ε. Otherwise, any n = qd
with d = 1, · · · , dmax satisfies nx− bnxc < ε. Indeed,
since qdx− pd < ε < 1, we must have bnxc = pd.

7. All the other counterexamples must be n’s such that nx is
an integer. If x = p

q is a rational number with q ≤ nmax,

then all such n’s are q, 2q, · · · ,
⌊
nmax

q

⌋
q. Otherwise,

there is no such n’s.

Also, by replacing
⌈

ε
qx−p

⌉
− 1 by

⌊
ε

qx−p

⌋
, we get the

algorithm for finding n’s with nx− bnxc ≤ ε.

Remark. Corollary C.12 shows that semiconvergents are
precisely the best rational approximations from below/above

in the strong sense: we call a rational number p
q a best

rational approximation of x from below in the strong sense,
if pq ≤ x and for any rational number ab ≤ x with b ≤ q,

qx− p ≤ bx− a

holds, and similarly, we call pq a best rational approximation
of x from above in the strong sense, if p

q ≥ x and for any
rational number ab ≥ x with b ≤ q,

p− qx ≤ a− bx

holds. By dividing both sides of the inequalities by q, one
can immediately see that best rational approximations from
below/above in the strong sense are best rational approxima-
tion as we defined in Definition 4.1, justifying the terminol-
ogy. Then Corollary C.12 shows that in fact converse is also
true thus those two concepts are equal things, because both
are precisely the semiconvergents.

Therefore, Algorithm C.9 is in fact also the algorithm
of finding n ∈ {1, · · · , nmax} such that nx − bnxc and
dnxe − nx are minimized. In particular, when x = p

q is
rational, it finds n that minimizes

nx− bnxc =
1

q

(
p−

⌊
np

q

⌋
q

)
=

(np mod q)

q

and

dnxe − nx =
1

q

(⌈
np

q

⌉
q − p

)
=

{
q−(np mod q)

q if q does not divide n,
0 otherwise.

Hence, it is obvious that what the improved min-max al-
gorithm from [3] is doing is (almost) exactly what Algo-
rithm C.9 is doing.

40 2022/2/24

References
[1] R. Giulietti. The Schubfach Way to Render Doubles.

2020. https://drive.google.com/file/d/1KLtG_
LaIbK9ETXI290zqCxvBW94dj058/view (Sep. 2020)

[2] F. Loitsch. Printing Floating-Point Numbers Quickly and Ac-
curately with Integers. In Proceedings of the ACM SIGPLAN
2010 Conference on Programming Language Design and Imple-
mentation, PLDI 2010. ACM, New York, NY, USA, 233–243.
https://doi.org/10.1145/1806596.1806623

[3] J. Jeon. Grisu-Exact: A Fast and Exact Floating-Point Printing
Algorithm. 2020. https://github.com/jk-jeon/
Grisu-Exact/blob/master/other_files/Grisu-
Exact.pdf. (Sep. 2020)

[4] G. L. Steel Jr. and J. L. White. How to Print Floating-Point
Numbers Accurately. In Proceedings of the ACM SIGPLAN
1990 Conference on Programming Language Design and Imple-
mentation, PLDI 1990. ACM, New York, NY, USA, 112–126.
https://doi.org/10.1145/93542.93559

[5] M. Andrysco, R. Jhala, and S. Lerner. Printing Floating-Point
Numbers: a Faster, Always Correct Method. In Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2016. ACM, New
York, NY, USA, 555–567. https://doi.org/10.1145/
2837614.2837654

[6] U. Adams. Ryū: Fast Float-to-String Conversion In Proceed-
ings of the ACM SIGPLAN 2018 Conference on Programming
Language Design and Implementation, PLDI 2018. ACM, New
York, NY, USA, 270–282. https://doi.org/10.1145/
3296979.3192369

[7] https://github.com/abolz/Drachennest. (May.
2021)

[8] T. Granlund and P. L. Montgomery. Division by Invariant
Integers using Multiplication. In ACM SIGPLAN Notices, Vol
29, Issue 6, Jun. 1994. ACM, New York, NY, USA, 61–72.
https://doi.org/10.1145/773473.178249

[9] H. S. Warren, Jr. Hacker’s Delight. Addison-Wesley, Boston,
1st edition, 2002.

[10] D. Lemire, C. Bartlett and O. Kaser. Integer division by
constants: optimal bounds. In Heliyon, Vol 7, Issue 6, E07422,
Jun. 2021. https://doi.org/10.1016/j.heliyon.
2021.e07442

[11] https://github.com/jk-jeon/dragonbox. (Sep.
2022)

[12] https://stackoverflow.com/questions/
25095741/how-can-i-multiply-64-bit-
operands-and-get-128-bit-result-portably.
(Jun. 2020)

[13] https://github.com/ulfjack/ryu. (Jun. 2022)

[14] https://github.com/jk-jeon/Grisu-Exact.
(Sep. 2022)

[15] M. Einsiedler and T. Ward. Ergodic Theory with a view
towards Number Theory. Graduate Texts in Mathematics 259.
Springer.

41 2022/2/24

https://drive.google.com/file/d/1KLtG_LaIbK9ETXI290zqCxvBW94dj058/view
https://drive.google.com/file/d/1KLtG_LaIbK9ETXI290zqCxvBW94dj058/view
https://doi.org/10.1145/1806596.1806623
https://github.com/jk-jeon/Grisu-Exact/blob/master/other_files/Grisu-Exact.pdf
https://github.com/jk-jeon/Grisu-Exact/blob/master/other_files/Grisu-Exact.pdf
https://github.com/jk-jeon/Grisu-Exact/blob/master/other_files/Grisu-Exact.pdf
https://doi.org/10.1145/93542.93559
https://doi.org/10.1145/2837614.2837654
https://doi.org/10.1145/2837614.2837654
https://doi.org/10.1145/3296979.3192369
https://doi.org/10.1145/3296979.3192369
https://github.com/abolz/Drachennest
https://doi.org/10.1145/773473.178249
https://doi.org/10.1016/j.heliyon.2021.e07442
https://doi.org/10.1016/j.heliyon.2021.e07442
https://github.com/jk-jeon/dragonbox
https://stackoverflow.com/questions/25095741/how-can-i-multiply-64-bit-operands-and-get-128-bit-result-portably
https://stackoverflow.com/questions/25095741/how-can-i-multiply-64-bit-operands-and-get-128-bit-result-portably
https://stackoverflow.com/questions/25095741/how-can-i-multiply-64-bit-operands-and-get-128-bit-result-portably
https://github.com/ulfjack/ryu
https://github.com/jk-jeon/Grisu-Exact

	Disclaimer
	Introduction
	IEEE-754 Specifications
	Rounding Modes
	Notations

	Review of Schubfach
	Computation of nx and Related Tricks
	Computation of nx
	Correspondence of ordering of the fractional parts
	Checking if nx is an integer
	Computation of nx-y

	Dragonbox
	Normal interval case
	Overview
	Precomputed lookup table for the computation of x, y, z, and
	Choice of
	Computation of (i)
	Computation of z(i)
	Computation of x(i) and y(i)
	Division by 10+1
	Division by 10

	Shorter interval case
	Computing x(i) and z(i)
	Computing y(ru)
	Integer Checks
	Detecting Tie
	Some Facts about Correct Rounding

	Efficient Log Computations
	Computation of nlog102
	Computation of nlog210
	Computation of nlog102 - log1043

	Performance
	Right-Closed Directed Rounding Case
	Left-Closed Directed Rounding Case
	Continued fractions
	Best rational approximations from below/above
	Enumerating all good enough approximations

